INSTITUTO SUPERIOR DE AGRONOMIA

Exam of Applied Operations Research (Module 3) - 3 June 2016

Number:	Name:	

1. (10val.) An industrialist manufactures a certain product, which results in the emission of three pollutants into the air: A, B and C. She is required to reduce A by at least 50 units, B by at least 100 units and C by at least 75 units. There are two pollution abatement methods available to the industrialist: (1) to use filters or (2) to use cleaning additive for fuel. For each m² of filter that is used, the emission of the three pollutants can be reduced by 1/2, 4/5 and 1 units, respectively, for A, B and C. For each ton of cleaning additive added to the fuel, the three pollutants can be reduced by 1, 5/2 and 1 units, respectively, for A, B and C. The filter costs $500 \in \text{per m}^2$ and the cleaning additive costs $750 \in \text{per ton}$. The industrialist's objective is to adopt the lowest cost method of reducing pollution according to the requirements.

This problem is formulated as a linear program as follows:

$$\min Z = ax + by \tag{1}$$

$$subject to cx + dy \ge 50$$
(2)

$$ex + fy \ge 100 \tag{3}$$

$$qx + hy > 75 \tag{4}$$

$$x, y \ge 0, \tag{5}$$

where a, b, c, d, e, f, g and h are parameters of the problem.

- a) Explain what the decision variables x and y represent and determine a, b, c, d, e, f, g and h.
- b) The sensitivity report created by the Excel Solver for the model (1)-(5), with a, b, c, d, e, f, g and h replaced by their values, is displayed in Tables 1 and 2.

	Final	Reduced	Objective	Allowable	Allowable
Name	Value	Cost	$\operatorname{Coefficient}$	Increase	Decrease
x	50	0	500	250	125
y	25	0	750	250	250

Table 1: Variable cells (sensitivity report by the Excel Solver).

	\mathbf{Final}	Shadow	$\operatorname{Constant}$	Allowable	Allowable
Name	Value	Price	R.H. Side	Increase	Decrease
(1)	50	500	50	25	0.735294118
(2)	102.5	0	100	2.5	$1\mathrm{E}{+}30$
(3)	75	250	75	2.777777778	25

Table 2: Constraints (sensitivity report by the Excel Solver).

i) What is the optimal solution to the problem?

ii) Which constraints are binding? How do you interpret each binding constraint?

- iii) By how much should filter's current cost per ${\rm m}^2$ increase in order for the optimal solution to change?
- iv) What is the shadow price for each constraint? How do you interpret this value?
- v) What is the range of feasibility for the minimum number of units of B to reduce with respect to the shadow price? How do you interpret this range?

Resolution: