INSTITUTO SUPERIOR DE AGRONOMIA

Exam of Applied Operations Research - 11 July 2016/17

Number:
Name:

1. (10val.) Consider a ponderosa pine forest that could be managed either as multiple-use area for recreation and timber or as a wilderness that would allow only for recreational activities. The forest consists of 1600 ha of high-site (i.e., high-productivity) land and 2400 ha of low-site land. The expected outputs from the forest, by site and management option, are given in the following table.

Table 1: Outputs per hectare, by site and management options.

	High-site land		Low-site land	
Output	Wilderness	Multiple use	Wilderness	Multiple use
Timber $\left(\mathrm{m}^{3} / \mathrm{ha} / \mathrm{y}\right)$		3.5	1.2	
Sediment $\left(\mathrm{m}^{3} / \mathrm{ha} / \mathrm{y}\right)$	0.06	0.12	0.03	0.06
Recreation $(\mathrm{vd} / \mathrm{ha} / \mathrm{y})$	1	0.25	0.6	0.15

The following LP model translates the problem that the forest manager would like to solve.

$$
\begin{align*}
& \operatorname{Max} Z=x_{1}+0.25 x_{2}+0.6 x_{3}+0.15 x_{4} \tag{1}\\
& \text { s.t. } x_{1}+x_{2} \leq 1600 \tag{2}\\
& x_{3}+x_{4} \quad \leq 2400 \tag{3}\\
& 3.5 x_{2} \quad+1.2 x_{4} \geq 1400 \tag{4}\\
& 0.06 x_{1}+0.12 x_{2}+0.03 x_{3}+0.06 x_{4} \leq 200 \tag{5}\\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \quad \geq 0 . \tag{6}
\end{align*}
$$

a) What can be the meaning of the decision variables x_{i}, for $i=1, \ldots, 4$, the objective function (1) and constraints (2) to (5)?
b) Tables 2 and 3 display partially the answer report provided by the Excel Solver concerning variables and constraints. Complete the gray boxes and find the optimal objective function value.

Table 2: The answer report provided by the Excel Solver concerning variables.

Name	Original Value	Final value
x_{1}	0	
x_{2}	0	400
x_{3}	0	2400
x_{4}	0	

Table 3: The answer report provided by the Excel Solver concerning constraints.

Name	Cell value	Status	Slack
(2)		Binding	
(3)			
(4)			
(5)			

2. (10val.) Consider the following LP problem (P):

$$
\begin{gathered}
\max z=4 x_{1}+2 x_{2} \\
\left\{\begin{array}{cccc}
2 x_{1}+x_{2} & \leq 100 \\
x_{1}+x_{2} & \leq 80 \\
x_{1} & & (2) \\
x_{1} & , & x_{2} & \geq 0
\end{array}\right.
\end{gathered}
$$

The simplex method yields the following optimal tableau, in which s_{1}, s_{2} and s_{3} are slack variables related to constraints (1), (2) and (3), respectively,

z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	$r h s$
1	0	0	2	0	0	200
	0	1	1	0	-2	20
	0	0	-1	1	1	20
	1	0	0	0	1	40

a) Write the optimal solution for (P).
b) Use the simplex method to obtain an alternative optimal solution, different from the solution determined in a).
c) How many optimal solutions does (P) have? Justify your answer.
d) Write the dual problem of (P).
e) Use complementary slackness conditions to obtain the dual optimal solution.

