INSTITUTO SUPERIOR DE AGRONOMIA

Exam of Applied Operations Research - 11 July 2016/17

Number: Name:

1. (10val.) Consider a ponderosa pine forest that could be managed either as multiple-use area for recreation and timber or as a wilderness that would allow only for recreational activities. The forest consists of 1600 ha of high-site (*i.e.*, high-productivity) land and 2400 ha of low-site land. The expected outputs from the forest, by site and management option, are given in the following table.

Table 1:	Outputs per	hectare,	by site	and	$\operatorname{management}$	options.
		High site	hand		Lows	ite land

			Low-site land	
Output	Wilderness	Multiple use	Wilderness	Multiple use
Timber $(m^3/ha/y)$		3.5		1.2
$ m Sediment~(m^3/ha/y)$	0.06	0.12	0.03	0.06
m Recreation~(vd/ha/y)	1	0.25	0.6	0.15

The following LP model translates the problem that the forest manager would like to solve.

Max	$Z = x_1 + 0.25x_2$ -	$+ 0.6x_3 + 0.15x_4$		(1)
s.t.	$x_1 + x_2$		≤ 1600	(2)
		$x_3 + x_4$	≤ 2400	(3)
	$3.5x_{2}$	$+1.2x_{4}$	≥ 1400	(4)
	$0.06x_1 + 0.12x_2$ -	$+0.03x_3+0.06x_4$	≤ 200	(5)
	$x_1, x_2,$	x_3, x_4	$\geq 0.$	(6)

- a) What can be the meaning of the decision variables x_i , for i = 1, ..., 4, the objective function (1) and constraints (2) to (5)?
- b) Tables 2 and 3 display partially the answer report provided by the Excel Solver concerning variables and constraints. Complete the gray boxes and find the optimal objective function value.

Table 2: The answer report provided by the Excel Solver concerning variables.

Name	Original Value	Final value
x_1	0	
x_2	0	400
x_3	0	2400
x_4	0	

Table 3: The answer report provided by the Excel Solver concerning constraints.

Name	Cell value	Status	Slack
(2)		Binding	
(3)			
(4)			
(5)			

2. (10val.) Consider the following LP problem (P):

$$\max z = 4x_1 + 2x_2$$

$$\begin{cases}
2x_1 + x_2 \leq 100 \quad (1) \\
x_1 + x_2 \leq 80 \quad (2) \\
x_1 \leq 40 \quad (3) \\
x_1 \quad , \quad x_2 \geq 0 \quad (4)
\end{cases}$$

The simplex method yields the following optimal tableau, in which s_1 , s_2 and s_3 are slack variables related to constraints (1), (2) and (3), respectively,

z	x_1	x_2	s_1	s_2	s_3	rhs
1	0	0	2	0	0	200
	0	1	1	0	-2	20
	0	0	$^{-1}$	1	1	20
	1	0	0	0	1	40

- a) Write the optimal solution for (P).
- b) Use the simplex method to obtain an alternative optimal solution, different from the solution determined in a).
- c) How many optimal solutions does (P) have? Justify your answer.
- d) Write the dual problem of (P).
- e) Use complementary slackness conditions to obtain the dual optimal solution.