Applied Operations Research

Simplex method at a glance

One Resolution of some exercises

1. A farmer owns 35 acres of land and is going to plant wheat or corn. Each acre planted with wheat yields $\$ 200$ profit; each acre planted with corn yields $\$ 300$ profit. The labor and fertilizer used for each acre are given in the table below:

	Wheat	Corn
Labor	3 workers	2 workers
Fertilizer	2 tons	4 tons

One hundred workers and 120 tons of fertilizer are available. The problem is to determine how the farmer can maximize the profit from his land.
(a) Formulate the problem in linear programming.

Answer.

Decision variables:

$$
\begin{aligned}
& x_{1} \text { - area assigned to wheat (acres) } \\
& x_{2} \text { - area assigned to corn (acres) } \\
& \text { Max } Z=200 x_{1}+300 x_{2} \\
& \text { s.t. } x_{1}+x_{2} \leq 35 \\
& 3 x_{1}+2 x_{2} \leq 100 \\
& 2 x_{1}+4 x_{2} \leq 120 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

(b) Graphically represent the feasible region.

Answer.

4

Vertex	$\left(x_{1}, x_{2}\right)$
A	$(0,0)$
B	$(0,30)$
C	$(10,25)$
D	$(30,5)$
E	$\left(\frac{100}{3}, 0\right)$

(c) Determine an optimal solution and the corresponding optimal value.

Answer.

Vertex	$\left(x_{1}, x_{2}\right)$	$Z=200 x_{1}+300 x_{2}$
A	$(0,0)$	0
B	$(0,30)$	9000
C	$(10,25)$	9500
D	$(30,5)$	7500
E	$\left(\frac{100}{3}, 0\right)$	$6666 .(6)$

The optimal solution is vertex C with the objective function value equal to 9500 .
(d) Use Excel Solver to solve the problem.
(e) The Excel Solver provides a Sensitivity Report. For the objective function coefficients it gives the following values:

Variable Cells			
\ldots	Objective	Allowable	Allowable
\ldots	Coefficient	Increase	Decrease
\ldots	200	100	50
\ldots	300	100	100

For each objective function coefficient, show how to obtain the values in columns Allowable Increase and Allowable Decrease.

Answer. Columns Allowable Increase and Allowable Decrease give the amount by which each objective function coefficient can be increased or decreased, respectively, without changing the optimal activity levels.
$200 x_{1}+300 x_{2}=k$ is the linear equation defining the set level C_{k} of the objective function (set of feasible solutions with the objective function value equal to k).

To answer this question with respect to x_{1}, one have to replace the coefficient of x_{1} in $200 x_{1}+300 x_{2}=k$ by a. The slope of the line that represents C_{k} $\left(a x_{1}+300 x_{2}=k\right)$ is $-\frac{a}{300}$. This slope should be between the slope of the line $x_{1}+x_{2}=35(-1)$ and the slope of the line $2 x_{1}+4 x_{2}=120\left(-\frac{1}{2}\right)$. Then, $-1 \leq-\frac{a}{300} \leq-\frac{1}{2} \Leftrightarrow a \in[150,300]$. Thus, the coefficient of x_{1} can increase 100 at the most (Allowable Increase) and decrease 50 at the most (Allowable Decrease) without changing the optimal activity levels.

With respect to x_{2}, one have to replace the coefficient of x_{2} in $200 x_{1}+300 x_{2}=k$ by a. The slope of the line that represents $C_{k}\left(200 x_{1}+a x_{2}=k\right)$ is $-\frac{200}{a}$ for $a \neq 0$. This slope should be between -1 and $-\frac{1}{2}$. Then, $-1 \leq-\frac{200}{a} \leq-\frac{1}{2} \Leftrightarrow a \in$ [200, 400]. Thus, the coefficient of x_{2} can increase and decrease 100 at the most without changing the optimal optimal activity levels. Notice that for $a=0$, the optimal solution will be E.
(f) Fix the wheat profit to $\$ 200$. For which value(s) of corn profit does the LP problem have optimal solutions alternative to the one found in $b)$?

Answer. As previously, one have to replace the coefficient of x_{2} in $200 x_{1}+300 x_{2}=k$ by a. The slope of the line that represents $C_{k}\left(200 x_{1}+a x_{2}=k\right)$ is $-\frac{200}{a}$ for $a \neq 0$. This slope should be equal to the slope of the line $x_{1}+x_{2}=35(-1)$ or the slope of the line $2 x_{1}+4 x_{2}=120\left(-\frac{1}{2}\right)$. Thus, $a=200$ or $a=400$. For $a=0$, the optimal solution will be E. So, the answer is $a=200$ or $a=400$.
2. Consider the following linear programming model

$$
\begin{array}{lr}
\operatorname{Max} & Z=x_{1}-x_{2}+x_{3} \\
\text { s.t. } & 2 x_{1}-x_{2}+2 x_{3} \leq 6 \\
& -2 x_{1}+4 x_{2}-x_{3} \geq \alpha \quad(\alpha \in \mathbb{R}) \\
& x_{1}-x_{2}+2 x_{3} \geq 4 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{array}
$$

and the point $P=(0,2,4)$.
(a) Write the problem in the standard form.
(b) Find, if any, a value for α such that P is the vertex of the feasible region and give
the corresponding value of the objective function.
(c) Consider that P is an optimal solution of the problem for the α value found previously. Comment the following sentence: "The plan $x_{1}-x_{2}+x_{3}=3$ intercepts the feasible region of the problem."
3. Consider the following linear programming model

$$
\left.\begin{array}{rl}
\text { Max } Z=x_{1}+2 x_{2}-x_{3} & \\
\text { s.t. } \quad 2 x_{1}+4 x_{2}+3 x_{3} & \geq 8 \\
x_{1}+x_{2} & \leq 6 \\
-x_{1}+x_{2} & \leq 4 \\
& x_{1}+x_{3}
\end{array} \leq 4\right\}
$$

(a) Write the problem in the standard form.
(b) Find an optimal solution of the problem that is obtained from the initial problem by adding the restriction $x_{3}=0$ and indicate the corresponding binding constraints.
(c) Does the solution of the previous question correspond to a vertex of the feasible region of the initial problem?
4. A farmer has the following resource endowments: 500 acres of land, 1500 hours of family labour and $120000 €$ of capital investment. She can use these resources to grow the following crops: corn, sorghum, wheat and soybeans. Any crop should not occupy more than 250 acres. Assume that the farmer works to maximize profit (revenue minus costs) from the production of these crops. She expects the following in terms of prices, crop yields, costs and labor requirements.

Crop	Price $(€ /$ bushel $)$	Yield (bushel/acre)	Cost $(€ /$ acre $)$	Labor Requirement (hours/acre)
Corn	2.75	120	250	3.25
Sorghum	2.65	100	200	3.00
Wheat	3.15	105	245	3.15
Soybeans	6.75	45	230	3.30

(a) Formulate the problem as a linear program.

Answer. Decision variables:

$$
\begin{aligned}
& x_{1}-\text { area assigned to corn (acres) } \\
& x_{2}-\text { area assigned to sorghum (acres) } \\
& x_{3}-\text { area assigned to wheat (acres) } \\
& x_{1}-\text { area assigned to soybeans (acres) }
\end{aligned}
$$

$\operatorname{Max} \quad Z=80 x_{1}+65 x_{2}+85.75 x_{3}+73.75 x_{4}$

$$
\begin{aligned}
& \text { s.t. } x_{1}+x_{2}+x_{3}+x_{4} \leq 500 \\
& 3.25 x_{1}+3 x_{2}+3.15 x_{3}+3.3 x_{4} \leq 1500 \\
& 250 x_{1}+200 x_{2}+245 x_{3}+230 x_{4} \leq 120000 \\
& x_{1} \quad \leq \quad 250 \\
& \begin{array}{rlll}
x_{2} & & & \leq 250 \\
x_{3} & & & \leq 250 \\
& & x_{4} & \leq 250 \\
x_{1}, \quad x_{2}, & x_{3}, & x_{4} & \geq 0
\end{array}
\end{aligned}
$$

(b) Solve the problem using the Excel Solver. What is the optimal solution to the problem?

Answer.

$$
\begin{aligned}
& x_{1}^{*}=219.23 \text { (acres) } \\
& x_{2}^{*}=0(\text { acres })
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}^{*}=250 \text { (acres) } \\
& x_{4}^{*}=0(\text { acres })
\end{aligned}
$$

with the objective function value $Z^{*}=38975.96$ (€).
(c) Indicate a basic feasible solution of the problem in the standard form.

Answer. (219.23,0,250,0,30.77,0,3042.31,30.77,250,0,250), where the 5th and further coordinates are relative to the slack variables associated to the constraints in the standard form (by the same order).
5. Consider the problem P in linear programming associated to the following standard formulation:
$\operatorname{Max} Z=2 x_{1}+3 x_{2}$ given the feasible region

where x_{1} and x_{2} are the decision variables of P.
(a) Write P.

Answer.

$\operatorname{Max} \quad Z=2 x_{1}+3 x_{2}$

$$
\begin{aligned}
\text { s.t. } & x_{1}+x_{2} \\
x_{1}-x_{2} & \geq-2 \\
-2 x_{1}+x_{2} & \geq-10 \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned}
$$

(b) Graph the feasible region of P.

Answer.

踢

Vertex	$\left(x_{1}, x_{2}\right)$
A	$(0,0)$
B	$(0,2)$
C	$\left(\frac{9}{2}, \frac{13}{2}\right)$
D	$(7,4)$
B	$(5,0)$

(c) Find an optimal solution of P and indicate the corresponding basic feasible solution.

Answer.

Vertex	$\left(x_{1}, x_{2}\right)$	$Z=2 x_{1}+3 x_{2}$
A	$(0,0)$	0
B	$(0,2)$	6
C	$\left(\frac{9}{2}, \frac{13}{2}\right)$	28.5
D	$(7,4)$	26
B	$(5,0)$	10

The optimal solution is C with the objective function value equal to 28.5 . The corresponding basic feasible solution is $\left(\frac{9}{2}, \frac{13}{2}, 0,0, \frac{15}{2}\right)$ where the 3 rd and further coordinates are relative to the slack variables associated to the constraints in the

> standard form (by the same order).
(d) Consider set $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathcal{F}: x_{3}, x_{4}, x_{5}>0\right\}$. How many vertices of the feasible region of P correspond to elements of S ?

Answer. Only A. The other vertices have at least one slack variable equal to zero.
(e) Consider that the Simplex method is applied to P, starting at a basic feasible solution from S. Indicate which vertices the algorithm passes through.

Answer. $A \rightarrow E(E$ is better than $B) \rightarrow D \rightarrow C$.
6. Consider the following problem in linear programming:

$$
\begin{aligned}
& \text { Min } Z=2 x_{1}+x_{2}+2 x_{3} \\
& \text { s.t. } \quad x_{1}+x_{2}+x_{3} \leq 4 \\
& x_{1}+x_{2}+x_{3} \geq 1 \\
& x_{1} \quad \leq 2 \\
& x_{3} \leq 3 \\
& 3 x_{2}+x_{3} \leq 6 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{aligned}
$$

(a) Write the problem in the standard form.
(b) Show that $(1,0,3)$ is a vertex of the feasible region of the problem.
(c) Consider that constraint $x_{1}+x_{2}+x_{3} \leq 4$ is replaced by $x_{1}+x_{2}+x_{3}=4$. Will $(1,0,3)$ be an optimal solution of the problem?
7. Consider the following problem in linear programming:

$$
\begin{array}{lr}
\text { Max } & Z=2 x_{1}+x_{2}-x_{3}+3 x_{4} \\
\text { s.t. } & x_{2}-2 x_{3}+x_{4} \geq 3
\end{array}
$$

$$
\begin{aligned}
& x_{1} \quad-2 x_{3}+x_{4} \geq 2 \\
& x_{1} \quad x_{3} \quad \leq 3 \\
& x_{1}+x_{2}-2 x_{3}+x_{4}=5 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

(a) Write the problem in the standard form.
(b) Verify that $(2,3,0,0)$ is a vertex of the feasible region of the problem and indicate the corresponding value of the objective function value.
8. Consider the following problem in linear programming:

$$
\begin{aligned}
& \operatorname{Max} \quad Z=4 x_{1}+x_{2}+2 x_{3}+3 x_{4} \\
& \text { s.t. } \quad x_{1}+x_{2}+x_{3}+x_{4} \leq \frac{3}{2} \\
& x_{1}+x_{2} \quad \geq x_{3} \\
& x_{2} \quad+2 x_{4}=2 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

(a) Write the problem in the standard form.

Answer.

$$
\begin{array}{ll}
\text { Max } & Z=4 x_{1}+x_{2}+2 x_{3}+3 x_{4} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}+x_{4}+s_{1}=\frac{3}{2} \\
& x_{1}+x_{2}-x_{3} \\
& -s_{2}=0
\end{array}
$$

$$
\begin{array}{rlrl}
x_{2} & & =2 x_{4} & \\
x_{1}, \quad x_{2}, & x_{3}, \quad x_{4}, \quad s_{1}, \quad s_{2} & \geq 0
\end{array}
$$

(b) Verify that $\left(0,1,0, \frac{1}{2}\right)$ is a vertex of the feasible region of the problem.

Answer. ($0,1,0, \frac{1}{2}$) corresponds to point $u=\left(0,1,0, \frac{1}{2}, 0,1\right)$ in the standard form. u is a basic feasible solution because
all components are greater or equal than 0
has $6-3=3$ null components
the solution set of the above system of linear equations with $x_{1}=x_{3}=s_{1}=0$

$$
\begin{aligned}
& \text { is }\{u\} \\
& \left\{\begin{array}{l}
x_{2}+x_{4} \\
x_{2} \\
x_{2}+2 x_{4}-s_{2}
\end{array}=0 \quad \frac{3}{2}\right.
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
x_{2}=1 \\
s_{2}=1 \\
x_{4}=\frac{1}{2}
\end{array} .\right.
$$

As u is a basic feasible solution, $\left(0,1,0, \frac{1}{2}\right)$ is a vertex of the feasible region of the problem.
(c) Find an optimal solution of the problem that is obtained from the initial problem by adding the restriction $x_{4}=1$ and indicate the corresponding objective function value.

Answer. Adding $x_{4}=1$, the initial problem becomes

$$
\begin{aligned}
& \text { Max } Z=4 x_{1}+2 x_{3}+3 \\
& \text { s.t. } \quad x_{1}+x_{3} \leq \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}-x_{3} \geq 0 \\
& x_{1}, \quad x_{3} \geq 0
\end{aligned}
$$

Graphing the feasible region of this problem (with two variables)

通

Vertex	$\left(x_{1}, x_{3}\right)$	$Z=4 x_{1}+2 x_{3}+3$
A	$(0,0)$	3
B	$\left(\frac{1}{4}, \frac{1}{4}\right)$	4.5
C	$\left(\frac{1}{2}, 0\right)$	5

The optimal solution is C with the objective function value equal to 5 .
(d) Justify that solution $\left(0,1,0, \frac{1}{2}\right)$ is not an optimal solution of the initial problem.

Answer. The feasible solution $\left(\frac{1}{2}, 0,0,1\right)$ (obtained from the previous question) is
better than $\left(0,1,0, \frac{1}{2}\right)$. The objective function value of the first solution is 5 while that of the second solution is 2.5 .
9. Consider the problem in linear programming

$$
\begin{aligned}
& \operatorname{Max} \quad Z=20 x_{1}+30 x_{2} \\
& \text { s.t. } \quad x_{1}+2 x_{2} \leq 120 \\
& x_{1} \leq 60 \\
& x_{2} \leq 50 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

(a) Graph the feasible region and the feasible solutions with the objective function value equal to 600 .

Answer.

The red line is the set level C_{600} of the objective function (set of feasible solutions with the objective function value equal to 600).

Vertex	$\left(x_{1}, x_{2}\right)$
A	$(0,0)$
B	$(0,50)$
C	$(20,50)$
D	$(60,30)$
E	$(60,0)$

(b) Find an optimal solution and indicate the corresponding basic feasible solution. Which variables are basic in this basic feasible solution?

Answer. Moving the red line $20 x_{1}+30 x_{2}=600$ in the direction that improves the objective function values (up), the last feasible solution one can reach is D. Thus, D is the optimal solution with the objective function value equal to 2100 . The corresponding basic feasible solution is $(60,30,0,0,20)$, where the 3 rd and further coordinates are relative to the slack variables associated to the constraints in the standard form (by the same order).
(c) Indicate two adjacent basic feasible solutions.

Answer. $(60,30,0,0,20)$ and $(60,0,60,0,50)$, as they correspond to adjacent vertices.
(d) What is the largest range of variation in the RHS of the third constraint that maintains optimal the solution referred to in question b)?

Answer. $\left[30,+\infty\left[\right.\right.$. With $x_{2} \leq b$ with $b \in\left[30,+\infty\left[\right.\right.$, moving up the red line $20 x_{1}+$
$30 x_{2}=600$, the last feasible solution one can reach is still D. For $b<30, D$ is no longer a feasible solution.
(e) What is the range of optimality for the coefficient of x_{1} of the objective function?

Answer. $\left[15,+\infty\left[.20 x_{1}+30 x_{2}=k\right.\right.$ is the linear equation defining the set level C_{k} of the objective function. To answer this question, one have to replace the coefficient of x_{1} by a. The direction of the line that represents $C_{k}\left(a x_{1}+30 x_{2}=k\right)$ should be between the directions of the lines $x_{1}+2 x_{2}=120$ and $x_{1}=60$ (vertical line). The slope of $a x_{1}+30 x_{2}=k$ is $-\frac{a}{30}$. This slope should be less than or equal to the slope of $x_{1}+2 x_{2}=120,-\frac{1}{2}$ (the slope of the line $x_{1}=60$ is not defined). Then, $-\frac{a}{30} \leq-\frac{1}{2} \Leftrightarrow a \geq 15$.
(f) If the coefficients of x_{1} and x_{2} in the objective function were equal and positive, what would be the optimal solutions?

Answer. D. To answer this question, one have to replace the coefficients of x_{1} and x_{2} by a with $a>0$. The slope of the line that represents $C_{k}\left(a x_{1}+a x_{2}=k\right)$ is -1 . The red line in the figure below is a set level of the objective function. Moving this line in the direction that improves the objective function values (up), the last feasible solution one can reach is D. Thus, D is the optimal solution.

0

10. Consider the problem P in linear programming associated to the following standard formulation:
$\operatorname{Max} \quad Z=50000 x_{1}+120000 x_{2}+150000 x_{3}$

$$
\begin{aligned}
& \begin{array}{lll}
\text { s.t. } x_{1}+x_{2} & +\quad x_{3} \quad=\quad 100
\end{array} \\
& x_{1}-x_{4} \quad=\quad 20 \\
& x_{2}-x_{5} \quad=\quad 30 \\
& \begin{array}{llll}
x_{3} & -x_{6} & = & 10
\end{array} \\
& 30000 x_{1}+50000 x_{2}+40000 x_{3}+x_{7}=65000000 \\
& 240 x_{1}+480 x_{2}+300 x_{3}+x_{8}=40000 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad x_{6}, \quad x_{7}, x_{8} \geq \quad 0
\end{aligned}
$$

where x_{1}, x_{2} and x_{3} are the decision variables of P. Let $u=(20,30,50,0,0,40,24000000,5800)$
and $v=(60,30,10,40,0,0,28000000,8200)$ be two basic feasible solutions.
(a) Indicate the solution set of the system

Answer. A basic feasible solution of problem P in the standard form has 8-6=2 null components. Concerning u, the non-basic variables are x_{4} and x_{5} and the basic variables are $x_{1}, x_{2}, x_{3}, x_{6}, x_{7}$ and x_{8}. As u is a basic feasible solution, then the first system of linear equations with $x_{4}=x_{5}=0$ (the previous system) provides the unique solution $\left\{\begin{array}{l}x_{1}=20 \\ x_{2}=30 \\ x_{3}=50 \\ x_{6}=40 \\ x_{7}=24000000 \\ x_{8}=5800 .\end{array}\right.$.
(b) Do u and v correspond to adjacent vertices of the feasible region of P ?

Answer. Yes, because u and v have all non-basic variables (or all basic variables) in common except one. The non-basic variables of u are x_{4} and x_{5} and those of v are x_{5} and x_{6}. They have in common, $2-1=1$ non-basic variable. Or, the basic
variables of u are $x_{1}, x_{2}, x_{3}, x_{6}, x_{7}$ and x_{8} and those of v are $x_{1}, x_{2}, x_{3}, x_{4}, x_{7}$ and x_{8}. They have in common, $6-1=5$ basic variables.
(c) Write P.

Answer.

$$
\begin{aligned}
& \operatorname{Max} Z=50000 x_{1}+120000 x_{2}+150000 x_{3} \\
& \text { s.t. } \quad x_{1}+x_{2} \quad+\quad x_{3}=100 \\
& x_{1} \quad \geq 20 \\
& x_{2} \quad \geq 30 \\
& x_{3} \geq 10 \\
& 30000 x_{1}+50000 x_{2}+40000 x_{3} \leq 65000000 \\
& 240 x_{1}+480 x_{2}+300 x_{3} \leq 40000 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{aligned}
$$

11. Consider the problem P in linear programming associated to the following standard formulation:

$$
\operatorname{Max} \quad Z=29 x_{1}+45 x_{2}
$$

$$
\begin{aligned}
& \text { s.t. } \left.\begin{array}{ll}
2 x_{1}+8 x_{2}+x_{3} & =60 \\
\text { (s) } & \\
& \begin{array}{l}
4 x_{1}+4 x_{2} \\
x_{1},
\end{array} x_{2}, \quad x_{3}, \quad x_{4}
\end{array}\right]=60
\end{aligned}
$$

where x_{1} and x_{2} are the decision variables of P.

Consider that the Simplex algorithm is applied to P, starting at the basic feasible solution where x_{3} and x_{4} are the basic variables. Let $\left\{\begin{array}{ll}x_{3} & =60-2 x_{1}-8 x_{2} \\ x_{4} & =60-4 x_{1}-4 x_{2}\end{array}\right.$ be the system (s) solved for these variables.
(a) Indicate the vertex where the Simplex algorithm starts.
(b) Find which vertex the algorithm goes next and indicate the corresponding objective function value.
12. Consider that the Simplex algorithm is applied to a maximization problem with two variables, x_{1} and x_{2}, and two inequalities. Let x_{3} and x_{4} denote the slack variables associated to these constraints. Suppose that the current basic feasible solution has x_{1} and x_{3} as basic variables. Let $\left\{\begin{array}{l}x_{1}=15-x_{2}-\frac{1}{4} x_{4} \\ x_{3}=30-6 x_{2}+\frac{1}{2} x_{4}\end{array}\right.$ be the system of constraints in the standard
form and $Z=435+16 x_{2}-7.25 x_{4}$ the objective function, both expressed in terms of the non-basic variables.
(a) Indicate the current vertex.

Answer. (15,30). As x_{2} and x_{4} are non-basic variables, $x_{2}=x_{4}=0$. The current
basic feasible solution is ($15,0,30,0$), which corresponds to vertex $(15,0)$.
(b) Find which vertex the algorithm goes next and indicate the corresponding objective function value.

Answer. $\left\{\begin{aligned} Z & =435+16 x_{2}-7.25 x_{4} & & \\ x_{1} & =15-x_{2}-\frac{1}{4} x_{4} & & \Delta x_{2}=15 \\ x_{3} & =30-6 x_{2}+\frac{1}{2} x_{4} & \Delta x_{\mathbf{2}}=\frac{\mathbf{3 0}}{\mathbf{6}}=\mathbf{5} & \boldsymbol{\Delta} \boldsymbol{Z}=\mathbf{1 6}(\mathbf{5})=\mathbf{8 0}\end{aligned}\right.$

Increasing the value of x_{4} will decrease the objective function value.

Therefore, $\left\{\begin{array}{l}x_{2}=5 \\ x_{4}=0\end{array} \Rightarrow\left\{\begin{array}{l}x_{1}=10 \\ x_{3}=0\end{array}\right.\right.$. Then, the algorithm goes to vertex $(10,5)$ with the objective function value equal to 515.
13. Consider that the Simplex algorithm is applied to a maximization problem in linear programming with two variables, x_{1} and x_{2}, and two inequalities. Let x_{3} and x_{4} denote the
slack variables associated to these constraints. Suppose that the current basic feasible solution has x_{1} and x_{2} as basic variables. Let $\left\{\begin{array}{l}x_{1}=10+\frac{1}{6} x_{3}-\frac{1}{3} x_{4} \\ x_{2}=5-\frac{1}{6} x_{3}+\frac{1}{12} x_{4}\end{array}\right.$ be the system of constraints in the standard form and $Z=515-2.667 x_{3}-5.917 x_{4}$ the objective function, both expressed in terms of the non-basic variables.
(a) Indicate the current vertex.

Answer. (10,5). As x_{3} and x_{4} are non-basic variables, $x_{3}=x_{4}=0$. The current basic feasible solution is $(10,5,0,0)$, which corresponds to vertex $(10,5)$.
(b) Is it possible that the algorithm goes to another vertex?

Answer. No, because increasing either the value of x_{3} or that of x_{4} will decrease the objective function value.

