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1. INTRODUCTION
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What is clustering?

Oirginally developed by the biologists Robert Sokal and Peter
Sneath in their seminal paper ‘Principles of Numerical
Taxonomy’ in 1963, as method to classify organisms into
species, given a set of proeminent features

A quest for discontinuities in data

It is a method of unsupervised classification

No priori information on the groups is assumed

Does not involve predicting
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Clustering

Clustering consists of partitioning a collection of
objects/variables/descriptors/etc, such that:

Each object belongs to one and only one subset (cluster) of the
partition

Objects belonging to the same cluster are more similar (internal
cohesion) than objects belonging to distinct clusters (external
separation), given the variables considered

The definition above is called hard or crisp clustering.
There is also a notion of fuzzy clustering where the objects belong to a
given set with a certain degree of membership

Clustering always imposes some kind structure on the data, even
when no special structure or discontinuities are present! For instance,
many clustering techniques tend to form globular clusters, e.g., with
elliptical or spherical shapes
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A more formal definition of clustering

Given a collection of N objects, X = {x1, . . . , xN}, one seeks a
partition of X into K non empty disjoint sets (the clusters),

X = C1 ∪ · · · ∪ CK

such that, given the resemblance notion considered, it

maximizes the internal homogeneity or cluster cohesion, or
equivalently, it minimizes the intra-cluster variability - objects
belonging to the same cluster should share the same features

it maximizes the external heterogeneity or cluster
separation, i.e., it maximizes the inter-cluster separability -
objects belonging to distinct clusters should be very dissimilar
and have clear distinguished features
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Examples

clear clustering structure artificial clustering structure

weak internal cohesion

strong separationstrong separation

strong internal cohesion strong internal cohesion

weak separation
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Huge solution space...

The possible number of partitions of N elements into K clusters
(1 ≤ K ≤ N) equals

ξ(N,K ) =
1

K !

K∑

j=1

(
K

j

)
(−1)K−j jN ,

which is a huge number, known as Stirling of second kind, even for
relatively small values of N and K , making impossible to to find
the best partition by exhaustion For instance, for the total number

partitions of a set with 25 elements into 8 clusters gives

ξ(25, 8) = 69022372111836858
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Steps in the clustering analysis process

Variables/features selection
To choose the best variables to encode as much as possible the information
concerning the task, avoiding redundancy (highly correlated variables), but at
the same time being parsimony
Some questions arise:
- which types of variables is more appropriated: continuous, categorical, ordinal,
binary, . . . ?
- standartize/normalize the variables ?

Clustering model:
Which combination of clustering method and distance/dissimilarity ?

Cluster validation
internal: how many groups ? how to assess the quality/stability of the clusters ?
external: how the clustering results compare with the outcomes obtained using
different clustering models or it compares with known information

Interpretation of the results:
Are the outcomes interpretable in the context of the problem ?
How to associate the most important variables/features to the groups (for
instance, obtained performing a clustering analysis on the individuals projected
on the two first axes of a PCA) ?
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Cluster model

A cluster model result depends on

the notion of distance/dissimilarity between individuals and
clusters: should be adequate to the type of variables involved and to
the type of results sought

the clustering method: should take into account the type of
structure/shape of the clusters sought (rounded shape/arbitrary
shape/. . . ) and characteristics of the method itself (sensitivity to
outliers/noise/ldots), computational issues (is scalable for large
datasets), etc. . .

When two or more clustering models may be appropriate one should
compare the outputs of such models to seek for common patterns that
emerge from several clustering models - robust solutions
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Example - iris flower dataset

The well konwn iris flower dataset contains the sepal and petal lengths
and widths (in cm) of 150 iris flowers

How to measure the distance between two iris flowers ?

Standardize (z-score normalization) or normalize (min-max scalling)
the variables in order that the differences between all variables
contribute equally ?

How to measure the distance between the variables ?
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Example - a freshwater fish dataset in West Africa

In the biogeography it is common to use biological markers (the species)
to distinguish between sites (the river basins)

Which type of variable/feature is the most appropriate to encode
this type data ?

Given the type of variable chosen how to measure the resamblance
between river basins ?

How similar are the fish species with respect to their distribution in
the sites ?
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Example - a two way contigency table

Contingency table of the country of residence and primary
language spoken by 1000 inhabitants. It corresponds to a dataset of size 1000
described by two qualitative variables with 5 modalities (categories) each

English French Spanish German Italian Total
Canada 688 280 10 11 11 1000

USA 730 31 190 8 41 1000
England 798 74 38 31 59 1000

Italy 17 13 11 15 944 1000
Switz. 15 222 20 648 95 1000

Total 2248 620 269 713 1150 5000

(source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718710/)

How similar are the countries given the spoken languages ?

How similar are the languages given their distribution by the
countries ?

14 / 153



2. (DIS)SIMILARITY MEASURES
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Dissimilarity measures between individuals

A dissimilarity measure on a set X is a real function

d : X × X → R,

such that, for all x , y ,∈ X , we have

d(x , y)≥0

d(x , y) = 0

d(x , y) = d(y , x) (symmetric)

If additionally, d verifies the triangle inequality

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z ∈ R,
d is called a distance or metric.
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Dissimilarity measures for quantitative data

Given p ∈]0,+∞], the Minkowski or Lp-norm of an element
x = (x1, . . . , xd ) ∈ Rd is defined as

∥x∥p =

(
d∑

i=1

|xi |p
) 1

p

,

The Minkowski dissimilarity between x , y ∈ Rd is defined as

Dp(x , y) = ∥x − y∥p

For p ≥1 this dissimilarity is actually a distance
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Important cases of Minkowski distance: p = 1, 2, ∞

If p = 2 we get the usual Euclidean metric or ℓ2-distance:

D2(x , y) =
√

(x − y)T (x − y)

=
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xd − yd )2

If p = 1 we get the Manhattan city block or ℓ1-distance:

D1(x , y) =
∑

i

|xi − yi |.

If p =∞ we get the maximum metric or Chebyshev or
ℓ∞-distance:

D∞(x , y) = lim
p→∞

Dp(x , y)

= max
i
{|xi − yi |}.
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Relation among the Minkowski distances

x1 y1

x

y2

x2

y

D1(x , y )

D∞(x , y )

D2(x
, y )

For all x , y ∈ R2 we have

D1(x , y)≥D2(x , y)≥D∞(x , y)

In general, if 1 ≤ p < q ≤ ∞,

Dp(x , y)≥Dq (x , y)

for all x , y ∈ RN
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Relation among the Minkowski balls

For the 2-dimensional ball with norm 1, i,e, for the set of points
lying at a distance inferior or equal than one from the origin,

B(0) = {x ∈ R2 : ∥x∥ ≤ 1},

w.r.t. the Minkowski norms D1, D2 and D∞, the relations among
the metrics of the previous slide yield the following inclusions
among the 1-balls for these norms,

⊂ ⊂

As before, the property extends to the n-dimensional case
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Important cases of Minkowski distance: p = 1, 2, ∞

If p = 2 we get the usual Euclidean metric or ℓ2-distance:

D2(x , y) =
√
(x − y)T (x − y)

=
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xd − yd )2

If p = 1 we get the Manhattan city block or ℓ1-distance:

D1(x , y) =
∑

i

|xi − yi |.

If p =∞ we get the maximum metric or Chebyshev or
ℓ∞-distance:

D∞(x , y) = lim
p→∞

Dp(x , y)

= max
i
{|xi − yi |}.

For small values of p the relative weights of the variable differences are
approximately equal while for greater values of p, the larger the difference
the more the variable is important
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The canberra distance

If x , y are N-dimensional vectors one can define the so-called canberra
distance

d(x , y) =
N∑

i=1

|xi − yi |
|xi |+ |yi |

This distance is a weighted version of the Manhattan distance that
is more sensitive to small values

This can be usefull when data contains large and small values and
the differences between the small values should also be taking into
account
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Generalized euclidean distances

Let Σ be a symmetric positive definite matrix (which is necessarily
invertible) of order n. Given x , y ∈ Rn, we define the distance

dΣ(x , y) =
√
(x − y)TΣ−1(x − y)

If Σ = In (identity matrix), dΣ(x , y) is the usual Euclidean distance
between x and y

If Σ is the diagonal matrix

[
a2 0
0 b2

]
, we get the weighted

euclidean distance,

dΣ(x , y) =

√
(x1 − y1)2

a2
+

(x2 − y2)2

b2

The points at a distance one from the origin lie in an ellipse of
semi-axes a and b
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Generalized euclidean distance

DW (P,Q) = ∥Q − P∥W > 2 > DW (P,R) = ∥R − P∥W

ba

y

x

Q

P

R
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Mahalanobis distance

Let X be a set of observations in Rn with mean µ and variance-covariance matrix Σ.
The Mahalanobis distance between two observations x = (x1, . . . , xn) and
y = (y1, . . . , yn) of X is the generalized euclidean distance

dΣ(x , y) =
√

(x − y)TΣ−1(x − y)

If the variables are uncorrelated, i.e., Σ is a diagonal matrix containing only the
variances, dΣ(x , y) equals the euclidean distance between the standardized
variables, i.e., the standardized euclidean distance

dΣ(x , y) =

√√√√
n∑

i=1

(xi − yi )2

σ2
i

The Mahalanobis distance is invariant under scale transformations on the
variables

The observations at distance one from the mean lie in an ellipsoid centred at
the mean with semi-axes equal to the standard deviations of the variables

The Mahalanobis distances are ‘smaller’ along the directions of greater variability
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Mahalanobis distance for correlated variables

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

XX[,1]

XX
[,2

]

P
Q

Euclidean distance between P and Q: d(P,Q) =
√

(Q − P)T (Q − P) = 5.907128

Mahalanobis distance between P and Q:

dΣ(P,Q) =
√

(Q − P)TΣ−1(Q − P) = 3.570066

26 / 153



Dissimilarity measures for binary data

x = (x1, . . . , xn) and y = (y1, . . . , yn) binary vectors

a: nr components where both variables take value 1 (positive agreement)

b: nr of components where x take value 1 and y value 0 (disagreement)

c: nr of components where x take value 0 and y value 1 (disagreement)

d: nr of components where both variables take value 0 (negative agreement)

Simple matching (counts double-zeroes, is suitable if 0-1 represent equally
valued attributes like male-female):

S(x , y) =
a+ d

a+ b + c + d
D(x , y) = 1− S(x , y) =

b + c

a+ b + c + d

Jaccard coefficient (does not count double zeroes, is suitable if 0-1 represent
unequal valued attributes, like species presences-absences):

J(x , y) =
a

a+ b + c
D(x , y) = 1− J(x , y) =

b + c

a+ b + c

Gower and Legendre coefficient (take values in [-1,1]):

S(x , y) =
a + d − (b + c)

a+ b + c + d
D(x , y) =

√
1− S2(x , y)

27 / 153



Example

Assume that we have two binary variables representing the presence (1) and absence
(0) of two species at 16 spots:

Sp1=c(0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0)
Sp2=c(0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1)

How similar are the two species with regard to their distribution in the 16 spots ?

Note that a = 1, b = 3, c = 3 and d = 9

Simple matching: a+d
a+b+c+d = 10/16

Jaccard coefficient: a
a+b+c = 1/7

Gower and Legendre coefficient: a+d−(b+c)
a+b+c+d = 4/16

The (asymmetrical) Jaccard coefficient seems to be more suitable to determine
homogeneous groups of species with respect to their distribution at a given collection
of sites

R

# The R function dist with the method ‘‘binary’’ computes the
dissimilarity as d(x , y) = 1− S(x , y), where S is the Jaccard coefficient
d = dist(cbind(x,y),method=‘‘binary’’,diag=FALSE,upper=FALSE,p=2)
# 6/7
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Example: a case with nominal variables

Consider again the two-way contingency table of country of
residence and primary language spoken by 1000 inhabitants

English French Spanish German Italian Total
Canada 688 280 10 11 11 1000

USA 730 31 190 8 41 1000
England 798 74 38 31 59 1000

Italy 17 13 11 15 944 1000
Switz. 15 222 20 648 95 1000

Total 2248 620 269 713 1150 5000

(source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718710/)
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Row profiles

From the previous contigency table one computes the row profiles by dividing each
row by row total

English French Spanish German Italian

Canada 0.688 0.280 0.010 0.011 0.011 1.000
USA 0.730 0.031 0.190 0.008 0.041 1.000

England 0.798 0.074 0.038 0.031 0.059 1.000
Italy 0.017 0.013 0.011 0.015 0.944 1.000

Switz. 0.015 0.222 0.020 0.648 0.095 1.000

Average row
profile 0.450 0.124 0.054 0.143 0.230 1.000
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χ2-metric

The distance between the rows (countries) rk and rℓ can be defined using the
χ2-metric,

d(rk , rℓ) =

√√√√
N∑

i=1

p2k,i
p•,i

Here N = 5 is the number of columns, pi,j is the relative frequency of row i in
column j and p•,j is the average relative frequency for column j

For instance, the squared distance d2(r1, r5) between Canada and Switzerland
equals

(0.688−0.015)2

0.450 + (0.280−0.222)2

0.124 + (0.010−0.020)2

0.054 +

(0.011−0.648)2

0.143 + (0.011−0.095)2

0.230 = 1.975782

The division of the squared terms by the expected relative frequencies,
weighting each column in the inverse proportion of its average frequency, allows
that small differences between rare categories are not “smashed” by the larger
differences between common categories
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Clustering variables

An usual similarity notion between two variables x and y is Pearson’s correlation

ρ =
cov(x , y)

σx σy

This similarity can be transformed into a dissimilarity using the transformation
d =

√
1− ρ2, which take values in the interval [0, 1]

Highly linearly correlated variables (positively or negatively) will have d ≈0
while for uncorrelated variables d ≈1

Alternatively, we can define d = (1− ρ)/2. In this case the strengh of the linear
relationship and the direction are both accounted

We can use the above dissimilarity measures to cluster variables. Each cluster
will consist of a set of variables highly correlated. This can be useful to detect
redundancies and can give an idea of the number of principal dimensions of data

Actually, for each cluster we can define a synthetic variable called latent
variable, which is the linear combination of the variables in the group, that
minimizes the sum of the dissimilarities (1− ρ2) with respect to all variables (a
kind of centroid of the cluster of variables)
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3. CLUSTERING METHODS
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Clustering methods

Distance-based models rely only on pairwise dissimilarities between individuals. Two
major groups of methods can be found:

Hierarchical methods - produce a nested structure of partitions. It does not

require the number of clusters to be known a priori:

Agglomerative clustering (bottom-up strategy) - It starts from the
partition consisting of one individual per cluster (singletons) until it
aggregates all individual in the same cluster: single, complete, average,
McQuitty, centroid, median, Ward, . . .
Divisive clustering (top-down strategy) - it proceeds in the opposite way
and it is usually more computacional demanding, thus being more rarely
used

Partitional methods - produce flat (non-nested) partitions. Usually tries to
maximize some intra-cluster homogeneity / inter-cluster heterogeneity criterion.
It requires the number of clusters to be known a priori: K-means, K-medoids
. . . Unlike the hierarchical methods two individuals that are aggregated together
at a given step can be desaggregated at a posterior stage
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Clustering methods (cont.)

Other types of methods include:

Density-based clustering: seek for high density regions of points
(clusters) separated by low density of points (noise)

Model-based clustering assumes that some model (or mixture of
models) generates the data

Constrained-clustering: accounts for other type of information,
such as spatial relationships between individuals (for instance,
contiguity relationships between cells in a map)

Fuzzy: the same individual can belong to several classes with a
certain degree of membership (probability)
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Hiearchical agglomerative clustering algorithm

Algorithm

Input: the proximity matrix containing the pairwise dissimilarities
between N individuals x1, . . . , xN

Starts with N clusters containing a single object each (singletons);

Merges the least dissimilar pair of clusters, i.e., the pair of clusters
with smallest fusion cost into a new cluster and updates the
proximity matrix (reducing its order by one);

Repeats step 2 until only one cluster remains (N − 1 steps).

Output: a sequence of length N − 1 encoding the merged clusters and
their fusion costs
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Hierarchical agglomerative clustering methods

The computation of the dissimilarity between two clusters (i.e.,
fusion cost) during the clustering process depends on the
aggregation method:

Single-linkage or nearest-neighbor

Complete-linkage or furthest-neighbor

Average (UPGMA)

Weighted average or McQuitty (WPGMA)

Centroid (UPGMAC)

Median (WPGMC)

Ward or mininum-variance clustering
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Updating formula for HAC

For all the aggregration methods above, the dissimilarity
between the most recently merged clusters, say C′ ∪ C′′, and
each one of the remaining clusters C, D(C′ ∪ C′′, C) can be
determined in terms of the pairwise dissimilarities D(C′, C)
and D(C′′, C), i.e., in terms of the data from the previous
proximity matrix, and therefore can be done using a recursive
algorithm with a convenient updating formula

Unlike many other statistical methods the clustering analysis
using a HAC does not require the knowledge of the original
dataset. Only the proximity matrix containing the initial
pairwise distances is required!
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Dendrogram

The sequence of length N − 1 of the merged clusters and their
fusion costs can be graphically represented in a special tree graph
called dendrogram

Dendrograms are tree-like diagrams made of branches that
join terminal nodes (leaves)

Branches represent clusters and the heights at which the
branches are connected represent fusion costs. Leaves
represent objects

The lifetime of a branch is the difference of fusion costs
between the moments it appears and the moment it is
aggregated
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The simplest HAC method is the single linkage method

The most basic HAC algorithm is single-linkage The fusion cost between
two clusters C and C′ is defined as the distance between their nearest pair
of points (one in each cluster), i.e.,

D(C, C′) = min
x∈C,x′∈C′

d(x , x ′)

C′C
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Updating formula for the single linkage

D(C′ ∪ C′′, C) = min{D(C′, C),D(C′′, C)}

C′′

C′

C′ ∪ C′′

C
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Example of single-linkage clustering: step -1

.5

PROXIMITY MATRIX

a b

0.7

X = {a, b, c, d , e, f }

c

b

1.0 0.3

b

d

fe

c

a

3.4 2.8

e

f

2.9

ed

1.3

c

d 1.8 .1.3

2.4

0.9

1.9

2.4 1.7Next step merges the clusters {b} and {c}

with fusion cost 0.3 (the least dissimilar pair) and in each dashed box

At the initial step all clusters are singletons

and defining the dissimilarities between each one of the singletons and the new formed cluster {b, c}

the minimum value is chosen, reducing the proximity matrix order by one,

42 / 153



Step -2

fusion cost DENDROGRAM

1.7

b

d

fe

c

a

X = {a, b, c, d , e, f }

1.3

a b c d e f
objects

0.3

PROXIMITY MATRIX

a {b, c} d e

e

f

0.7

1.9

d

{b, c}

1.8

2.9

3.4

0.9

2.4 0.5

Next step merges the singletons {e} and {f }

with fusion cost 0.5
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Step - 3

fusion cost DENDROGRAM

0.5

b

d

fe

c

a

PROXIMITY MATRIX

a {b, c} d

0.7{b, c}

d

{e, f }

1.8 0.9

2.9 1.31.9

0.3

a b c d e f
objects

Next step merges the pair of clusters {a} and {b, c}

with fusion cost 0.7
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Step - 4

fusion cost DENDROGRAM

with fusion cost 0.91

b

d

fe

c

a

PROXIMITY MATRIX

{a, b, c}

d

{e, f }

d

0.9

1.9 1.3

a b c d e f objects

0.7

Next step merges the clusters {a, b, c} and {d}
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Step - 5

DENDROGRAM

fusion cost

{a, b, c, d} and {e, f } with fusion cost 1.3

b

d

fe

c

a

a b c d e f object

0.9

PROXIMITY MATRIX

{a, b, c, d}

1.3{e, f }

Next step is the final one and merges the clusters
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step - 6

DENDROGRAM

fusion cost

a

b

d

fe

c

PROXIMITY MATRIX

a b c d e f objects

1.3

EMPTY

47 / 153



The R function hclust

It performs hierarchical aglomerative clustering using several
aggregation criterion methods and admits an arbitrary dissimilarity
matrix as input

input: a dissimilarity matrix d and the clustering method among
the options, “ward”, “single”, “complete” (default), “average”,
“mcquitty”, “median” or “centroid”.

value: the function returns an object of the class hclust, which
consists of a list including, among others, the following elements:
merge: a (n − 1)× 2 matrix indicating the clusters being merged
heigth: the list of fusion costs

R

hc<-hclust(d, method=‘‘complete’’, members=NULL)

plot(hc) or plot(hc, hang=-1) to plot the dendrogram with all
leaves at the same height
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Example

R (SL-1)

X<-matrix(c(0,0,0.5,0.5,0.85,0.5,1.75,0.25,2.75,1,3.25,1),
nrow=6,byrow=TRUE)
d<-dist(X)
SL<-hclust(d, method="single")
SL$height
[1] 0.375 0.5 0.707 0.91 1.25
SL$merge
[,1] [,2]
[1,] -2 -3 (merges singletons {2} with {3})
[2,] -5 -6 ( merges singletons {5} with {6})
[3,] -1 1 (merges singleton {1} with cluster {2, 3})
[4,] -4 3 (merges singleton {4} with cluster {1, 2, 3})
[5,] 2 4 (merges clusters {5, 6} with cluster {1, 2, 3})
# The number with minus sign refers to a singleton ID,
# otherwise refers to the step number where the cluster was aggregated
plot(SL)
plot(SL, hang=-1)

# try with horiz=TRUE
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Where to cut the dendrogram?

A cut in a dendrogram at a given height τ produces the (flat) partition
into the clusters whose fusion cost is smaller than or equal to τ
Usually one seeks cuts in the dendrogram such that:

splits high consecutive height differences (high lifetimes) to
get high inter-cluster heterogeneity

as close to the leaves as possible to get high intra-class
homogeneity

Some caution has to be applied regarding the decision where to cut the
dendrogram (and what is the “best” number of clusters). With some
methods (for instance, the Ward method), the dendrogram height
distances tend to be higher when larger clusters are merged
Several internal validity indices can be used complementarly to estimate
the optimal number of clusters
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Example

For instance to obtain a partition into 2 clusters we have to cut the
dendrogram at some height in the interval ]0.9, 1.3[, yielding the
clusters C = {a, b, c , d} and C′ = {e, f }

cutoff

a b c d e f

CUTTING THE DENDROGRAM

1.3

objects

fusion cost

0.9
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Cutting the dendrogram in R

R (SL-1-cutree)

SL<-hclust(X,method="single")
part<-cutree(SL,2) # 2 clusters
# # or
part<-cutree(SL,h=1.1) # h is the height
part

plot(X,type="p",cex=0.8,pch=16, col=part,asp=TRUE)

0 0 0 5 1 0 1 5 2 0 2 5 3 0

−0
.5

0.
5

1.
0

1.
5

X[
,2

]
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Contraction of the attribute space

In single-linkage two clusters are merged at a fusion cost τ if and
only if there is a pair of objects, one in each cluster, with pairwise
distance inferior or equal than τ

As the cluster growths it becames more and more easier to
incorporate new elements in a cluster, as if the distances between
objects were getting smaller and smaller (actually, the distance of a
point to any point in the cluster becames the distance to the
nearest point of the cluster)

New individuals tend to aggregate to existing clusters, often
producing elongated clusters (chain effect)
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Cophenetic distance

Introduced by Sokal and Rohlf

It assess how well the dendrogramatic distance preserve the
original distances

Measures the goodness-of-fit of the adjustment of the
dendrogramatic distances, i.e., cophenetic distances, to the
original dataset

It is considered an internal validation criterion for evaluating
the efficiency of various clustering techniques, particularly for
hierarchical methods
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Cophenetic distance

The cophenetic distance between two individuals x and y with
respect to a given HAC is the merging cost at which x and y
became members of the same cluster, during the course of
hierachical clustering. Cophenetic distances are distances in the
usual sense, i.e., they are dissimilarities that verify the triangle
inequality, under the assumption of monotonicity

Any dendrogram can be uniquely represented by its matrix of
cophenetic distances. This matrix can be used to compare distinct
classifications

a b c d e f
objects

fusion cost

1.3

0.9
0.7

0.5

0.3

⎡

⎢⎢⎢⎢⎢⎣

a b c d e
b 0.7 · · · ·
c 0.7 0.3 · · ·
d 0.9 0.9 0.9 · ·
e 1.3 1.3 1.3 1.3 ·
f 1.3 1.3 1.3 1.3 0.5

⎤

⎥⎥⎥⎥⎥⎦
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Shepard-like diagram

The Shepard-like diagram of the previous example shows that the
cophenetic distances are smaller than the original ones, due to the
contraction of the space of attributes.
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Shepard diagrams are scatter plots commonly used to visualize
comparisons between distances
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Distortion measures - Cophenetic Pearson Coefficient

The cophenetic correlation coefficient (CPCC) is the Pearson’s correlation between
the original and the cophenetic distances (using half of the proximity matrix), i.e.,

CPCC =
cov(D,C)

σDσC
=

∑
i<j(dij − d̄)(cij − c̄)

√∑
i<j (dij − d̄)2

∑
i<j (cij − c̄)2

where C = (cij ) and D = (dij ) are the vectors containing the original and cophenetic
distances

CPCC is considered an internal validation criterion for hierarchical clustering

A high value of the CPCC means that the cophenetic distances are a good
portray of the original distances

The cophenetic correlation usually ranges between 0.6 and 0.95.

Cophenetic correlations between 0.7 and 0.8 are considered reasonable good,
between 0.8 and 0.9 good and above 0.9 very good.
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Distortion measures - Cophenetic Spearman Coefficient

Another distortion measure is Cophenetic Spearman’s rank order correlation
coefficient (CSCC), which only depends on the ranks of the variables and is computed
as the Pearson’s correlation between the respective ranked variables rk(C) = (c′ij ) and

rk(D) = (d ′
ij ) defined by the vectors of original and cophenetic distances,

CSCC =
cov(rk(D), rk(C))

σrk(D)σrk(C )
=

∑
i<j(d

′
ij − d̄)(c′ij − c̄′)

√∑
i<j(d

′
ij − d̄ ′)2

∑
i<j (c

′
ij − c̄′)2

.

Unlike the Pearson correlation coefficient, Spearman’s rank order correlation
coefficient can be applied to compare original and cophenetic dissimilarities even
if there is no linear relation between both dissimilarities

A Spearman’s rank order correlation close to 1 signifies that we have a strong
positive relationship between the ranks of original and of cophenetic distances,
i.e., the higher the original distances the higher the corresponding cophenetic
distances and vice-versa. If the rank order correlation is close to -1 an opposite
behavior occurs
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Shepard diagram and cophenetic correlations in R

R (SL-3)

coph.SL<-cophenetic(SL) # an object of type dist

cor.coph<-cor(coph.SL,d)

cor.coph

sp.coph<-cor(rank(coph.SL),rank(d))

sp.coph

plot(seq(0,3.5,.01),seq(0,3.5,.01),pch=16,type="p",
cex=.2, main="single", asp=T, xlab="original distances",
ylab="cophenetic distances")

points(d,coph.SL,asp=1,xlim=c(0,5),ylim=c(0,5),pch=16,
col="red",type="p")
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MST

An minimum spanning tree (MST) of a set of points in a
d -dimensional Euclidean space is a tree connecting all points
with line segments such that the sum of the lengths of the
segments is minimal

MST are not necessarily unique (if we have ties in the
dissimilarity matrix)

The concept can also be defined for abstract graphs
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Single-Linkage and MST algorithm

The hierarchical clustering of a cloud of points with the single
linkage can be obtained in the following way: consider an MST
connecting all points and sequencially aggregate the clusters whose
pair of nearest neighbors correspond to vertices of the edges of the
MST, ordered from the smallest to the largest length
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Chaining effect

The chaining effect is usually produced by the existence of a few
intermediate points between clusters, giving rise to elongated
clusters connecting distant points
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Chaining effect

In the next example the single linkage produced a 2-partition with an elongated
cluster and a singleton (red dot). The chaining effect is clearly visible in the
dendrogram where long chains of nearby points are aggregated

All points are aggregated at very lower costs: the maximum heights of the red
bars in the shepard diagram is very low (below 2), while the original distances
range from 0 to above 10
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Single-linkage clustering - summary

Pros

Can detect arbitrary cluster shapes

Can be applied to large datasets, since it is computationally efficient
- there are polynomial-time algorithms

Invariant under monotonic transformations of the proximity matrix -
only ordinal properties, i.e., rank orders, are important

Emphasis clusters separation

Insensitive to ties in the proximity matrix

Cons

Contracts the space of attributes

Sensitive to observation errors and noise

Suffers from the chain effect, producing elongated clusters, often
originating very unbalanced clusters
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Complete-linkage clustering model

The complete-linkage or farthest sorting is the opposite of
nearest-neighbor clustering algorithm The fusion cost between two
clusters C and C′ in this method is defined as the distance between
the farthest pair of points, one in each cluster, that is,

D(C, C′) = max
x∈C,x ′∈C′

d(x , x ′)

C′C
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Updating formula for complete linkage

D(C′ ∪ C′′, C) = max{D(C′, C),D(C′′, C)}

C′′

C′

C′ ∪ C′′

C
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Complete-linkage: step -1

1.3

PROXIMITY MATRIX

a b

0.7

X = {a, b, c, d , e, f }

c

b

1.0 0.3
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d

fe

c

a

3.4 2.8

e

f

2.9

ed

.5

c

d 1.8 1.3

2.4

0.9

1.9

2.4 1.7
First pair to be merged is {b, c}

with fusion cost 0.3
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Step -2

fusion cost DENDROGRAM

0.5

X = {a, b, c, d , e, f }

b

d

fe

c

a

PROXIMITY MATRIX

a {b, c} d e

e

f

1.0

2.4

d

{b, c}

1.8

2.9

3.4

1.3

2.8

1.3

1.7

a b c d e f
objects
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Next pair to be merged is {e} and {f }

with fusion cost 0.5
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Step - 3

fusion cost DENDROGRAM
with fusion cost 1.0

b

d

fe

c

a

PROXIMITY MATRIX

a {b, c} d

1.0{b, c}

d

{e, f }

1.8 1.3

3.4 1.72.8
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0.5

Next pair to be merged is {a} and {b, c}
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Step - 4

fusion cost DENDROGRAM

1.7b

d

fe

c

a

a b c d e f objects

1.0

Next pair to be merged {d} and {e, f }

with fusion cost 1.7

PROXIMITY MATRIX

{a, b, c}

d

{e, f }

d

1.8

3.4
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Step - 5

fusion cost
DENDROGRAM

{d , e, f }

1.7

a b c d e f objects

b

d

fe

c

a

Next step merges (final) merges the pair of clusters

{a, b, c} and {d , e, f } with fusion cost 3.4

PROXIMITY MATRIX

{a, b, c}

3.4
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step - 6

fusion cost
DENDROGRAM

a

f objects

PROXIMITY MATRIX

b

d

fe

c

a b c d e

3.4

EMPTY
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Dilation of the attribute space

In complete-linkage two clusters are merged at a fusion cost τ if and only if all
elements of one cluster are at a distance inferior to or equal than τ with respect
to all elements of the other cluster.

As the cluster growths it becames more and more harder to incorporate new
elements in a cluster, as if the distances between objects were getting greater
and greater. All aggregations tend to occur at small dissimilarities and
consecutive dendrogram heights tend to become larger

This produces a “dilation effect” in the attribute space that can be observed
comparing the original proximity matrix and the cophenetic matrix in a
scatterplot shepard-like diagram
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Shepard-like diagram and the cophenetic correlation

The Shepard-like diagram of the previous example shows that the
cophenetic distances in complete-linakge clustering are greater than the
original ones, due to the dilation of the space of attributes
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The cophenetic and Spearman rank order correlation coefficients are,
respectively, CPCC = 0.75 and CSCC = 0.79
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Complete-linkage clustering - summary

Pros

Favors compactness - tend to form tight spherical clusters
with small diameters

Invariant under monotonic transformations of the proximity
matrix - only the dissimilarity ranks are important.

Cons

Dilates the space of attributes

The decision of aggregate two cluster only relies on one
individual in each cluster

Sensitive to outliers

Cannot detect arbitrary cluster shapes
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Noise and outliers: single vs complete methods

Next examples show that single clustering method is more sensitive to
noise than complete, whereas the opposite occurs with outliers

method=single method=complete

method=single method=complete
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Average clustering

In-between the contraction effect of single linkage method and the
dilation effect of complete linkage method, we have the unweighted
pair group method average (UPGMA) method, simply known as
average method, which conserves the metric properties of the
attribute space

This method usually presents the best cophenetic correlation
coefficient among the three methods, but is not invariant under
monotonic transformations of the proximity matrix

Average clustering methods sometimes refer to family methods,
average (UPGMA), Mcquitty (WPGMA), centroid (UPGMC) and
median (WPGMC)
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Average fusion cost

The fusion cost between two clusters C and C′ is defined as the
arithmetic average of the distances connecting one point in C with
one point in C′,

D(C, C′) =

∑
x∈C

∑
x ′∈C′

d(x , x ′)

n n′
,

where n = |C| and n′ = |C′|

C C′
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Updating formula

D(C′ ∪ C′′, C) = n′D(C′, C) + n′′D(C′′, C)
n′ + n′′

where n′ = |C′|, n′′ = |C′′|
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Shepard-like diagram and the cophenetic correlation

The Shepard-like diagram of the previous example shows that the
cophenetic distances lie in both sides of the diagonal yielding a better
portray of the original distances. This is also confirmed by the higher
cophenetic correlation. This method conserves the metric in the space of
attributes
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The Pearson and Spearman rank order cophenetic correlations are
CPCC = 0.83 and CSCC = 0.84
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Comparison single-complete-average
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Comparison single-complete-average (cophenetic)
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Centroid clustering model

In this method, also known as UPGMC (unweighted pair group method
centroid) the clusters are represented by their centroids and the
fusion cost between two clusters Ci and Cj is defined as the distance
between the respective centroids

D(Ci , Cj) =

∥∥∥∥∥∥
1

|Ci |
∑

xi∈Ci

xi −
1

|Cj |
∑

xj∈Cj

xj

∥∥∥∥∥∥

C C′

The centroid of the merged group will be mij =
nimi + njmj

ni + nj
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Centroid clustering model - crossovers

In the centroid method the cophenetic distances may not verify the
ultrametric property, giving rise to non-monotonic fusion distances
with crossovers (alo called inversions) in the dendrogram
All circles have radii equal to the distance between x and y , dx,y .

x y
c

d ′ d ′′

{x , y}

d

dx ,y

d

fusion costs

x y z

reversalz

objects

Since z (red point) lie in the grey area, ouside the black circles,
dx,y < d ′, d ′′. Hence x and y are the first pair of objects to be merged.
Since z lie inside the red circle centred at the centroid c of x and y ,

D({x , y}, z) = dc,z < dx,y = D({x}, {y})
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Median clustering model (WPGMC)

In the centroid clustering if two clusters have very different sizes the
centroid of the merged cluster tend to be close or even inside the largest
cluster. The median clustering is a variant designed to correct this
distortion effect Updating formula: the distance between a cluster Ck and
the cluster Cij = Ci ∪ Cj , is given by the distance of the centroid of Ck to
the median point of the centroids of Ci and Cj , i.e.,

D(Cij , Ck) =
∥∥∥∥
mi +mj

2
−mk

∥∥∥∥

Cij

d

Ck
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Lance-Williams updating formula

All HAC methods considered so far can be implemented using a
general formula to update the cluster dissimilarities after a merge
step in terms of the dissimilarities prior to that fusion

Given clusters Ci , Cj and Ck , denote by Cij the cluster obtained
merging clusters Ci , Cj and set

D(Cij , Ck) = αiD(Ci , Ck ) + αjD(Cj , Ck) + βD(Ci , Cj ) + γ|D(Ci , Ck) −D(Cj , Ck )|

where αi , αj , β and γ are convenient parameters and D(·, ·) refer
the distances squared distances given by the proximity matrix (see
the chart in the next slide):

D(Ci , Cj)

i

j

k

Ck

Ci ,j
Ci

Cj
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Lance-Williams chart
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Monotonicity and Crossover

We say that a clustering method satisfies the monotonicity condition if
whenever two clusters Ci and Cj are merged into a cluster Cs we have

D(Ck ,Cs)≥D(Ci ,Cj) ∀k ̸= i , j , s

This implies that the dendrogram cannot have crossovers

Proposition

If in the Lance-Williams updating formula the parameters αi ,αj are
nonnegative, αi +αj +β ≥1, and either γ ≥0 or max{−αi ,αj} ≤ γ ≤ 0,
the corresponding clustering method satisfies the monotonicity condition

From the Lance-Williams table we deduce immediately that the single,
complete, average, McQuitty and Ward methods are in conditions of the
proposition and therefore satisfy the monotonicity condition. Therefore
their dendrograms cannot have crossovers
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Ultrametric property

We say that a distance D verify the ultrametric property if it verifies the following
stronger condition than triangle inequality: for all individuals x , y , z

D(x , z) ≤max(D(x , y),D(y , z))

If the cophenetic distances dc (·, ·) verify the ultrametric property, then cluster process
verify the monotonicity condition. Actually, given x ∈ Ci , y ∈ Cj and z ∈ Ck ,

D(Ci ∪ Cj , Ck ) = dc (x , z) = dc (y , z)

and we get

D(Ci , Cj ) = dc (x , y) ≤max{dc (x , z), dc (y , z)} = D(Ci ∪ Cj , C)

The single-linkage, complete-linkage and average cophenetic distances verify the
ultrametric property.
Since the centroid can present inversions, its cophenetic distance is not ultrametric
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Ward’s method

Let X be a dataset of N individuals, x1, . . . , xN in p (quantitative)
variables with mean x̄ . Given a partition of X into K clusters

X = C1 ∪ · · · ∪ CK

we define

SSQt =
N∑

i=1

∥xi − x̄∥2 (total inertia)

SSQb =
K∑

k=1

nk∥mk − x̄∥2 (between-clusters inertia)

SSQw =
K∑

k=1

∑

x∈Ck

∥x −mk∥2 (total within-clusters inertia),

where mk is the centroid of cluster Ck and nk the number of its elements

By Huygens theorem,

SSQt = SSQb + SSQw
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Ward’s method

In Ward’s method each cluster is represented by its centroid and the
goal is to maximize the between-clusters inertia SSQb as the groups
are being clustered. By Huygens theorem this is equivalent to minimize
the total within-group inertia SSQw , i.e., to minimize the information
loss with the replacement of the elements of each cluster by the cluster
centroid At beginning all clusters have a single element and thus,

SSQt = SSQb , SSQw = 0

Note that SSQb correspond to the sum squared pairwise distances In
each step, Ward’s method tries to merge the pair of clusters Ci , Cj that
produce the smallest increase in the total within-cluster inertia
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Increase in the sum of within-cluster inertia

Since

SSQw =
K∑

k=1

e2k ,

where e2k is the within group inertia of cluster k ,i.e.,

e2k =
∑

x∈Ck

∥x −mk∥2 =
∑

x,y∈Ck
∥x − y∥2

2nk

When two clusters Ci and Cj are merged into a cluster Cij , the increase in
SSQw reduces to the following ∆SSQw statistic:

∆i ,jSSQw = e2ij − e2i − e2j

since all other within-group inertias are not affected
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Updating formula

Cij

Ci Cj

It can be proved that

∆ijSSQw =
ninj

ni + nj
∥mi −mj∥2,

In particular ∆ijSSQw depends on the squared pairwise dissimilarities
between the cluster centroids mi , mj and the cluster sizes ni and nj One
can use the above formula to determine the next pair to be clustered but
it requires the original coordinates of the points (raw data) to be known.
There is an alternative formula that only requires the (squared) pairwise
distances
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E.g.: Ward clustering via LW updating formula

The LW updating formula for Ward’s method is given by

D2(Ci ∪ Cj , Ck) =
(ni + nk ) · D2(Ci , Ck) + (nj + nk) · D2(Cj , Ck )− nk · D2(Ci , Cj )

ni + nj + nk

where ni = |Ci |, nj = |Cj | and nk = |Ck |
This expression returns the increase in the SSQw statistic when clusters
Ci ∪ Cj and Ck are merged, depending only on the clusters involved Let us
exemplify on the dataset X = {a, b, c , d} = {1, 2, 4, 8}
The dissimilarity and squared dissimilarity matrices are, respectively,

⎡

⎢⎢⎣

D a b c
b 1
c 3 2
d 7 6 4

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

D2 a b c
b 1
c 9 4
d 49 36 16

⎤

⎥⎥⎦

The minimum of the squared distances is attained for D2(a, b) so the
first pair to be clustered will be a ∪ b with squared fusion cost 1
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Ward clustering using LW updating formula (cont.)

D2(a ∪ b, c) =
2D2(a, c) + 2D2(b, c)− D2(a, b)

3

=
2 · 9 + 2 · 4− 1

3
=

25

3
and

D2(a ∪ b, d) =
2D2(a, d) + 2D2(b, d)− D2(a, b)

3

=
2 · 49 + 2 · 36− 1

3
=

169

3

D2(c , d) is not affected. Thus the new squared dissimilarity matrix is
⎡

⎢⎢⎣

D2 a ∪ b c
c 25

3

d 169
3 16

⎤

⎥⎥⎦

The minimum of the squared distances is attained for D2(a ∪ b, c) so the
next pair to be clustered will be (a ∪ b) ∪ c with squared fusion cost 25

3
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Ward clustering using LW updating formula (concl.)

D2((a ∪ b) ∪ c , d) =
3D2(a ∪ b, d) + 2D2(c , d)− D2(a ∪ b, c)

4

=
3 · 169

3 + 2 · 16− 25
3

4
=

578

12

The dendrogram can be presented either using squared or not squared
fusion costs. Its topology however does not change

√
578
12

578
12

a b c da b c d

D2

1

25
3

D

5√
3

1
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Computing using the R function hclust

R

X<-c(1,2,4,8)

d<-dist(X) # (euclidean) distance matrix

h.ward<-hclust(d,method="ward.D2")

h.ward$height

plot(h.ward, hang=-1)
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Ward’s clustering method - summary

Pros

Tend to create hyperspherical shape clusters, with
approximately the same number of elements each (balanced)

Conservative (some authors consider it contracting although
less than single-linkage method)

No crossovers

Is regarded by some authors as the companion hierarchical
method to use with correspondence analysis (CA) since it
shares the same variance criterion

Cons

Computationally intensive

Cannot detect arbitrary cluster shapes

Sensitive to outliers since it uses centroids
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HAC - summary

Pros

The dendrogram provides “taxonomical information” on the clusters

The number of clusters does not need to be defined a priori

Many methods rely on a proximity matrix allowing almost any kind
of resemblance notion

Cons

The aggregation of a point in a group at a given step cannot
be revised, even if the point is misplaced in that group

Computationally demanding for large datasets since keeps track of a
square matrix of order n (number of individuals): time and space
complexity of most algorithms are not better than O(n2 log(n))

Dendrogram difficult to visualize and interpret for large datasets

Most HAC algorithms are greedy and produce suboptimal solutions

Average and Ward (specially when groups have similar sizes) are often
considered among the best overall HAC methods

99 / 153



Assessment of an example with 2 clusters
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Examples (cont.) where inversions are clearly visible
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Same example with 7 clusters
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A short remark on divisive hierarchical methods

It starts from a cluster consisting of all objects and successively
splits every cluster until all clusters have only one element
(singletons).

In each step the splits can be done according to the value of a
unique variable monothetic (all objects of the same cluster must
agree w.r.t. the that variable) or w.r.t. several variables polythetic

Divisive clustering algorithms can be computationally demanding. In
R can be performed using the function diana of cluster package
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Example

R

require(datasets)

require(cluster)

data(iris)

head(iris)

dist.iris<-dist(iris[-5])
iris.diana<-diana(d)

pltree(iris.diana)
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Nonhierarchical clustering

To find a single partition into K clusters of a set of N objects in a p
dimensional space Two types of criteria are commonly found:

Global criterion such as to represent each cluster by a type-object
(e.g., centroid, medoid) and to assign each object to the nearest
type-object, optimizing some global criterion of internal
homogeneity and external heterogeneity, such as, minimizing the
within cluster inertia

Usually requires a prior estimate of the number of clusters

Examples: K-means and K-medoids (PAM) algorithms

Local criterion such as to seek for higher density regions in data.
May require to set some parameters

Example: DBSCAN
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K-means

Shares the same global criterion with Ward’s method: to minimize the
total within-cluster sum of squares (SSQw ) of a set of points partitioned
into K clusters in a d-dimensional space

Algorithm (Lloyd)

Starts with K randomly chosen initial seeds representing initial
candidates to centroids;

Assigns each object to the nearest centroid

Recomputes the centroids of the K groups and use them as new
seeds

Repeat through steps 2-4 until the algorithm converges, i.e., until
no new assigns of points to clusters occur

I can be proved that the cost SSQw monotonically decreases during the
course of the algorithm converging to a (possibly local) optimum
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K-means algorithm

no new assignments are required
the algorithm stops the solution corresponds to a (local) minimum

among the original points

INITIAL CONFIGURATION WITH 2 SEEDSA

k = 2 centroids (seeds) are randomly chosen

B

each point is assigned to the nearest seed

F

points are re-assigned to the nearest recomputed centroids

re-assign

SSQw = 70

new centroids and the SSQw are recomputed

SSQw = 32 + 38 = 70

G

new centroids and the SSQw are recomputed

E
SSQw = 22 + 64 = 86

H

SSQw = 32
3 + 320

3 ≃ 117.3

C

the new centroids of the 2 clusters

and the SSQw statistic are recomputed

D

points are re-assigned to the nearest recomputed centroids

re-assign

FINAL CLUSTERS CONFIGURATION

I
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K-means: local minimum problem

The clustering solution can be highly depend on the choice of the
initial position of the centroids (seeds), and may converge to a
local minimum

overall minimum

SSQw

partitions into K clusters

local minimums

(suboptimal solution)

(optimal solution)
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Example

The solution found by the K -means algorithm in the previous example is
not a global minimum. Actually, with new seeds the algorithm can
converge to a solution that improves (i.e., lowers) the SSQw statistic

SSQw = 56 + 16
3 ≃ 61.3

k = 2 centroids (seeds) are randomly chosen

among the original points

INITIAL CONFIGURATION WITH 2 SEEDSA B

DC

new centroids of the 2 clusters and the SSQw are recomputed no new re-assignments occur - the algorithm stops

FINAL CLUSTERS

SSQw ≃ 61.3

the points are assigned to the nearest centroids
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Possible strategies to find the overall minimum?

To repeat the algorithm several times with randomized
configurations of K seed points and keep the configuration
giving the smallest SSQw value of the within-cluster inertia

To provide initial configuration of the K seed points close to
the final solution relying on some real hypothesis

To provide an initial configuration of seed points issued from
some hierarchical aggregation method (e.g., Ward, average),
for instance, their clusters centroids
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K-means in the plane and the Voronoi diagram

Given a set of N points in the plane,

{c1, . . . , cN}

the Voronoi diagram is defined as the partition of the plane into K
convex regions, called Voronoi cells,

R1, . . . ,RK

such that each cell Ri consists of the points of the that are closest to ci
In each step of K -means algorithm the clusters correspond to set of
points of X belonging to the Voronoi cells defined be the K centroids
c1,. . . , cK , which is called Lloyd’s algorithm or Voronoi iteration
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The Voronoi partition and its centroids

This partition was originated applying K -means algorithm to a
uniform distribution of points in the plane
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K-means: summary

The optimizing function SSQw is always monotonic decreasing, i.e.,
the intra-group inertia decreases in each step, converging to some
(possibly local) optimum

The number of iterations required to converge to an optimum is
usually small (usually ≈ 10 iterations are enough)

Finding an optimal solution is NP-hard. Actually the time
complexity is O(ndK+1 ln d), where K denotes the number of
clusters, d the dimension and N the number of points)

It forms linearly separated clusters. In particular it cannot detect
arbitrary cluster shapes

Nearby points can end in distinct classes. Groups can end empty

Sensitive to noise and outliers

Requires some geometric notion of center/centroid. In particular
cannot be applied to categorical data. Assumes the euclidean
distance
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Computing K -means with R

The K -means clustering can be performed using the R function

kmeans(x, centers, iter.max = 10, nstart = 1, . . . )

x: numeric matrix of data

centers: the number of clusters or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) rows in x is chosen as the initial centres

nstart: if centers is a number, how many random sets should be chosen (repeat)
Returns a list with components:

cluster: A vector of integers (from 1:k) indicating the cluster to which each point is
allocated.

centers: A matrix of cluster centers.

totss: The total sum of squares SSQ

withinss: Vector of within-cluster sum of squares, one component per cluster

tot.withinss: Total within-cluster sum of squares, i.e., sum(withinss) SSQw

betweenss: The between-cluster sum of squares, i.e. totss-tot.withinss SSQb

size: The number of points in each cluster
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Example

R

require(datasets)

data(cars)

?cars

head(cars)

cars.cl<-kmeans(cars, 3, nstart=100)
# 3 centers randomly chosen repeated 100 times

cars.cl

plot(cars,type=‘‘p’’,pch=16,cex=.5)

for(i in 1:50){points(cars[i,1],
cars[i,2],col=cars.cl$cluster[i], pch=16,type=‘‘p’’)}
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Clustering result
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Optimal number of clusters in K -means?

As in the parcimony principle we seek for a good compromise between having a
small number of clusters and minimizing the information loss due to replacing
the observations by the clusters

This is one of the most difficult tasks in the clustering analysis. No definitive
answer can usually be given.

Several indices have been proposed to estimate the number of clusters and to
assess the internal cluster quality. Some of the most well-known indices include:

The SSQw or equivalently the R2 index
Calinski-Harabasz index
Silhouette coefficient
Davies-Boudin
Duhn index
. . .

R

Several cluster validity indices can be computed with the R function cluster.stats
of fpc package or using the clustCrit or NbClust packages
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Scree plot of SSQw statistic

A simple method consists in analysing the variation of SSQw against the
number of clusters in a scree plot, which is essentially equivalent, by Huygens’s
theorem, to study the variation of the percentage of the total inertia that is
retained by the clusters, called the R2 = SSQb

SSQt
determination coefficient (by

analogy to the linear regression theory)

This statistic is usually monotonically decreasing as the number of cluster
increases. An elbow point in this plot indicating a high decrease in the SSQw

statistic, while further increasing the number of clusters only marginally
improves (i.e., lowers) the statistics may provide a good estimate for the number
of clusters
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Calinski-Harabaz index

The Calinski-Harabaz index of a set of N observations partitioned into K
clusters is defined as

CH(K) =
N − K

K − 1
·
SSQb

SSQw

To maximize CH(K) is equivalent to maximize SSQb(i.e., to maximize cluster
separation) and to minimize SSQw (i.e., to maximize cluster cohesion). The
optimal number of clusters is estimated as the number yielding the largest value
for CH(K)

Several studies suggest that Calinski-Harabaz index is one of the internal
validation indices yielding the best results

Corresponds to F -value of the one-way ANOVA with K factors and is also
known as the variance ratio criterion (VRC), more precisely, to the proportion if

explained variance SSQb
K−1 over the unexplained variance SSQw

N−K

Can be computed using the R function calinhara of the package fpc

119 / 153



Silhouette coefficient

For each observation i compute average dissimilarity a(i) between i
and the remaining points in its cluster

For each one of the other clusters compute the average dissimilarity
from i to the points of that cluster and take the minimum b(i) of
these average dissimilarities

The cluster for which the minimum b(i) is attained, i.e., the cluster
with lowest average dissimilarity w.r.t to observation i , is called the
neighbor cluster of i

i

neghbor cluster

b(i)
a(i)

The silhouette coefficient of observation i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
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Interpretation of silhouette coefficients

The denominator max{a(i), b(i)} is a normalization term
allowing that the index vary in the range [−1, 1]
Small values of a(i) along with large values of b(i) yield a
silhouette coefficient close to one

Likewise, large values of a(i) along with small values of b(i)
yield a silhouette coefficient close to minus one

Observations with silhouette coefficients close to one are
very well classified

Observations with silhouette coefficients close to zero
probably lie between clusters

Observations with negative silhouette coefficientes are
probably misplaced in their clusters
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Silhouette plot

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = clus, dist =

Average silhouette width :  0.49

n = 760 3  clusters  Cj
j :  nj | avei∈Cj  si

1 :   205  |  0.62

2 :   264  |  0.49

3 :   291  |  0.41

In the figure on the right the dot sizes are proportional to their silhouette
coefficients. Larger dots lie in core regions of the clusters whereas smaller
dots lie in border regions or between clusters
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Average silhouette width - an internal validity criterion

The average silhouette width (ASW) is defined as the average of the
silhouette coefficients for all observations

It assess both cluster cohesion and cluster separation

It increases with a strong cluster separation (higher b(i) values) and
cluster tightness (small values of a(i))

Range of ASW

between 0.71 and 1.0: a strong structure has been found

between 0.5 and 0.7: a reasonabble strucuture has been found

between 0.26 and 0.5: the structure is weak and can be artificial

below 0.25: no substantial structure has been found

The optimal number of clusters can be estimated maximizing the ASW
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Number of clusters?

Applying the criteria SSQW statistic, VRC and ASW to the Ruspini data,
a popular dataset in clustering analysis, all criteria agree on 4 clusters
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A monotone increase in the VCR criterion over the number of clusters k
indicates that no group structure is present. A monotone decrease
suggests hierarchical relationships
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(Internal) cluster validity

The average of the silhouette widths of the previous example is close to
.75 suggesting that a strong clustering structure was found in Ruspini
data. Since all silhouette coefficients are above .4 no points are
misplaced in their clusters

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = clus, dist =

Average silhouette width :  0.74

n = 75 4  clusters  Cj
j :  nj | avei∈Cj  si

1 :   23  |  0.75

2 :   20  |  0.73

3 :   17  |  0.67

4 :   15  |  0.80
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Ruspini plot into 4 clusters using the K-means algorithm
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K-medoids clustering

The optimization problem is to find K points in the dataset, called medoids,
such that the sum of the distances of all non-medoid points to their nearest
medoid points is minimal

A medoid also called exemplar or centrotype is an element of the set whose
average distance to every other element in the set is minimal, i.e., the most
centrally located point in the set

The algorithm uses medoids to represent clusters instead of centroids, since are
less sensitive to outliers (why?)

Can work with any notion of distance/dissimilarity

The most well known algorithm for computing the K -medoids is the greedy
algorithm PAM (Partitioning Around Medoids). May fail to converge to the
overall optimum

For large sets, there are the more efficient algorithm CLARA (Clustering LARge
Applications), which applies PAM to samples, and CLARANS (Randomized
CLARA)

To handle categorical data there is a variant called the K-mode algorithm

127 / 153



Partition around medoids (PAM) algorithm

Algorithm

Start with a set M of K initial medoids randomly chosen, mk ,
k = 1, . . . ,K;

Set O = X \M containing the non-medoid points, oj , j = 1, . . . , ℓ;

For every pair (k , j) compute the total swapping cost of replacing
the medoid mk by the non-medoid oj ,

Tk,j =
∑

i≠j

Tk,j,i

where Tk,j,i is the swapping cost accounted for object oi ̸= oj , and
selects the pair (k , j) that minimizes Tk,j

If Tk,j < 0 perform the swap, update the sets M and O and return
to step 3;

If Tk,j ≥0, the objective cannot be improved and the algorithm
stops
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Example of a swapping step

M = {a, f } = {m1,m2}

e

fdd

c c

T(1,1) = T(1,1,2) = d(c, b)− d(c, a) > 0

Total swapping cost is positive - does not improve the objective function (sum of the edges lengths)

(1, 1)

a ∈ M ↔ b ∈ O

O = {b, c, d , e} = {o1, o2, o3, o4}

a

b

e

f

a

b
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Example of a swapping step (cont.)

O = {b, c, d , e} = {o1, o2, o3, o4}

e

fdd

c c

T(d,f ) = T(d,f ,c) + T(d,f ,e) = d(c, d)− d(c, a) + d(e, b)− d(e, f ) < 0

Total swapping cost is negative - it improves the objective function

(2, 3)

f ∈ M ↔ d ∈ O

M = {a, f } = {m1,m2}

a

b

e

f

a

b

It can be seen that no other swap can improve this result. The sets M
and O are then updated to M = {b, d} and O = {a, c , e, f }
Continuing to perform the swaps, no further improvement occur. The
algorithm stops yielding the clusters

C1 = {a, b}, C2 = {c , d , e, f }
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Computing K -medoids with R

The partition around medoids clustering algorithm can be performed
using the R function of the cluster package
(it accepts metrics distinct from the euclidean metric)

pam(x, k, diss = inherits(x, ”dist”), metric = ”euclidean”, . . . )

x: data matrix or dataframe or a dissimilarity matrix or object

k: is the number of clusters
. . .
Returns an object of the class pam consisting of a list with several
components

R

require(datasets)
data(ruspini)
clus.PAM<-pam(ruspini,4) # perform the clustering with 4 clusters
clusplot(clus.PAM) # displays the clusters and the silhouette plot
cls<-clus.PAM$cluster # vector of classes for all elements
mdd<-clus.PAM$medoids # vector of coordinates of the medoids of the
final 4 clusters
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Ruspini data 4-partition using PAM
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = ruspini, 

Average silhouette width :  0.74

n = 75 4  clusters  Cj
j :  nj | avei∈Cj  si

1 :   20  |  0.73

2 :   23  |  0.75

3 :   17  |  0.67

4 :   15  |  0.80

The R clustplot function displays the projection of the centered
variables onto the principal factorial plane of the PCA, allowing to
visualize high dimensional data
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Density-based clustering: DBSCAN

The DBSCAN algorithm implements the very natural idea that clusters
are regions with high density of points separated by regions with low
density of points (noise)

Noise

Clusters (higher points density)
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How to define a region with a minimum density of points?

Density is the number of points per area unit. A näıve idea could be
to define a cluster C as the region where each point p has an
neighborhood of radius ε, Vε(p) with at least a pre-defined
minimum number of points MinPts of C

The definition works for core points but may fail for border
points, where the number of points in the ε-neighborhood can be
considerable lower. A border point in a cluster should however
possess at least one core point in its ε-neighborhood

Points in low density regions with no core points in their ε-vicinity
are considered noise w.r.t. (ε,MinPts)

Noise

(Vε(p) contains less than MinPts)

(Vε(p) contains more than MinPts)

Core point

Border pointCluster

ε

p

Vϵ(p)
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Directly density reachable relation

We say that a point p is directly density reachable from a point q
w.r.t. (ε,MinPts) and we denote by p ← q, if

p ∈ Vϵ(q)

|Vϵ(q)|≥MinPts

C

MinPts=10

p

q

The relation directly density reachable is not symmetric (in general).
Why? Give an example.
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Density reachable relation

We say that a point p is density reachable from a point q w.r.t.
(ε,MinPts) if there is a sequence q = p0, p1, . . . , pn = p s.t. each pi+1 is
directly reachable from pi , i.e.,

p = pn ← pn−1 ← pn−2 ← · · · ← p1 ← p0 = q

p1
pn−2

pn−1

C

p0 = q

p = pn

This definition extends the previous one. Moreover, it is not symmetric
and may fail if both points p and q lie at the boundary a cluster
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Density connected cluster

We say that points p and q are density connected w.r.t. (ε,MinPts) if
there is a point o such that p and q are both density reachable from o

o

p

C

q
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Clusters and noise

(cluster)

A cluster w.r.t. (ε,MinPts) is a region C of pairwise density connect
points that cannot be enlarged with new points (maximal)

It can be proved that a cluster C w.r.t. (ε,MinPts) consists exactly of the
set of points that can be density-reachable from any of its core points,
i.e., from any of its points q ∈ C such that |Vε(q)|≥MinPts. Each one
of this core points can be considered as a seed defining the cluster.
Points of the cluster where |Vε(q)| < MinPts are called border points

(noise)

Let C1,. . . , Ck be the clusters of a set X w.r.t. (ε,MinPts). Points not
belonging to any cluster are called noise or outliers, i.e., noise points
belong to the set

X \ (C1 ∪ · · · ∪ Ck)
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The algorithm

Algorithm (DBSCAN)

Assume (ε,MinPts) given

Consider a point p in X ;

If p has not been visited and p is a core point, i.e.,
|Vε(p)|≥MinPts, determine the cluster formed by all points
density reachable from p;

Return to step 1 until all points of X have been visited;

Points that are not density reachable from any core point are
considered noise points

The R function dbscan of package fpc implements the DBSCAN
algorithm
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A simple estrategy to estimate ε and MinPts

Choose MinPts ≥ dimX + 1. The default for the R dbscan function is
MinPts = 5. For two dimensional databases MinPts = 4 is usually appropriated.

For each element x ∈ X determine the k-th nearest neighbor y of x , with
k = MinPts. Let εx = d(x , y) be the distance from x to y . Then the
εx -neighborhood of x will have at least k = MinPts elemens, with equality for
most x ;

Plot the elements by decreasing values of εx called sorted k-th nearest neighbor
distance function. This graph gives an idea of the distribution of densities on
the dataset. If the dataset has clusters with similar densities the graph should
exhibit a steady decrease for cluster points (specially core points), while for
noise points, having their k-th nearest neighbor considerable farther may
produce an abrupt change.
An elbow point in this plot usually provides a good candidate for the parameter
ε. Points on the left of this elbow point will (usually) correspond to mostly to
noise points and border points;

If several points are candidates, smaller choices of the ε parameter yield more
tighter clusters although with more unclassified points (i.e. noise points)
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The sorted k-th distance function for the Ruspini example

clustersnoise

72 pts grouped into 4 clusters

Elbow point

ε = 19.6977

3 noise and border points

ε values in the y -axis corresponding to blue, red, purple and green points
yielding 4, 5, 3 and 1 clusters respectively. Try values for the ε parameter
in each one these cases and interpret the results
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The partition obtained with DBSCAN algorithm

dbs.ruspini<-dbscan(ruspini, MinPts=5, ε = 19.69)

plot(dbs.ruspini,ruspini)
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x
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(core points are displayed as colored triangles, border points as colored
circles and noise points as black circles)
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Ruspini example revisited with MinPts=4 and 4 ε values
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The points marked with labels, 4, 10, 20 and 37 correspond to ε = 19.69,
ε = 14.42 (elbow point), ε = 11.18 and ε = 8.60
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Clustering outputs corresponding to the 4 ε values
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Summary of density-based clustering

Discover clusters with arbitrary shapes

Good efficiency in large datasets (o(n log n) time complexity)

Handles noise points and is robust to outliers

The number of clusters is not required a priori

The optimal parameters ε and MinPts have to be estimated

Can be difficult or impossible to find a good combination of
parameters (ε,MinPts) when the dataset contains regions of very
distinct density
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Non-hierarchical clustering - summary

Pros

Can reallocate an individual that was misplaced in its
cluster

Computationally efficient (K -means)

Can improve the objective function obtained with some
hierarchical methods (e.g., K -means vs Ward)

Cons

The number of clusters (or some other parameters) has to be
estimated a priori

No taxonomic type of relationship between clusters is
obtained and no dendrogram is produced

Some methods work only with “geometric” data and may
require the euclidean distance
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4. COMPARING PARTITIONS
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Motivation

Several clustering analyses of the same data can be done using
distinct meaningful combinations of clustering methods and
resemblance notions;

Clustering analyses having a high degree of agreement may suggest
that the common patterns produced by these methods is robust;

If the clustering structure is known a priori and it is important to
assess how well the clustering method was able to reproduce this
structure;

It is very difficult (if not impossible or meaningless) to match each
cluster of a partition with the correct cluster of the other partition

The usual way is to compute the number of pairs of individuals that
both clustering methods agree to assign in the same/distinct class
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Rand index

Assume that N individuals are classified by two distinct clustering methods. The
total number of pairs of individuals is

(N
2

)
. Denote by:

A: number of pairs classified in the same class in both partitions

B: number of pairs classified in the same [distinct] class for the first [second]
partition

C : number of pairs classified in the distinct [same] class for the first [second]
partition

D: number of pairs classified in distinct classes in both partitions

The Rand index is a simple concordance index used as external validition index
and is defined as

RI =
A+ D
(N
2

) =
A+D

A+ B + C + D

where A+D is number of agreements for both partitions

It ranges from 0 (total disagreement) to 1 (total agreement)
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Rand index

To each partition of a set of N individuals, x1, . . . , xN we associate a
binary vector of length

(N
2

)
, where the component corresponding to

pair (i , j) is equal 1 if xi and xj are assigned in the same class and 0
otherwise

The Rand index of two partitions is nothing more than the simple
matching index between the binary vectors associated to these
partitions

Note that the number of groups in each partition can be distinct

150 / 153



Rand index: example

X = {a, b, c , d , e, f , g}
Partition 1: a b e | c | d f Partition 2: a c | b d | e f

⎡

⎢⎢⎢⎢⎢⎢⎣

a b c d e
b 1 · · · ·
c 0 0 · · ·
d 0 0 0 · ·
e 1 1 0 0 ·
f 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

a b c d e
b 0 · · · ·
c 1 0 · · ·
d 0 1 0 · ·
e 0 0 0 0 ·
f 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

Contigency table between partition 1 and partition 2:

1 0
1 0 4 4
0 3 8 11

3 12 15

⇒ RI =
0 + 8

15
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Correction for chance: adjusted Rand index

The Rand index present some issues:

The expected value of Rand index between random partitions with
the same number of elements in each class is not constant (e.g.
equal to 0)

It is highly depend on the number of clusters. For instance, even if
the clusterings are independent, the index will converge to 1 as the
number of clusters increase

To correct these issues the so-called adjusted Rand index as proposed

ARI =
RI − Expected RI

Max − Expected RI
=

(N
2

)
(A+ D)− U
(N
2

)2 − U

where U = (A+B)(A+ C ) + (C +D)(B +D), assuming the generalized
hypergeometric distribution as null hypothesis (keeping the clusters sizes)
Gives value 0 for independent clusterings and 1 for identical clusterings.
May give negative values indicating quite low agreement. More difficult
to interpret than the more simple Rand index
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Computing the adjusted Rand index in R

To compute the adjusted Rand index of the two partitions in 3 classes,

P1 : a b e | c | d f P1 : a c | b d | e f ,

we encoded these partitions as vectors

(1, 1, 2, 3, 1, 3), (1, 2, 1, 2, 3, 3),

representing the classes of the elements a, b, c , d , e, f

R

require(mclust)
adjustedRandIndex(c(1,1,2,3,1,3),c(1,2,1,2,3,3))
-0.2962963
# 2 randoms vectors of length 100 consisting
# of elements in 1,...,10
p1<-sample(1:10,100,replace=TRUE)
p2<-sample(1:10,100,replace=TRUE)
adjustedRandIndex(p1,p2) # should be approximately zero!

153 / 153


