

- Professors

Margarida Tomé
Forest Models Coordinator

Susana Barreiro
Forest Models professor

Joana A. Paulo
Forest Models professor

- Outline

\checkmark (Forest Inventory)
\checkmark Overview of forest models
\checkmark Data for the development of forest models
\checkmark Tree and stand growth modelling
\checkmark Forest productivity and productivity management
\checkmark Forest Models Typology
\checkmark Growth functions
\checkmark Empirical models:

- Site quality evaluation
- Modelling stand basal area growth and evolution of N
- Modelling diameter and height distribution
- Modelling inter-tree competition
- Modelling diameter increment and tree mortality
- Modelling new plantations and natural regeneration
\checkmark Process-based models:
- the 3-PG

- Study Material

\checkmark There is the course website where you will find:

- A pdf version of the PowerPoint presented in class
- Additional support material (if required)
- The instructions and data for the exercises
- The solutions for the exercises
- Recommended bibliography: books chapters (and/or articles if needed)
\checkmark Burkhart and Tomé, 2012. Modelling Forest Trees and Stands, Springer

- Study Material

FOREST MODELS

at Instituto Superior de Agronomia

Forest Models Course

Coordinator: Margarida Tomé

This course on Forest Models has three main objectives:

1. To have the students proficient in the understanding of the different methods to develop management oriented forest models, from traditional growth and yield models to simple process-based models, including models based on different units of simulation: whole stand, diameter distribution, gaps and individual trees. At least one example of each one of the model types will be studied in depth, including several exercises with application of the models for decision support in stand level forest management problems.
2. To initiate the students in the development of empirical growth and yield models. The development of some of the components of different models will be explored by the students using the R statistical software.
3. To initiate the students in the calibration of process based models using the calibration of the 3PG model for Eucalyptus globulus for Portuguese plantations as an example.

Username

Password
Remember Me
LOGIN

Q Search this website

- Home

Outtine

- Study Material

Forest Models Course

Coordinator: Margarida Tomé
This course on Forest Models has three main objectives

1. To have the students proficient in the understanding of the different methods to develop management oriented forest models, from traditional growth and yield models to simple process-based models, including models based on different units of simulation: whole stand, diameter distribution, gaps and individual trees. At least one example of each one of the model types will be studied in depth, including several exercises with application of the models for decision support in stand level forest management problems.
2. To initiate the students in the development of empirical growth and yield models. The development of some of the components of different models will be explored by the students using the R statistical software.
3. To initiate the students in the calibration of process based models using the calibration of the 3PG model for Eucalyptus globulus for Portuguese plantations as an example.

- Study Material

FOREST MODELS
 at Instituto Superior de Agronomia

Home Outline
Members
Forest Inventory
Topics
Intranet
Contacts

I Overview

Powerpoint:
Remember Me
1 ForestModels-AnOverview
LOGIN
Required reading:
Q. Search this website

Further reading:

Home
Outine

- Study Material

Forest Models Course

Coordinator: Margarida Tomé
This course on Forest Models has three main objectives:

1. To have the students proficient in the understanding of the different methods to develop management oriented forest models, from traditional growth and yield models to simple process-based models, including models based on different units of simulation: whole stand, diameter distribution, gaps and individual trees. At least one example of each one of the model types will be studied in depth, including several exercises with application of the models for decision support in stand level forest management problems.
2. To initiate the students in the development of empirical growth and yield models. The development of some of the components of different models will be explored by the students using the R statistical software.
3. To initiate the students in the calibration of process based models using the calibration of the 3PG model for Eucalyptus globulus for Portuguese plantations as an example.

- Study Material

2 Data

Class materials
Powerpoints:
2 DataForGrowthStudies
Exercises - instructions:
2 Data for forest models development - Exercises
Exercises - EXCEL data files:
Ex 1.1-PermanentPlots-EC.S-date
Ex 1,2 -PermanentPlots-EC-Nol-data
Ex $2.1-$ StandTableProjection -Pb -data Ex3.1-StemAnalysis-Pb-data

Exercises - solutions from selected exercises Ex 1.1.-PermanentPlots-Ec-S-5olution Ex 2.1-Stand TableProjection-solution Ex3.1-StemAnalysis JustheiohtGrow
, Home
, Outline
, Members

- Forest Inventory

, Topics
, 1 Overview
- 2 Data
- 3 Mixed topics
, 3.1 Concepts on tree and stand growth

Password
Remember Me
LOG IN
Username

- Study Material

DO NOT print

FOREST MODELS

yet!
Home Outline Members
Forest Inventor
We will be
Forest Models Course

Coordinator: Margarida Tome
This course on Forest Models has three main objectives:

1. To have the students proficient in the understanding of the different methods to develop management oriented forest models, from traditional growth and yield models to simple process-based models, including models based on different units of simulation: whole stand, diameter distribution, gaps and individual trees. At least one example of each one of the model types will be studied in depth, including several exercises with application of the models for decision support in stand level forest management problems
2. To initiate the students in the development of empirical growth and yield models. The development of some of the components of different models will be explored by the students using the R statistical software.
3. To initiate the students in the calibration of process based models using the calibration of the 3PG model for Eucalyptus globulus for Portuguese plantations as an example.

Outine

-Software requirements

\checkmark Office

Solving the exercises

Writing some essay

Making a presentation
\checkmark Additional software

Model development
\square Simulation runs

- Evaluation

- Evaluation

Class
attendance
< 80 \%

- Evaluation

Class
attendance
> 80 \%
Final Exam
(theory)

- Evaluation

\checkmark In each class students will be asked to answer question(s) or solve an exercise on the topics of the previous class.

- Evaluation

\checkmark In each class students will be asked to answer question(s) or solve an exercise on the topics of the previous class.
\checkmark The question(s) are to be answered by student A during 10 minutes, after which these will be randomly assigned to student B who will have another 10 minutes to correct/comment the answer(s) provided. Each student will be graded both for the answers and the corrections/comments to their colleagues. A 10 minutes discussion will follow to clear any doubts that might arise.
\checkmark Students will be provided the instructions and data to solve an exercise and have 1 hour to complete it. The professor will assist the student and the student will be graded according to its performance in class and the results.

- Evaluation

The question(s) are to be answered by student A during 10 minutes, after which these will be randomly assigned to student B who will have another 10 minutes to correct/comment the answer(s) provided. Each student will be graded both for the answers and the corrections/comments to their colleagues. A 10 minutes discussion will follow to clear any doubts that might arise.
\checkmark Students will be provided the instructions and data to solve an exercise and have 1 hour to complete it. The professor will assist the student and the student will be graded according to its performance in class and the results.
\checkmark Students are invited to take additional assignments of their choice to present their colleagues by the end of the semester. Alternatively, topics will be suggested in each class.

- Evaluation

Final Exam
(theory) 50 \%

\checkmark Students will be provided the instructions and data to solve an exercise and have 1 hour to complete it. The professor will assist the student and the student will be graded according to its performance in class and the results.
\checkmark Students are invited to take additional assignments of their choice to present their colleagues by the end of the semester. Alternatively, topics will be suggested in each class.
\checkmark All essays/exercises have to be properly identified when submitted to the professor: id_exercise_id_student.xls/.doc
$\checkmark 100 \%$ of attendance will allow the 5 lowest grades to be excluded from the average.

- Any Other Business

	M	T	W	T	F	S	S
Sept	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
Oct	30	1	2	3	4	5	6
	7	8	9	10	11	12	13
	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	31	1	2	3
Nov	4	5	6	7	8	9	10
	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29	30	1
Dec	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31					

Conference
Final Exam
Assignments and presentations

After discussion with the students regarding extra classes and after-class help:

MEFRN students proposed Wednesday 11:00-13:30
MEDFOR students will have to check their schedules and propose a day and time by emailing me to: smb@isa.ulisboa.pt

