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Theoretical growth functions
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=>» Hossfeld IV function

* McDill-Amateis function
Zeide decomposition of growth functions
Simultaneous modeling of several individuals (trees or stands)

Formulating growth functions without age explicit




Growth functions

B The selection of functions — growth functions - appropriate to model tree and stand
growth is an essencial stage in the development of growth models

=» Differencial form (growth)

dy
= —f(t
- =)

=> Integral form (yield)

y = [f(t)ot
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Growth functions

B Growth functions must have a shape that is in accordance with the principles of
biological growth:

=> The curve is limited by yield 0 at the start (t=0 ou t=t,) and by a maximum yield at an advanced
age (existence of assymptote)

=>» the relative growth rate (variation of the x variable per unit of time and unit of x) presents a
maximum at a very early stage, decreasing afterwards; in most cases, the maximum occurs very
early so that we can use decreasing functions to model relative growth rate

=>» The slope of the curve increases in the initial stage and decreases after a certain point in time
(existence of an inflexion point)




Growth functions

B Two types of functions have been used to model growth:
=» Empirical growth functions

* Relationship between the dependent variable — the one we want to model — and the
regressors according to some mathematical function — e.g. linear, parabolic, without
trying to identify the causes or explaining the phenomenon

=>» Functional or theoretical growth functions

* Conceived in terms of the mechanism of forest growth, usually having an underlying
hypothesis associated with the principles of forest growth




Theoretical growth functions

B Theoretical growth functions have commonly been developed in their growth form -

either absolute or relative growth - and the respective yield form has been obtained by
integration

Generally this approach allows interpretation of the function parameters and helps to

impose restrictions on the values that the parameters can take to be biologically
consistent

B Theoretical growth functions are grouped according to their functional form in:
= Lundqvist-Korf type
=» Richards type
=>» Hossfeld IV type

=» Other growth functions




*Theoretical growth functions




Lundgvist-Korf type functions

B Differential form:

=» Based on the hypothesis that the relative growth rate has a linear relationship with the inverse
of time™*! (which means that it decreases nonlinearly with time):

1AV M o lay-at
Y dt t(m+1) Y tm

=» Schumacher function if m=1




Lundgvist-Korf type functions

B Integral form:

=>»The A parameter is the assymptote

=>»The k and m parameters are growth rate and shape parameters:

-« kis inversely related with the growth rate

- m influences the age at which the inflexion point occurs
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Richards type functions

B Differential form based on the hypothesis that the absolute growth rate of biomass
(or volume) is modeled as:

» the anabolic rate (construction metabolism), proportional to the photossintethicaly active
area (expressed as an allometric relationship with biomass)

» the catabolic rate (destruction metabolism), proportional to biomass

Anabolic rate C1S = Cl(COY m ): A

c3Y

Catabolic rate

m
Growth rate CoY " —C3Y

S — photossintethically active biomass ; Y — biomass; m — alometric coefficient;
c0,c1,c2,c3 — proportionality coefficients




Richards type functions

B The differential form of the Richards function is then:

B By integration and using the initial condition y(t,)=0, the integral form of the
Richards function is obtained:
1

Y = All-ce ™t fm

with parameters m, c, k and A where: ¢ — g &"Mrto _ okt

kza—my

.|




. (a) Different asymptotes (b) Different k values
Richards (k=0.05: m=0.2) (A=90: m=0.02)

function

(c) Different m values (d) Different asymptotes and
(4=90; k=0.05) k values (m=0.02)
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Functions of the Richards type

B Monomolecular, when the m parameter equal to 0 (no inflection point)
Y =A (1—0 e_kt)

B Logistic, when the m parameter equal to 2 (symmetric in relation to the
inflection point)
A

Y= (1+c e‘kt)

B Generalized logistic

=> |f kt is a function of t, usually a polynomial

® Gompertz, when the m parameter —1

—c e—kt

Y=Ae




Hossfeld IV function

B The Hossfeld IV function is a sigmoid function, originally proposed in 1822 (Zeide
1993), for the description of tree growth:

Y = =A
c+tk/A Ac +t

K

B The function can also be obtained from the generalized logistic by using f(X,t)=-
klog(t). Consequently some authors designate it as the log-logistic growth function




McDill-Amateis function

B Integral form:

A

)

Y =

where (t,,Y,) is the initial condition and k expresses the growth rate

c= Li - 1}5
Yo, A

the integral form of the McDill-Amateis function coincides with the Hossfeld IV function

=» By making
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»Zeide decomposition of growth functions




Zeide decomposition of growth functions

m Zeide found out that all the growth functions can be decomposed into
two componentes (similar o the development of the Richards type
functions):

=2 Growth expansion - represents the innate tendency towards exponential
multiplication and is associated with biotic potential, photosynthetic
activity, absorption of nutrients, constructive metabolism, anabolismo

=2>Growth decline - represents the constraints imposed by external
(competition, limited resources, respiration, and stress) and internal (self-
regulatory mechanisms and aging) factors




Zeide decomposition of growth functions

The decomposition can be achieved either by a subtraction or a division (subtraction of
logarithms) of the two effects

All the equations analyzed by Zeide are particular cases of the two following forms:
>LTD  Iny'=k+plny +qint <>y =k, yPt"

>0 Iny'=k+plny +qt <y =k, yPe!
where p>0, g<0 and k=ek

In both forms the expansion component is proportional to In(y) or, in the antilog form,
is a power of size

In LTD the decline component is proportional to the In of age while in TD it is
proportional to age




Zeide decomposition of growth functions

m Zeide proposed a third form in which the declining component is
expressed as a function of size instead of age:

Iny'=k +plny +qy <y =k, yPe?’

B The three forms are very useful for the direct modeling of tree and/or
stand growth - these forms provide some assurance that the resulting
model will display appropriate behavior form a biological stand point




=Simultaneous modeling of several individuals

(Families of growth functions)




Families of growth functions

m The fitting of a growth function to data from a permanent plot is
straightforward

Example:
=» Fitting the Lundqvist function to basal area and dominant height growth data from a

permanent plot

A - asymptote
k, m - shape parameters




Growth functions

Basal area Dominant height
A=58.46, k=5.13, m = 0.81 A =48.75, k=430, m =0.75
Modelling efficiency = 0.995 Modelling efficiency = 0.960
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But how to model the growth of a series of plots? This is our
objective when developing FG&Y models...

Altura dominante (m)
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Those plots represent “families” of curves




But how to model the growth of several plots?

B There are several methods to simultaneously model the growth of several
plots:

=» Using growth functions formulated as difference equations - ADA
=>» Expressing the parameters as a function of site and/or tree/stand variables
= Using growth functions formulated as difference equations - GADA

=» Using mixed models

B |n this course we will just focus the two first methods (information on other
methods available at the end of the slides)




Using growth functions formulated as difference equations - ADA

B Algebraic difference approach (ADA)

= When formulating a growth function as a difference equation, it is assumed that the curves
belonging to the same “family” differ just by one parameter - the free parameter

=2 A growth function with 3 parameters allows for 3 different formulations, usually
denoted by the free parameter

=>» For example for the Richards function:
Richards-A (model with site specific asymptote)
Richards-k (model with common asymptote)

Richards-m (model with common asymptote)




Using growth functions formulated as difference equations - ADA

Example with the Lundqvist function, formulation with common asymptote
and common n parameter, A as free parameter (Kundqvist-A):

1 1

&) |
Y,=Y,e ‘2 1) o yv=Yje

A specific curve of the family is defined by the value of the free parameter

In practice, the free parameter is a function of an initial condition (Y,,t,)




Expressing parameters as a function of tree/stand variables

m Example with the Lundqvist function fit to basal area growth of eucalyptus
(GLOBULUS 2.1 model) :

+k fe with fe= 100

SyNpl

m=m+m In(S)+m N
1000




Difference equations when the parameters are expressed as a function of
tree/stand variables

m Example with the Lundqvist function fit to basal area growth of eucalyptus
with k as free parameter:

(mo +m1q N)
J

®m By using the same method as above we obtain:

mg+m1 N1
b4




Using growth functions formulated as difference equations - GADA
B Generalized algebraic difference approach (GADA)

=» One of the problems with ADA is the fact that it originates formulations that differ just
by one parameter

= With GADA it is possible to obtain formulations that have more than one site-specific
parameter

=2 In GADA parameters are assumed to be function of an unobservable set of variables
(denoted by X) that express site differences

= The equations are then solved by X, which, for a particular site, is substituted in the
original equation (X;)



Using growth functions formulated as difference equations - GADA

v Example with the Schumacher function:

In(Y)=oc+%

Suppose that a=X and =yX, then

L X ey ) i _Inl(Yo)
In(Y)_X+T X 1+y/t 0 1+y/tg

By substituting X0 into the previous expression, we get

—~+

N—

olt—v
t(to —v)

In(Y)=In(Yg)



Using growth functions formulated as difference equations - GADA

v Another example with the Schumacher function
Suppose now that a=X and =X, then

m(v):x_% o |n(v):a_§ — 2 InY)

Il
7\
X
|
~ |
N—
+
7\
Q
|
N—

v Solving for X:

v tn(Y)-al+p Xg = tolln(Yo)— o]+
t—1 to — 1

v Finally, substituting X0 in the previous expression

()= B (=20 {m(vo)_mﬁ}

t (tg -1t to



Using mixed-models

B Mixed-models (linear and non-linear) “split” the model error according to different
sources of variation, such as:

=» Region
=» Stand
=» Plots
>..

B When using a model fitted with mixed-models theory it is possible to calibrate the
parameters with random components by measuring a small sample of individuals

B This means that it is possible to use specific parameters for a particular tree/stand



Which is the best method to model “families” of growth functions?

B There is no best method to model “families” of growth functions

m |f appropriate the three methods can be combined in order to obtain more
flexible growth models




*Formulating growth functions without age

explicit




Formulating growth functions without age explicit

® [n many applications age is not known, e.g. in trees that do not exhibit easy
to measure growth rings or in uneven aged stands

B For these cases it is useful to derive formulations of growth functions in
which age is not explicit

B The derivation of these formulations is obtained by expressing t as a
function of the variable and the parameters and substituting it in the
growth function written for t+a (Tome et al. 2006)




Formulating growth functions without age explicit

v Example with the Lundqvist function:




