
Growth Functions

Margarida Tomé, Susana Barreiro 

Instituto Superior de Agronomia

Universidade de Lisboa



Outline

 Growth functions

 Theoretical growth functions

Lundqvist-Korf type functions

Richards type functions

Hossfeld IV function

• McDill-Amateis function

 Zeide decomposition of growth functions

 Simultaneous modeling of several individuals (trees or stands)

 Formulating growth functions without age explicit



Growth functions

 The selection of functions – growth functions - appropriate to model tree and stand
growth is an essencial stage in the development of growth models

Differencial form (growth)

Integral form (yield)
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Growth functions

 Growth functions must have a shape that is in accordance with the principles of
biological growth:

The curve is limited by yield 0 at the start (t=0 ou t=t0) and by a maximum yield at an advanced
age (existence of assymptote)

the relative growth rate (variation of the x variable per unit of time and unit of x) presents a
maximum at a very early stage, decreasing afterwards; in most cases, the maximum occurs very
early so that we can use decreasing functions to model relative growth rate

The slope of the curve increases in the initial stage and decreases after a certain point in time
(existence of an inflexion point)



Growth functions

 Two types of functions have been used to model growth:

Empirical growth functions

• Relationship between the dependent variable – the one we want to model – and the 
regressors according to some mathematical function – e.g. linear, parabolic, without 
trying to identify the causes or explaining the phenomenon

Functional or theoretical growth functions

• Conceived in terms of the mechanism of forest growth, usually having an underlying 
hypothesis associated with the principles of forest growth



Theoretical growth functions

 Theoretical growth functions have commonly been developed in their growth form –

either absolute or relative growth – and the respective yield form has been obtained by

integration

 Generally this approach allows interpretation of the function parameters and helps to

impose restrictions on the values that the parameters can take to be biologically

consistent

 Theoretical growth functions are grouped according to their functional form in:

 Lundqvist-Korf type

Richards type

Hossfeld IV type

Other growth functions



Theoretical growth functions



Lundqvist-Korf type functions

 Differential form:

Based on the hypothesis that the relative growth rate has a linear relationship with the inverse
of timem+1 (which means that it decreases nonlinearly with time):

Schumacher function if m=1
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Lundqvist-Korf type functions

 Integral form:

The A parameter is the assymptote

The k and m parameters are growth rate and shape parameters:

• k is inversely related with the growth rate

• m influences the age at which the inflexion point occurs
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Lundqvist-Korf
type functions



Lundqvist-Korf
type functions
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inflection point



Richards type functions

 Differential form based on the hypothesis that the absolute growth rate of biomass
(or volume) is modeled as:

• the anabolic rate (construction metabolism), proportional to the photossintethicaly active 
area (expressed as an allometric relationship with biomass)

• the catabolic rate (destruction metabolism), proportional to biomass

Anabolic rate

Catabolic rate

Growth rate

S – photossintethically active biomass ; Y – biomass; m – alometric coefficient;

c0,c1,c2,c3 – proportionality coefficients
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Richards type functions

 The differential form of the Richards function is then:

 By integration and using the initial condition y(t0)=0, the integral form of the
Richards function is obtained:

with parameters m, c, k and A where:
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Functions of the Richards type

 Monomolecular, when the m parameter equal to 0 (no inflection point)

 Logistic, when the m parameter equal to 2 (symmetric in relation to the

inflection point)

 Generalized logistic

If kt is a function of t, usually a polynomial

 Gompertz, when the m parameter 1
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Hossfeld IV function

 The Hossfeld IV function is a sigmoid function, originally proposed in 1822 (Zeide
1993), for the description of tree growth:

 The function can also be obtained from the generalized logistic by using f(X,t)=-
klog(t). Consequently some authors designate it as the log-logistic growth function
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McDill-Amateis function

 Integral form:

where (t0,Y0) is the initial condition and k expresses the growth rate

By making

the integral form of the McDill-Amateis function coincides with the Hossfeld IV function
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Hossfeld IV 
function
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Zeide decomposition of growth functions



Zeide decomposition of growth functions

 Zeide found out that all the growth functions can be decomposed into

two componentes (similar o the development of the Richards type

functions):

Growth expansion - represents the innate tendency towards exponential

multiplication and is associated with biotic potential, photosynthetic

activity, absorption of nutrients, constructive metabolism, anabolismo

Growth decline - represents the constraints imposed by external

(competition, limited resources, respiration, and stress) and internal (self-

regulatory mechanisms and aging) factors



Zeide decomposition of growth functions

 The decomposition can be achieved either by a subtraction or a division (subtraction of
logarithms) of the two effects

 All the equations analyzed by Zeide are particular cases of the two following forms:

 LTD

 TD

where p>0, q<0 and k=ek

 In both forms the expansion component is proportional to ln(y) or, in the antilog form,
is a power of size

 In LTD the decline component is proportional to the ln of age while in TD it is
proportional to age
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Zeide decomposition of growth functions

 Zeide proposed a third form in which the declining component is

expressed as a function of size instead of age:

 The three forms are very useful for the direct modeling of tree and/or

stand growth – these forms provide some assurance that the resulting

model will display appropriate behavior form a biological stand point
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Simultaneous modeling of several individuals

(Families of growth functions)



Families of growth functions

 The fitting of a growth function to data from a permanent plot is

straightforward

Example:

Fitting the Lundqvist function to basal area and dominant height growth data from a

permanent plot

A - asymptote

k, m – shape parameters
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Growth functions
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Basal area

A = 58.46, k = 5.13, m = 0.81

Modelling efficiency = 0.995

Dominant height

A = 48.75, k = 4.30, m = 0.75

Modelling efficiency = 0.960



But how to model the growth of a series of plots? This is our 

objective when developing FG&Y models…

Those plots represent “families” of  curves



But how to model the growth of several plots?

 There are several methods to simultaneously model the growth of several

plots:

Using growth functions formulated as difference equations – ADA

Expressing the parameters as a function of site and/or tree/stand variables

Using growth functions formulated as difference equations – GADA

Using mixed models

 In this course we will just focus the two first methods (information on other

methods available at the end of the slides)



Using growth functions formulated as difference equations - ADA

 Algebraic difference approach (ADA)

When formulating a growth function as a difference equation, it is assumed that the curves
belonging to the same “family” differ just by one parameter - the free parameter

A growth function with 3 parameters allows for 3 different formulations, usually
denoted by the free parameter

For example for the Richards function:

Richards-A (model with site specific asymptote)

Richards-k (model with common asymptote)

Richards-m (model with common asymptote)



Using growth functions formulated as difference equations - ADA

Example with the Lundqvist function, formulation with common asymptote

and common n parameter, A as free parameter (Kundqvist-A):

A specific curve of the family is defined by the value of the free parameter

In practice, the free parameter is a function of an initial condition (Y0,t0)
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Expressing parameters as a function of tree/stand variables

 Example with the Lundqvist function fit to basal area growth of eucalyptus

(GLOBULUS 2.1 model) :
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Difference equations when the parameters are expressed as a function of 

tree/stand variables

 Example with the Lundqvist function fit to basal area growth of eucalyptus

with k as free parameter:

 By using the same method as above we obtain:
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Using growth functions formulated as difference equations - GADA

 Generalized algebraic difference approach (GADA)

One of the problems with ADA is the fact that it originates formulations that differ just

by one parameter

With GADA it is possible to obtain formulations that have more than one site-specific

parameter

In GADA parameters are assumed to be function of an unobservable set of variables

(denoted by X) that express site differences

The equations are then solved by X, which, for a particular site, is substituted in the

original equation (X0)



 Example with the Schumacher function:

Suppose that =X and =X, then

By substituting X0 into the previous expression, we get 

 
t

Yln




 
t1

Yln
X


 

t

X
XYln




 

0

0
0

t1

Yln
X




   
 

 



0

0
0

tt

tt
YlnYln

Using growth functions formulated as difference equations - GADA



 Another example with the Schumacher function 

Suppose now that =X and =X, then

and

 Solving for X:

 Finally, substituting X0 in the previous expression
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Using growth functions formulated as difference equations - GADA



Using mixed-models

 Mixed-models (linear and non-linear) “split” the model error according to different

sources of variation, such as:

Region

Stand

Plots

…

 When using a model fitted with mixed-models theory it is possible to calibrate the

parameters with random components by measuring a small sample of individuals

 This means that it is possible to use specific parameters for a particular tree/stand



Which is the best method to model “families” of growth functions? 

 There is no best method to model “families” of growth functions

 If appropriate the three methods can be combined in order to obtain more

flexible growth models



Formulating growth functions without age 

explicit 



Formulating growth functions without age explicit 

 In many applications age is not known, e.g. in trees that do not exhibit easy

to measure growth rings or in uneven aged stands

 For these cases it is useful to derive formulations of growth functions in

which age is not explicit

 The derivation of these formulations is obtained by expressing t as a

function of the variable and the parameters and substituting it in the

growth function written for t+a (Tomé et al. 2006)



 Example with the Lundqvist function:
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Formulating growth functions without age explicit 


