Methods to study the evolution of tree and stand variables over time

Margarida Tomé, Susana Barreiro Instituto Superior de Agronomia Universidade de Lisboa

Summary

Where do we get the data for growth studies?

- → Permanent and Interval plots
- → Temporary plots
- → Experimental trials
- → Continuous forest inventory data
- → Stem analysis
 - Partial analysis of increment cores at dbh level
 - Total analysis of several tree discs along the stem

•Where do we get the data for growth studies?

Where do we get the data for growth studies?

- In permanent and interval plots
 - → Plots established with the objective of measuring growth in stands managed according to "current" practices
 - Permanent plots follow the stand during a long period, eventually the whole life of the stand

Permanent plots

Permanent plot with three successive measurements (white trees are removed during thinning). Graphical representation of data series of three permanent plots

Permanent plots

Examples of permanent plot data G - eucalyptus

Permanent plots

Examples of permanent plot data h_{dom} - eucalyptus

Where do we get the data for growth studies?

In permanent and interval plots

- → Plots established with the objective of measuring growth in stands managed according to "current" practices
 - Permanent plots follow the stand during a long period, eventually the whole life of the stand
 - Interval plots follow the stand during a limited interval, but they are remeasured at least once

Interval plots

Three interval plots measured twice (white trees removed in thinning operations). Graphical representation: interval data for obtaining rates of change of observed state variables

Where do we get the data for growth studies?

In permanent and interval plots

- → Plots established with the objective of measuring growth in stands managed according to "current" practices
 - Permanent plots follow the stand during a long period, eventually the whole life of the stand
 - Interval plots follow the stand during a limited interval, but they are remeasured at least once

In temporary plots

 \rightarrow Plots that are measured just at one point in time

Temporary plots

Three temporary plots of varying age (white trees removed in thinning operations). Graphical representation: independent height-age data obtained from temporary plots

Where do we get the data for growth studies?

- In designed silviculture and genetic trials
 - → Trials purposively established to study the impact of silvicultural treatments and/or genetic material on tree and stand growth
- From continuous forest inventory data
- From stem analysis

Experimental trials

- Trials are set to study one specific silvicultural practice or a combination of two even if in practice several treatments are applied simultaneously
- ✓ Trials usually present a design with repetitions of the given treatment
- E.g Spacing trial: (1x2, 1x3, 1x4, 2x2, 2x3, 3x2, 4x2, 2x4, 3x3, 4x3, 3x4, 4x4) * 3Blocks
- ✓ Measurements over time covering the entire 1st rotation

Experimental trials

- ✓ Trials are set to study one specific silvicultural practice or a combination of two even if in practice several treatments are applied simultaneously
- Trials usually present a design with repetitions of the given treatment
- E.g Spacing trial: (1x2, 1x3, 1x4, 2x2, 2x3, 3x2, 4x2, 2x4, 3x3, 4x3, 3x4, 4x4) * 3Blocks
- ✓ Measurements over time covering the entire 1st rotation

Experimental trials

- Trials are set to study one specific silvicultural practice or a combinations of two even if in practice several treatments are applied simultaneously
- \checkmark Trials usually present a design with repetitions of the given treatment
- ✓ E.g. Spacing trial: (1x2, 1x3, 1x4, 2x2, 2x3, 3x2, 4x2, 2x4, 3x3, 4x3, 3x4, 4x4) * 3Blocks
- \checkmark Comparison of some stand variables at age 10.1:

	5000	3333	2500	2500	1667	1667	1250	1250	1111	833	833	625
	1 x 2	1 x 3	1 x 4	2 x 2	2 x 3	3 x 2	2 x 4	4 x 2	3 x 3	3 x 4	4 x 3	4 x 4
ddom	18.60	18.02	20.75	21.48	20.63	20.80	22.04	22.25	22.02	23.00	24.83	24.79
dg	11.90	11.53	13.33	15.00	14.50	14.90	16.23	15.70	16.70	17.40	18.30	19.60
hdom	22.70	23.30	24.21	24.60	24.69	24.23	24.67	23.88	24.91	24.63	25.34	24.29
Ν	2734	2604	2018	1797	1502	1406	1042	1061	1024	746	742	534
V	229.08	272.73	288.21	309.32	256.19	229.04	251.53	240.96	184.10	202.42	211.14	165.75

Stem analysis

- Stem analysis is the study of tree growth from the analysis and measurement of the growth rings
- It is restricted to the species whose wood exhibits clear growth rings and to the regions with a climate that implies a clear stop on growth
- Two types of stem analysis:
 - → Partial analysis of increment cores at dbh level
 - \rightarrow Total analysis of several tree discs along the stem

- It is usually used for short term projections of forest inventory data:
 - During the forest inventory an increment core is taken in some "sample" trees
 - 2. Diameter growth of wood in the last k years (usually 5 years) is measured in the increment bore from each tree and converted to diameter growth
 - 3. Estimate the diameter growth (idj) of the average tree of each diameter class (j)

It includes several steps (and assumes you have just completed your forest inventory):

- 1. Start by computing the stand table (number of trees per diameter class) from forest inventory data
- 2. Estimate mortality in each diameter class and compute the future number of trees
- 3. Compute the **growth index** or ratio between id_j and the width of the class this index allows the computation of the number of trees that stay in the class and the ones that move 1 or 2 classes
 - A GI=0.76 means that 76% of the trees move 1 class and none move 2 classes
 - A GI=1.10 means that 90% of the trees move 1 class and 10% move 2 classes

Computation of growth index:

- \rightarrow Assumes that trees inside a dbh class have an uniform distribution
- \rightarrow Estimate the diameter increment in k years of each dbh class (i_d)
- \rightarrow All trees inside a dbh class [d₁; d₂[with d>d₂-i_d, after k years will be in the next class

→Note that now the trees are not equally distributed but this assumption will hold for the next period projection

class j (5 cm)	Nj ₁₉₉₆ after	d increment id ₅ (cm)	Growth	n index		Nj ₂₀₀₁		
	mortality		P ₁	P_2	stay	1 class	2 classes	
ingrowth						100		
5	102	3.80	0.76	0	24.48	77.52	0	
10	59	3.80	0.76	=3.80/5cm	14.1/	44.84	102-24.48	
15	53	3.85	0.77	U	12.1	40.8 ⁴		
20	59	3.85	0.77	0	40	=102*(1-0.76) 0		
25	58	3.85	0.77	0	=102*(1-0.			
30	22	3.90	0.78	0	4.84	17.16	0	
35	1	3.90	0.78	0	0.22	0.78	0	
40	0							
45								
TotaFutureIncremeTotanumber ofdiametetrees alive inthe perieach class								

We should also take into account the ingrowth

→ trees that achieve the lower limit of the first diameter class and must be added to the stand

class j (5 cm)	Nj₁ ₉₉₆ after	d increment	Growth	n index		Nj ₂₀₀₁		
	mortality	id ₅ (cm)	P ₁	P ₂	stay	1 class	2 classes	
ingrowth						100		
5	102	3.80	0.76	0	24.48	77.52	0	124
10	59	3.80	0.76	0	14.16	44.84	0	92
15	53	3.85	0.77	0	12.19	40.81	0	57
20	59	3.85	0.77	0	13.57	45.43	0	54
25	58	3.85	0.77	0	13.34	44.66	=24+100	59
30	22	3.90	0.78	0	4.84	17.16		50
35	1	3.90	0.78	0	0.22	0.78	0	17
40	0							1
45								
Total	354							454

To estimate volume (or biomass) increment:

- → Estimate the height of the average tree in each dimater class using a height-diameter curve
- \rightarrow Estimate the respective volume with a volume equation
- \rightarrow Estimate the volume in each point in time using the stand tables
- \rightarrow Obtain the volume (biomass) growth by difference

class j (5 cm)	Nj ₁₉₉₆ after mortality	Nj ₂₀₀₁	h _j m	vj m ³ /tree	V _{j1996} m3/ha	V _{j2001} m3/ha		
ingrowth								
5	102	124	6.8	0.0070	0.71	0.87		
10	59	92	12.1	0.0470	2.77	4.30	=0.0070*124	
15	53	57	16.2	0.1387	7.35	7.91		
20	59	54	19.7	0.2939	17.34	15.98		
25	58	59	22.5	0.5204	30.18	30.58		
30	22	50	24.9	0.8237	18.12	40.77		
35	1	17	27.0	1.2080	1.21	20.99		
40	0	1	28.7	1.6763	0.00	1.31	V growth	
45						0	m ³ /ha	
Total	354	454			78	123	45	

Tree height with a height-diameter curve: h=d/(0.64212+0.01874*d)Total volume with a volume equation: $v = 0.00005126 d^{2.0507} h^{0.8428}$

Total stem analysis

Stem analysis - example

- ✓ Tree is 5 years old
- ✓ Between Disc 1 and Disc 2, the correction is needed to estimate the heights at the end of the years: h₁₁ and h₁₂
- The method most used for this correction is the Carmean method

- Carmen's method is based on two assumptions:
 - 1. Constant annual increment in height between two discs
 - 2. Each disc occurs at the mid-point between two whorls

• The application of the method to the whorls between two discs implies:

- → Computing the annual increment $i_h = (h_2 h_1) / (nrg_1 nrg_2)$, where h_i and nrg_i are the height and the number of rings of disc_i
- Computing the height of the first whorl as: $h_{i1}=h_i+i_h/2$
- → Computing the height of the remaining whorls as: $h_{ij} = h_i + i_h/2 + (j-1)*i_h = h_{i(j-1)} + i_h$

Let's compute h11 and h12:

Annual height growth between discs:

 $i_{h}=(h_{2}-h_{1})/(nrg_{1}-nrg_{2})$ $i_{h}=(h_{2}-h_{1})/(4-2)=(3.50-1.30)/2=1.1$

Let's compute h11 and h12:

✓ Annual height growth:

 $i_{h}=(h_{2}-h_{1})/(nrg_{1}-nrg_{2})$ $i_{h}=(h_{2}-h_{1})/(4-2)=(3.50-1.30)/2=1.1$

 $h_{i1} = h_i + i_h/2$ $h_{11} = 1.30 + 1.1/2 = 1.85$

 $\checkmark h_{ij} = h_i + i_h / 2 + (j-1)^* i_h = h_{i(j-1)} + i_h$ $h_{12} = h_{11} + i_h = 1.85 + 1.1 = 2.95$

Where nrg_1 and nrg2 are the number of rings in the discs collected at heights 1 and 2 respectively.

It is possible to obtain a general formula for the height of any whorl h_{ii}:

$$h_{ij} = h_i + \frac{1}{2} \frac{h_{i+1} - h_i}{r_i - r_{i+1}} + (j-1) \frac{h_{i+1} - h_i}{r_i - r_{i+1}}$$

$$\frac{h_{i+1} - h_i}{r_i - r_{i+1}}$$
 is the annual growth between discs *i* and *i+1*

$$h_{11} = 1.30 + \frac{1}{2} \quad \frac{3.50 - 1.30}{4 - 2} + (1 - 1) \quad \frac{3.50 - 1.30}{4 - 2} = 1.30 + \frac{1}{2} \quad 1.10 = 1.30 + 0.55 = 1.85$$

 $h_{12} = 1.30 + 0.55 + (2 - 1) \ 1.10 = 2.95$

