Methods to study the evolution of tree and stand variables over time

Margarida Tomé, Susana Barreiro

 Instituto Superior de Agronomia Universidade de Lisboa
- Summary

■ Where do we get the data for growth studies?
\rightarrow Permanent and Interval plots
\rightarrow Temporary plots
\rightarrow Experimental trials
\rightarrow Continuous forest inventory data
\rightarrow Stem analysis

- Partial - analysis of increment cores at dbh level
- Total - analysis of several tree discs along the stem
-Where do we get the data for growth studies?

Where do we get the data for growth studies?

- In permanent and interval plots
\Rightarrow Plots established with the objective of measuring growth in stands managed according to "current" practices
- Permanent plots follow the stand during a long period, eventually the whole life of the stand

- Permanent plots

- Permanent plot with three successive measurements (white trees are removed during thinning). Graphical representation of data series of three permanent plots
(a)

Permanent plots

Examples of permanent plot data
G - eucalyptus

Permanent plots

Examples of permanent plot data
$h_{\text {dom }}$ - eucalyptus

Where do we get the data for growth studies?

- In permanent and interval plots
\rightarrow Plots established with the objective of measuring growth in stands managed according to "current" practices
- Permanent plots follow the stand during a long period, eventually the whole life of the stand
- Interval plots follow the stand during a limited interval, but they are remeasured at least once

Interval plots

- Three interval plots measured twice (white trees removed in thinning operations). Graphical representation: interval data for obtaining rates of change of observed state variables

Where do we get the data for growth studies?

- In permanent and interval plots
\rightarrow Plots established with the objective of measuring growth in stands managed according to "current" practices
- Permanent plots follow the stand during a long period, eventually the whole life of the stand
- Interval plots follow the stand during a limited interval, but they are remeasured at least once

■ In temporary plots
\rightarrow Plots that are measured just at one point in time

- Temporary plots

- Three temporary plots of varying age (white trees removed in thinning operations). Graphical representation: independent height-age data obtained from temporary plots

Where do we get the data for growth studies?

- In designed silviculture and genetic trials
\rightarrow Trials purposively established to study the impact of silvicultural treatments and/or genetic material on tree and stand growth
- From continuous forest inventory data
- From stem analysis

Experimental trials

\checkmark Trials are set to study one specific silvicultural practice or a combination of two even if in practice several treatments are applied simultaneously
\checkmark Trials usually present a design with repetitions of the given treatment
\checkmark E.g Spacing trial: ($1 \times 2,1 \times 3,1 \times 4,2 \times 2,2 \times 3,3 \times 2,4 \times 2$, $2 \times 4,3 \times 3,4 \times 3,3 \times 4,4 \times 4$) * 3Blocks
\checkmark Measurements over time covering the entire $1^{\text {st }}$ rotation

10.1									
0.8	1.7	2.7	3.8	4.7	5.8	6.8	7.9	9.1	\bullet
0	\bullet								
1994	1995	1996	1997	1998	1999	2000	2001	2002	2003

Experimental trials

\checkmark Trials are set to study one specific silvicultural practice or a combination of two even if in practice several treatments are applied simultaneously
\checkmark Trials usually present a design with repetitions of the given treatment
\checkmark E.g Spacing trial: ($1 \times 2,1 \times 3,1 \times 4,2 \times 2,2 \times 3,3 \times 2,4 \times 2$, $2 \times 4,3 \times 3,4 \times 3,3 \times 4,4 \times 4$) * 3Blocks
\checkmark Measurements over time covering the entire $1^{\text {st }}$ rotation

10.1										
0.8	1.7	2.7	3.8	4.7	5.8	6.8	7.9	9.1	\bullet	\bullet
0	\bullet									
1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	

- Experimental trials

\checkmark Trials are set to study one specific silvicultural practice or a combinations of two even if in practice several treatments are applied simultaneously
\checkmark Trials usually present a design with repetitions of the given treatment
\checkmark E.g. Spacing trial: (1x2, 1x3, 1x4, 2x2, 2x3, 3x2, 4x2, 2x4, 3x3, 4x3, 3x4, 4×4) * 3Blocks
\checkmark Comparison of some stand variables at age 10.1:

	5000	3333	2500	2500	1667	1667	1250	1250	1111	833	833	625
	1×2	1×3	1×4	2×2	2×3	3×2	2×4	4×2	3×3	3×4	4×3	4×4
ddom	18.60	18.02	20.75	21.48	20.63	20.80	22.04	22.25	22.02	23.00	24.83	24.79
dg	11.90	11.53	13.33	15.00	14.50	14.90	16.23	15.70	16.70	17.40	18.30	19.60
hdom	22.70	23.30	24.21	24.60	24.69	24.23	24.67	23.88	24.91	24.63	25.34	24.29
N	2734	2604	2018	1797	1502	1406	1042	1061	1024	746	742	534
V	229.08	272.73	288.21	309.32	256.19	229.04	251.53	240.96	184.10	202.42	211.14	165.75

ANALYSIS OF MEASURED RESULTS

Better understanding of physiological processes

- Stem analysis

■ Stem analysis is the study of tree growth from the analysis and measurement of the growth rings

- It is restricted to the species whose wood exhibits clear growth rings and to the regions with a climate that implies a clear stop on growth
- Two types of stem analysis:
\rightarrow Partial - analysis of increment cores at dbh level
\rightarrow Total - analysis of several tree discs along the stem

Partial stem analysis

Stand table projection

- It is usually used for short term projections of forest inventory data:

1. During the forest inventory an increment core is taken in some "sample" trees
2. Diameter growth of wood in the last k years (usually 5 years) is measured in the increment bore from each tree and converted to diameter growth
3. Estimate the diameter growth (idj) of the average tree of each diameter class (j)

Partial stem analysis

Stand table projection

- It includes several steps (and assumes you have just completed your forest inventory):

1. Start by computing the stand table (number of trees per diameter class) from forest inventory data
2. Estimate mortality in each diameter class and compute the future number of trees
3. Compute the growth index or ratio between id_{j} and the width of the class - this index allows the computation of the number of trees that stay in the class and the ones that move 1 or 2 classes

- $\mathrm{AGI}=0.76$ means that 76% of the trees move 1 class and none move 2 classes
- A GI=1.10 means that 90% of the trees move 1 class and 10% move 2 classes

Partial stem analysis

Stand table projection

- Computation of growth index:
\rightarrow Assumes that trees inside a dbh class have an uniform distribution
\rightarrow Estimate the diameter increment in k years of each dbh class (i_{d})
\rightarrow All trees inside a dbh class $\left[d_{1} ; d_{2}\left[\right.\right.$ with $d>d_{2}-i_{d}$, after k years will be in the next class

Partial stem analysis

Stand table projection

- Tree movement:

\rightarrow Note that now the trees are not equally distributed but this assumption will hold for the next period projection

Partial stem analysis

Stand table projection

$\begin{aligned} & \text { class } j \\ & (5 \mathrm{~cm}) \end{aligned}$	Nj_{1996} after mortality	d increment id_{5} (cm)	Growth index		Movements			N_{2001}
			P_{1}	P_{2}	stay	1 class	2 classes	
ingrowth						100		
5	102	3.80	0.76	0	24.48	77.5 ?	0	
10	59	3.80	0.76	/5cm	14.1	44.84	102-24.48	
15	53	3.85	0.77	\checkmark	12.1	40.8 ${ }^{\text {i }}$	\checkmark	
20	59	3.85	0.77	0	$==102^{*}(1-0.76)$		0	
25	58	3.85	0.77	0			0	
30	22	3.90	0.78	0	4.84	17.16	0	
35	1	3.90	0.78	0	0.22	0.78	0	
40	0	-						
45	future number of trees alive in	Increment in diameter for						
Tote								

Partial stem analysis

Stand table projection

■ We should also take into account the ingrowth
\Rightarrow trees that achieve the lower limit of the first diameter class and must be added to the stand

Partial stem analysis

Stand table projection

class j (5 cm)	Nj_{1996} after mortality	d increment id_{5} (cm)	Growth index		Movements			Nj_{2001}
			P_{1}	P_{2}	stay	1 class	2 classes	
ingrowth						100	,	
5	102	3.80	0.76	0	24.48	77.52	0	124
10	59	3.80	0.76	0	14.16	44.84	0	92
15	53	3.85	0.77	0	12.19	40.81	0	57
20	59	3.85	0.77	0	13.57	45.43	0	54
25	58	3.85	0.77	0	13.34	44.66	$=24+100$	59
30	22	3.90	0.78	0	4.84	17.16	\checkmark	50
35	1	3.90	0.78	0	0.22	0.78	0	17
40	0							1
45								
Total	354							454

Partial stem analysis

Stand table project

- To estimate volume (or biomass) increment:
\rightarrow Estimate the height of the average tree in each dimater class using a height-diameter curve
\rightarrow Estimate the respective volume with a volume equation
\rightarrow Estimate the volume in each point in time using the stand tables
\rightarrow Obtain the volume (biomass) growth by difference

Partial stem analysis

Stand table projection

class j (5 cm)	Nj_{1996} after mortality	Nj2001	$\begin{aligned} & \mathrm{h}_{\mathrm{j}} \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} v_{j} \\ \mathrm{~m}^{3} / \text { tree } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{j} 1996} \\ \mathrm{~m} 3 / \mathrm{ha} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{j} 2001} \\ & \mathrm{~m} 3 / \mathrm{ha} \end{aligned}$	=0.0070*124
ingrowth							
5	102	124	6.8	0.0070	0.71	0.87	
10	59	92	12.1	0.0470	2.77	4.30	
15	53	57	16.2	0.1387	7.35	7.91	
20	59	54	19.7	0.2939	17.34	15.98	
25	58	59	22.5	0.5204	30.18	30.58	
30	22	50	24.9	0.8237	18.12	40.77	
35	1	17	27.0	1.2080	1.21	20.99	
40	0	1	28.7	1.6763	0.00	1.31	V growth
45						0	$\mathrm{m}^{3} / \mathrm{ha}$
Total	354	454			78	123	45

Tree height with a height-diameter curve: $h=d /\left(0.64212+0.01874^{*} d\right)$ Total volume with a volume equation: $v=0.00005126 d^{2.0507} h^{0.8428}$

Partial stem analysis

Stand table projection

Total stem analysis

$*$

Stem analysis - example

height	N rings	age
0	5	0
1.30	4	$1+\ldots$
3.50	2	$3+\ldots$
5.50	0	5

\checkmark Tree is 5 years old
\checkmark Between Disc 1 and Disc 2, the correction is needed to estimate the heights at the end of the years: h_{11} and h_{12}
\checkmark The method most used for this correction is the Carmean method

Stem analysis
 Carmean's correction

- Carmen's method is based on two assumptions:

1. Constant annual increment in height between two discs
2. Each disc occurs at the mid-point between two whorls

- The application of the method to the whorls between two discs implies:
\rightarrow Computing the annual increment $\mathrm{i}_{\mathrm{h}}=\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) /\left(\mathrm{nrg}_{1}-\mathrm{nrg}_{2}\right)$, where h_{i} and $\mathrm{nrg}_{\mathrm{i}}$ are the height and the number of rings of disc ${ }_{i}$
\rightarrow Computing the height of the first whorl as: $h_{i 1}=h_{i}+i_{h} / 2$
\rightarrow Computing the height of the remaining whorls as: $h_{i j}=h_{i}+i_{h} / 2+(j-1)^{*} i_{h}=h_{i(j-1)}+i_{h}$

Stem analysis
 Carmean's correction

Let's compute h11 and h12:

\checkmark Annual height growth between discs:

$$
\begin{aligned}
\checkmark i_{h} & =\left(h_{2}-h_{1}\right) /\left(\operatorname{nrg}_{1}-\mathrm{nrg}_{2}\right) \\
i_{h} & =\left(h_{2}-h_{1}\right) /(4-2)=(3.50-1.30) / 2=1.1
\end{aligned}
$$

Stem analysis

Carmean's correction

Let's compute h11 and h12:

\checkmark Annual height growth:

$$
\begin{aligned}
\checkmark i_{h} & =\left(h_{2}-h_{1}\right) /\left(n r g_{1}-n r g_{2}\right) \\
i_{h} & =\left(h_{2}-h_{1}\right) /(4-2)=(3.50-1.30) / 2=1.1 \\
\checkmark h_{i 1} & =h_{i}+i_{h} / 2 \\
h_{11} & =1.30+1.1 / 2=1.85 \\
\checkmark h_{i j} & =h_{i}+i_{h} / 2+(j-1)^{*} i_{h}=h_{i(j-1)}+i_{h} \\
h_{12} & =h_{11}+i_{h}=1.85+1.1=2.95
\end{aligned}
$$

Where nrg_{1} and nrg 2 are the number of rings in the discs
 collected at heights 1 and 2 respectively.

Stem analysis

Carmean's correction

- It is possible to obtain a general formula for the height of any whorl h_{ij} :

$$
h_{i j}=h_{i}+\frac{1}{2} \frac{h_{i+1}-h_{i}}{r_{i}-r_{i+1}}+(j-1) \frac{h_{i+1}-h_{i}}{r_{i}-r_{i+1}}
$$

$\frac{h_{i+1}-h_{i}}{r_{i}-r_{i+1}}$ is the annual growth between discs i and $i+1$
$h_{11}=1.30+\frac{1}{2} \frac{3.50-1.30}{4-2}+(1-1) \frac{3.50-1.30}{4-2}=1.30+\frac{1}{2} \quad 1.10=1.30+0.55=1.85$
$h_{12}=1.30+0.55+(2-1) 1.10=2.95$

Stem analysis

Carmean's correction

