

We cut this tree and sample discs at different height from the soil (m) and count the number of rings in each disc

29 Rings
$=$
29 years

With this information we want to determine the evolution of tree height over time, however a bias in height determination for given ages results because the cut will seldom occur at the tip of a terminal leader (whorl) requiring a correction method to be applied.

Carmen's method is based on two assumptions:

1. Constant annual increment in height between two discs
2. Each disc occurs at the mid-point between two whorls

| $\left(\mathrm{h}_{\text {disc_2 }}-\mathrm{h}_{\text {disc-1 }}\right)$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\mathrm{n}_{\text {rg_1 }}-\mathrm{n}_{\text {rg_2 }}\right)$ | $=\frac{(1.30-0.15)}{(29-27)}=\frac{1.15}{2}=0.575$ |
| Age $1->0.15+0.575 / 2=0.4375$ | |
| Age $2->0.4375+0.575=1.01$ | |

Carmen's method is based on two assumptions:

1. Constant annual increment in height between two discs
2. Each disc occurs at the mid-point between two whorls

This is in average how much the tree grew in height/yr in its second 2 yr of life

$$
\text { Age } 1 \text {-> } 0.15+0.575 / 2=0.4375
$$

$$
\text { ih }=\frac{\left(h_{\text {disc_2 }}-h_{\text {disc-1 }}\right)}{\left(\mathrm{n}_{\text {rg_ } 1}-\mathrm{n}_{\text {rg_2 }}\right)}=\frac{(3.30-1.30)}{(27-25)}=\frac{2}{2}=1
$$

$$
\text { Age } 2->0.4375+0.575=1.01
$$

$$
\text { Age } 3->1.30+1 / 2=1.8
$$

$$
\text { Age } 4 \text {-> } 1.8+1=2.8
$$

Carmen's method is based on two assumptions:

1. Constant annual increment in height between two discs
2. Each disc occurs at the mid-point between two whorls

Age 1 -> $0.15+0.575 / 2=0.4375$
Age $2->0.4375+0.575=1.01$
Age $3->1.30+1 / 2=1.8$
Age $4->1.8+1=2.8$
Age 5 -> $3.30+0.5 / 2=3.55$
Age $6->3.55+0.5=4.05$
Age $7->4.05+0.5=4.55$
Age 8 -> $4.55+0.5=5.05$
...
Age 25 -> $14.50+0.386 / 2=14.69$
Age 26 -> $14.69+0.386=15.08$
Age $27->15.08+0.386=15.47$
Age $28->15.47+0.386=15.85$
Age 29 -> 15.85 + $0.386=16.43$

