Fitting Growth Functions

Margarida Tomé, Susana Barreiro Instituto Superior de Agronomia

Universidade de Lisboa

Theoretical growth functions

- Allow interpretation of the function parameters and helps to impose restrictions on the values that the parameters can take to be biologically consistente
- Theoretical growth functions are grouped according to their functional form in:

Lundqvist-Korf type

A - assymptote k – inversely related to growth rate m - shape parameters

Lundqvist-Korf type

≻

Growth curves for different tree variables

- All tree variables "grow" according to a **sigmoid curve**
- However, the length of the 4 stages is different leading to different shapes

Richards type

A - assymptote

k – rate of decrease of the absolute growth rate

 $Y = A \left(1 - C e^{-kt} \right)^{-m}$ (higher values of K produce higher growth rates) Monomolecular (m = 0) *m* - shape parameter (usually 2/3) Gompertz (m -->1)

(smaller values of m result in higher growth rates) Logistic (m = 2)

c- for initial conditions such as Y0=0, leads to c=1

Lundqvist-Korf typeRichards type

Diameter at Basal Height Volume breast height

3	Forest Fi	unctions F	Playgrou	nd														
4	http://ho	ome.isa.u	tl.pt/~jo	aopalma	a/modelo	s/fgfp/						Richa	rds A	780.86			1	
5	check th	e Forest F	unction	s playgro	ound to h	ave na idea	about the i	range of logi	ical values f	or the			k	0.095		$(1 0 0^{-1})$	kt h_{m}	
6	paramet	ers before	e solver										m	0.899	$\mathbf{v} = \mathbf{A}$	(1-66)"-""	
7													сс	1				
8							N/I 1 1											
9		id_stand	year	t	V	Sum vtnin	Vtotal	vest_R	QSS	vest_L	QSS							
10					m3 ha-1	m3 ha-1	m3 ha-1					Lundq	vist AA	1360.586		, 1		
11		В	1981	19	159.05	18.05	177.10	133.6747	1885.458	160.1754	286.3248		КК	108.6491	V_{-}	$-\kappa \frac{-\pi}{t^m}$	-	
12		В	1984	22	210.53	18.05	228.58	213.8126	218.1578	234.223	31.81279		mm	1.333903	v = 7			
13		В	1986	24	222.80	53.35	276.15	271.1522	24.98353	284.028	62.05381							
14		В	1987	25	252.29	53.35	305.64	299.9959	31.83093	308.6158	8.868336				Total	Volumo		
15		В	1988	26	261.53	53.35	314.88	328.5765	187.6078	332.8585	323.2425				TOLAT	volume		
16		В	1989	27	301.98	53.35	355.33	356.6548	1.7668	356.6811	1.837247	800.00						
17		В	1990	28	319.22	53.35	372.57	384.0293	131.3085	380.026	55.58649	700.00						
18		В	1991	29	317.44	53.35	370.79	410.5356	1579.554	402.8502	1027.73	600.00						
19		В	1994	32	442.86	53.35	496.21	483.7076	156.1971	467.9373	799.0917	000.00					100	
20		В	1997	35	488.93	53.35	542.27	546.1542	15.05316	527.7311	211.5059	500.00				2		
21		В	1999	37	350.65	222.26	572.91	581.7006	77.25198	564.6751	67.83418	400.00						
22		В	2000	38	375.84	222.26	598.10	597.7203	0.143726	582.2991	249.6503	300.00						
23		В	2005	43	437.37	222.26	659.63	662.0885	6.038021	662.483	8.132569							
24		В	2012	50	513.36	222.26	735.62	717.7688	318.6659	755.324	388.2479	200.00		•				
25									4634.017		3521.919	100.00			•			
26												0.00						
27												0		10	20	30	40	50
28																		

1	undo	qvis	t-K	orf	typ	e		Diame breast	ter at height		Basal area	Hei	ght	V	olume
	kicha	ras	τγμ	be											
l Plot	t hd	om N	G		ddom dg	V		hdom_est	res^2						
2 P1	4.1	15.1	1125	13.30	17.90	12.27	77.72	11.70	11.69	A	62.8445	hdom=A*exp(-k*1	/t^m)		
3 P1	4.8	17.8	1125	17.11	20.24	13.92	117.06	13.21	20.73	k	3.369699		1	_	
4 P1	5.7	19.8	1114	21.10	22.65	15.53	158.49	15.05	22.42	m	0.494316	- <i>k</i>	$\frac{1}{m}$		
5 P1	6.8	20.6	1114	25.08	25.03	16.93	196.73	17.07	12.17			ndom = A e	<i>t</i>		
6 P1	7.6	22.9	1114	27.06	25.96	17.59	233.37	18.23	22.23	SSres	1128.514	L			
7 P1	8.7	23.2	1114	29.34	26.90	18.31	260.81	19.73	12.21						
3 P1	9.5	24.3	1114	31.04	27.81	18.84	297.91	20.77	12.35		use the solver	function from EXCEL to fit	ւhe Lundqvist fւ	unction to	
9 P1	10.5	24.4	1114	32.31	28.31	19.22	324.82	21.91	6.42		the data and	plot the estimated values to	gether with the	e original	
J P1	11.6	29.6	1114	34.77	29.42	19.94	399.26	23.03	43.33		data				
1 P1	12.6	29.7	1114	36.85	29.08	19.89	437.25	23.97	32.45	40	.0				
2 P1	13.8	32.9	1102	38.42	31.87	21.06	487.86	24.99	63.28						
3 P1	14.8	33.8	1102	39.46	32.42	21.35	513.30	25.78	63.94	35	.0			•	
4 P1	15.6	34.1	1080	41.18	33.15	22.04	527.64	26.41	59.34						
5 P2	4.1	13.2	1081	5.20	13.12	7.80	23.68	11.70	2.25	30.	.0		, , , , , , , , , , , , , , , , , , ,		
6 P2	4.8	15.5	1081	7.45	15.17	9.37	39.68	13.21	5.21	E (E					
7 P2	5.7	16.8	1070	10.41	17.05	11.13	61.41	15.05	3.15	25. ap 25.	.0				
3 P2	6.8	17.9	1048	14.03	19.27	13.05	90.83	17.07	0.67	hei	0				
9 P2	7.6	19.2	1048	16.26	20.62	14.05	115.38	18.23	0.89	ant	•		•	•	
) P2	8.7	19.6	1048	19.08	22.05	15.22	142.64	19.73	0.03	ü. 15.	.0		,		
1 P2	9.5	21.3	1048	21.24	23.19	16.06	177.70	20.77	0.32	Dor	•				
2 P2	10.5	25.0	1037	22.87	24.15	16.76	219.22	21.91	9.57	10	.0 5	• •			
3 P2	11.6	26.7	1037	25.43	25.59	17.67	261.11	23.03	13.27		•				
4 P2	12.6	29.0	1037	24.50	27.60	17.82	299.95	23.97	25.26	5.	.0				
5 P2	13.7	30.2	1037	29.20	27.89	18.93	338.79	24.92	28.13						
5 P2	14.8	31.2	1026	30.65	28.62	19.50	366.52	25.78	29.55	0.	0				
7 P2	15.6	30.7	1026	32.40	29.20	20.05	387.67	26.41	18.60		2.5 4.5	6.5 8.5 10.5	12.5 14.5	16.5 18	3.5 20.5
8 P3	4.1	10.7	1092	4.32	10.91	7.10	16.31	11.70	0.92			Age (y	ears)		
9 P3	4.8	12.8	1092	5.84	12.59	8.25	27.30	13.21	0.14		D1 D2			· · · · ·	
0 P3	5.7	13.5	1092	7.47	14.19	9.34	36.57	15.05	2.45	-	PI 🕈 PZ (■ P3 ■ P4 ■ P5 ● P7	Рб Рб	s • P9 ~~~	naom_est
1 P3	6.8	14.4	1092	9.21	15.81	10.37	47.75	17.07	6.93						

SUI	M	•	×	$\checkmark f_x$	=\$M\$2	2*EXP(-\$M	\$3*1/	′U13^\$ <mark>M</mark> \$	4)										
	А		G	Н	I	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W
1	Plot	dg	١	/	hdom_est	res^2													
2	P1		12.27	77.72	11.70	11.69		А	62.8445		hdom=A*e	xp(-k*1/t^ı	m)						
3	P1		13.92	117.06	13.21	20.73		k	3.369699			4	7						
4	P1		15.53	158.49	15.05	22.42		m	0.494316			$-k\frac{1}{m}$							
5	P1		16.93	196.73	17.07	12.17					Y = A	e ^t ‴							
6	P1		17.59	233.37	18.23	22.23		SSres	1128.514										
7	P1		18.31	260.81	19.73	12.21													
8	P1		18.84	297.91	20.77	12.35			use the solv	/er functio	n from EXCE	L to fit the	Lundqvist f	unction to					
9	P1		19.22	324.82	21.91	6.42			the data an	d plot the	estimated v	alues toget	her with th	e original					
10	P1		19.94	399.26	23.03	43.33			data										
11	P1		19.89	437.25	23.97	32.45		40.	0										
12	P1		21.06	487.86	24.99	63.28											t	hdom_est	
13	P1		21.35	513.30	25.78	63.94		35.	0					•			4	=\$M\$2*EXP(-\$N	
14	P1		22.04	527.64	26.41	59.34											5	13.73	
15	P2		7.80	23.68	11.70	2.25		30.	0			•					6	15.66	
16	P2		9.37	39.68	13.21	5.21		E ar				•					7	17.34	
17	P2		11.13	61.41	15.05	3.15		ght 72.	0		• •						8	18.82	
18	P2		13.05	90.83	17.07	0.67		pei 20.	0				-				9	20.15	
19	P2		14.05	115.38	18.23	0.89		ant		•		•	•	•			10	21.35	
20	P2		15.22	142.64	19.73	0.03		E 15.	0			• •	-				11	22.44	
21	P2		16.06	177.70	20.77	0.32		Do			•						12	23.43	
22	P2		16.76	219.22	21.91	9.57		10.	0	• • •							13	24.35	
23	P2		17.67	261.11	23.03	13.27			•								14	25.19	
24	P2		17.82	299.95	23.97	25.26		5.	0								15	25.97	
25	P2		18.93	338.79	24.92	28.13		_									16	26.71	
26	P2		19.50	366.52	25.78	29.55		0.		5 65	85	10.5 17	25 1/15	16.5	18.5 20	5	17	27.39	
27	P2		20.05	387.67	26.41	18.60		_	2.3 4.	5 0.5	0.5		2.5 14.5 c)	10.5	10.5 20		18	28.03	
28	P3		7.10	16.31	11.70	0.92		_				ABE (years	2)				19	28.63	
29	P3		8.25	27.30	13.21	0.14		•	P1 🗕 P2	• P3 •	P4 • P5	• P7 •	P6 ● P	28 • P9 -	■hdom_est		20	29.20	
30	P3		9.34	36.57	15.05	2.45			12	- 10		- 17							
21	53		10.27	A7 75	17.07	C 02													

- 1. Expressing the parameters as a function of site and/or tree/stand variables
- 2. Using growth functions formulated as difference equations ADA

- 1. Expressing the parameters as a function of site and/or tree/stand variables
- 2. Using growth functions formulated as difference equations ADA

Expressing the parameters as a function of site and/or tree/stand variables Lundqvist-Korf type

SU	JM	-	· :)	× 🗸	fx	=(\$M\$2+\$	M\$3*V\$10)*EXP(-\$N	/\$4*1 <mark>/\$U1</mark>	2 ^\$M\$ 5)													
	A		G	н	I.	J	К	L	М	Ν	0	Р	Q	R	S	т	U	V	W	Х	Y	Z	
1	Plot	💌 dg	g 💌 \	/ 💌	S 1	hdom_e 🔻	res^2 💌	•	•	•	•	•	•	•		r v	-	· ·	•	•			
2	P1		12.27	77.72	24.36	14.4	0.6	AO	-0.09344		hdom=(A0+A1*	S)*exp(-k*1/t^r	n)								
3	P1		13 92	117.06	24.36	16.0	3.0	A1	3,356889				- / (
4	P1		15.53	158.49	24.36	18.1	3.0	k	3.189638														
5	P1		16.93	196.73	24.36	20.3	0.1	m	0.431302														
6	P1		17.59	233.37	24.36	21.6	1.9		**		estimate de	site index (S) for each	plot and fit	the Lundo	vist function	with the A	parameter					
7	P1		18.31	260.81	24.36	23.2	0.0	SSres	195.714		expressed a	s a linear fu	unction of t	he site inde	x and plot	the estimate	d values tog	gether with					
8	P1		18.84	297.91	24.36	24.4	0.0				the original	data											
9	P1		19.22	324.82	24.36	25.7	1.5	S_P1	24.36	40.0										S	1		
10	P1		19.94	399.26	24.36	26.9	7.1			40.0								15	18	21	24	27	
11	P1		19.89	437.25	24.36	28.0	2.7	Plot	S	35.0							t	hdom_S15	hdom_S18	hdom_S21	hdom_S24	hdom_S27	
12	P1		21.06	487.86	24.36	29.2	14.3	P1	24.36	2 30.0							4	=(\$M\$2+\$M	10.44	12.18	13.93	15.67	
13	P1		21.35	513.30	24.36	30.1	13.7	P2	23.17	t (u			/				5	10.22	12.26	14.31	16.36	18.40	
14	P1		22.04	527.64	24.36	30.8	11.1	P3	17.45	-G 25.0							6	11.52	13.83	16.14	18.45	20.76	
15	P2		7.80	23.68	23.17	13.7	0.2	P4	15.24	20.0 t							7	12.67	15.21	17.75	20.29	22.82	
16	P2		9.37	39.68	23.17	15.2	0.1	P5	20.81	Le 15.0							8	13.69	16.43	19.17	21.91	24.65	
17	P2		11.13	61.41	23.17	17.2	0.1	P6	20.39	U U							9	14.60	17.52	20.45	23.37	26.29	
18	P2		13.05	90.83	23.17	19.3	2.0	P7	21.98	□ 10.0							10	15.42	18.51	21.60	24.69	27.78	
19	P2		14.05	115.38	23.17	20.5	1.8	P8	21.53	5.0							11	16.17	19.41	22.65	25.89	29.13	
20	P2		15.22	142.64	23.17	22.1	6.5	P9	22.04	0.0							12	16.86	20.24	23.62	27.00	30.38	
21	P2		16.06	177.70	23.17	23.2	3.5			0.0	0.0	5.0	10	.0	15.0	20.0	13	17.50	21.00	24.51	28.02	31.52	
22	P2		16.76	219.22	23.17	24.4	0.3						Age (v	(ears)			14	18.09	21.71	25.34	28.96	32.59	
23	P2		17.67	261.11	23.17	25.6	1.1							,			15	18.64	22.37	26.11	29.84	33.58	
24	P2		17.82	299.95	23.17	26.6	5.6				• P1	• P2		P3	e P4		16	19.15	22.99	26.83	30.67	34.50	
25	P2		18.93	338.79	23.17	27.7	6.6				• P5	P6	5	P7	P8		17	19.64	23.57	27.51	31.44	35.37	
26	P2		19.50	366.52	23.17	28.6	6.9				• P9	hd	lom \$15	- hdom \$1	3 <u> </u>	521 om	18	20.09	24.12	28.14	32.17	36.19	
27	P2		20.05	387.67	23.17	29.3	2.1				hdorr 6	24 <u> </u>	lom 627	10011_010	- 100		19	20.52	24.63	28.74	32.86	36.97	
28	P3		7.10	16.31	17.45	10.3	0.2				ndom_s	24 na	10111_527				20	20.93	25.12	29.31	33.51	37.70	
29	P3		8.25	27.30	17.45	11.5	1.9																
30	P3		9.34	36.57	17.45	12.9	0.3																
21	22		10.27	11/5	1//15	1/15	0.0																

- 1. Expressing the parameters as a function of site and/or tree/stand variables
- 2. Using growth functions formulated as difference equations ADA

2. Using growth functions formulated as difference equations – ADA • Lundqvist-Korf type

• Lundqvist-A: *with A as free parameter*

$$Y = A e^{-k\frac{1}{t^m}} \implies A = \frac{Y}{\frac{-k\frac{1}{t^m}}{e^{-k\frac{1}{t^m}}}} \longrightarrow$$

The height (hdom2) at a future age must be expressed as a function of the future age (t2), a current age (t1) and a current height (hdom1), that is: hdom2 = f (t2, hdom1, t1).

Using growth functions formulated as difference equations – ADA Lundqvist-Korf type

	А		В	С	D	E	F	G	н	I	J	К	
1	Plot	•	t 💌	hdom 💌	N	G 🔹	ddom 💌	dg 💌	V 💌	S 🔻	hdom_∈ ▼	res^2 💌	
2	P1		4.1	15.1	L 1125	13.30	17.90	12.27	77.72	24.36	14.4	0.6	
3	P1		4.8	17.8	3 1125	17.11	20.24	13.92	117.06	24.36	16.0	3.0	
4	P1		5.7	19.8	3 1114	21.10	22.65	15.53	158.49	24.36	18.1	3.0	
5	P1		6.8	20.6	5 1114	25.08	25.03	16.93	196.73	24.36	20.3	0.1	
6	P1		7.6	22.9	9 1114	27.06	25.96	17.59	233.37	24.36	21.6	1.9	
7	P1		8.7	23.2	1114	29.34	26.90	18.31	260.81	24.36	23.2	0.0	
8	P1		9.5	24.3	3 1114	31.04	27.81	18.84	297.91	24.36	24.4	0.0	
9	P1		10.5	24.4	1114	32.31	28.31	19.22	324.82	24.36	25.7	1.5	
10	P1		11.6	29.6	5 1114	34.77	29.42	19.94	399.26	24.36	26.9	7.1	
11	P1		12.6	29.7	7 1114	36.85	29.08	19.89	437.25	24.36	28.0	2.7	
12	P1		13.8	32.9	9 1102	38.42	31.87	21.06	487.86	24.36	29.2	14.3	
13	P1		14.8	33.8	3 1102	39.46	32.42	21.35	513.30	24.36	30.1	13.7	
14	P1		15.6	34.1	L 1080	41.18	33.15	22.04	527.64	24.36	30.8	11.1	
15	P2		4.1	13.2	1081	5.20	13.12	7.80	23.68	23.17	13.7	0.2	
16	P2		4.8	15.5	5 1081	7.45	15.17	9.37	39.68	23.17	15.2	0.1	
17	P2		5.7	16.8	3 1070	10.41	17.05	11.13	61.41	23.17	17.2	0.1	
18	P2		6.8	17.9) 1048	14.03	19.27	13.05	90.83	23.17	19.3	2.0	
19	P2		7.6	19.2	2 1048	16.26	20.62	14.05	115.38	23.17	20.5	1.8	
20	P2		8.7	19.6	5 1048	19.08	22.05	15.22	142.64	23.17	22.1	6.5	
21	P2		9.5	21.3	3 1048	21.24	23.19	16.06	177.70	23.17	23.2	3.5	
22	P2		10.5	25.0) 1037	22.87	24.15	16.76	219.22	23.17	24.4	0.3	
23	P2		11.6	26.7	7 1037	25.43	25.59	17.67	261.11	23.17	25.6	1.1	
24	P2		12.6	29.0) 1037	24.50	27.60	17.82	299.95	23.17	26.6	5.6	
25	P2		13.7	30.2	2 1037	29.20	27.89	18.93	338.79	23.17	27.7	6.6	
26	P2		14.8	31.2	2 1026	30.65	28.62	19.50	366.52	23.17	28.6	6.9	
27	P2		15.6	30.7	7 1026	32.40	29.20	20.05	387.67	23.17	29.3	2.1	
28	P3		4.1	10.7	7 1092	4.32	10.91	7.10	16.31	17.45	10.3	0.2	
29	P3		4.8	12.8	3 1092	5.84	12.59	8.25	27.30	17.45	11.5	1.9	
30	P3		5.7	13.5	5 1092	7.47	14.19	9.34	36.57	17.45	12.9	0.3	
31	P3		6.8	14.4	1092	9.21	15.81	10.37	47.75	17.45	14.5	0.0	
32	P3		7.6	15.6	5 1080	10.73	16.99	11.25	62.53	17.45	15.4	0.0	
33	P3		8.7	15.8	3 1080	12.25	18.03	12.01	73.34	17.45	16.6	0.7	
34	P3		9.5	16.7	7 1080	13.24	18.81	12.49	86.35	17.45	17.5	0.6	
35	P3		10.5	18.2	1069	14.18	19.29	12.99	99.66	17.45	18.4	0.0	
20	202	C	hoot1 2		d d d			(2) f) + 9	120 10 L N f) +	17 AF			

Lundqvist-A: *with A as free parameter*

	А	В	С	D	Е	F	G	Н	I	J	К	L
	Plot	t1	t2	hdom1	hdom2	N1	N2	G1	G2	S	hdom_est	res^2
	P1	4.1	4.8	15.1	17.8	1125	1125	13.30	17.11	24.36	16.5	1.
	P1	4.8	5.7	17.8	19.8	1125	1114	17.11	21.10	24.36	19.5	0.
	P1	5.7	6.8	19.8	20.6	1114	1114	21.10	25.08	24.36	21.8	1.
	P1	6.8	7.6	20.6	22.9	1114	1114	25.08	27.06	24.36	21.7	1.
	P1	7.6	8.7	22.9	23.2	1114	1114	27.06	29.34	24.36	24.5	1.
	P1	8.7	9.5	23.2	24.3	1114	1114	29.34	31.04	24.36	24.3	0.0
	P1	9.5	10.5	24.3	24.4	1114	1114	31.04	32.31	24.36	25.5	1.
	P1	10.5	11.6	24.4	29.6	1114	1114	32.31	34.77	24.36	25.6	16
C	P1	11.6	12.6	29.6	29.7	1114	1114	34.77	36.85	24.36	30.7	1.
1	P1	12.6	13.8	29.7	32.9	1114	1102	36.85	38.42	24.36	30.9	4.
2	P1	13.8	14.8	32.9	33.8	1102	1102	38.42	39.46	24.36	33.9	0.0
3	P1	14.8	15.6	33.8	34.1	1102	1080	39.46	41.18	24.36	34.6	0.3
4	P2	4.1	4.8	13.2	15.5	1081	1081	5.20	7.45	23.165	14.4	1.
5	P2	4.8	5.7	15.5	16.8	1081	1070	7.45	10.41	23.165	17.1	0.
6	P2	5.7	6.8	16.8	17.9	1070	1048	10.41	14.03	23.165	18.6	0.
7	P2	6.8	7.6	17.9	19.2	1048	1048	14.03	16.26	23.165	18.9	0.
В	P2	7.6	8.7	19.2	19.6	1048	1048	16.26	19.08	23.165	20.6	1.
9	P2	8.7	9.5	19.6	21.3	1048	1048	19.08	21.24	23.165	20.5	0.
C	P2	9.5	10.5	21.3	25.0	1048	1037	21.24	22.87	23.165	22.4	6.
1	P2	10.5	11.6	25.0	26.7	1037	1037	22.87	25.43	23.165	26.2	0.
2	P2	11.6	12.6	26.7	29.0	1037	1037	25.43	24.50	23.165	27.7	1.
3	P2	12.6	13.7	29.0	30.2	1037	1037	24.50	29.20	23.165	30.1	0.
4	P2	13.7	14.8	30.2	31.2	1037	1026	29.20	30.65	23.165	31.2	0.
5	P2	14.8	15.6	31.2	30.7	1026	1026	30.65	32.40	23.165	32.0	1.
6	P3	4.1	4.8	10.7	12.8	1092	1092	4.32	5.84	17.445	11.8	1.
7	Р3	4.8	5.7	12.8	13.5	1092	1092	5.84	7.47	17.445	14.3	0.
В	P3	5.7	6.8	13.5	14.4	1092	1092	7.47	9.21	17.445	15.0	0.4
9	P3	6.8	7.6	14.4	15.6	1092	1080	9.21	10.73	17.445	15.3	0.
C	P3	7.6	8.7	15.6	15.8	1080	1080	10.73	12.25	17.445	16.8	1.
1	Sh	eet1 a) b) c) d)	d) (2) e)	e) +S e) +	-S (2) f) +	5 + N + f) + 5	5 +N (2) a		47 445	100	

Using growth functions formulated as difference 2. equations – ADA Lundqvist-Korf type

Height

 $hdom_2 = A \left(\frac{hdom_1}{A}\right)^{\left(\frac{t_1}{t_2}\right)^{t_1}}$

Lundqvist-k: *with k as free parameter*

SUN	N	-	×	fx	=\$N\$2*	(D2/\$N\$2)	^(<mark>(</mark> B2/C2)^\$	N\$3)															~
	А	В		с	D	E	F	$O_{_{\rm G}}$	н	I	J	K	L	М	N	О Р	Q	R	S	Т	U	V	1
1	Plot	t1	t2	h	ndom1	hdom2	N1	N2 (61	G2	S	hdom_est	res^2										
2	P1		4.1	4.8	15.1	17.8	1125	1125	13.30	17.11	24.36)^\$N\$3)	1.7	A	309.1166	hdo	m2=/	<mark>4*(hd</mark>	om1	'A)^((t	:1/t2)^m)	
3	P1	1	1.8	5.7	17.8	19.8	1125	1114	17.11	21.10	24.36	19.5	0.1	m	0.189678								
4	P1	!	5.7	6.8	19.8	20.6	1114	1114	21.10	25.08	24.36	21.8	1.5		••••••	use the	solver f	function	from EX	EL to fit t	ne differ	rence eq	uatic
5	P1		5.8	7.6	20.6	22.9	1114	1114	25.08	27.06	24.36	21.7	1.6	SSres	72.22658	derived	from Lu	undqvist					
6	P1		7.6	8.7	22.9	23.2	1114	1114	27.06	29.34	24.36	24.5	1.6			functio	n with k	as the fi	ree parai	neter and	plot the	estima [.]	ted
7	P1	-	3.7	9.5	23.2	24.3	1114	1114	29.34	31.04	24.36	24.3	0.0										
8	P1		9.5	10.5	24.3	24.4	1114	1114	31.04	32.31	24.36	25.5	1.1			40.0							
9	P1	1).5	11.6	24.4	29.6	1114	1114	32.31	34.77	24.36	25.6	16.0			40.0							
10	P1	1	L.6	12.6	29.6	29.7	1114	1114	34.77	36.85	24.36	30.7	1.1			35.0							
11	P1	1	2.6	13.8	29.7	32.9	1114	1102	36.85	38.42	24.36	30.9	4.4			55.0					• •	1	
12	P1	1	8.8	14.8	32.9	33.8	1102	1102	38.42	39.46	24.36	33.9	0.0			30.0					•		
13	P1	1	1.8	15.6	33.8	34.1	1102	1080	39.46	41.18	24.36	34.6	0.2			50.0				•	•		
14	P2		1.1	4.8	13.2	15.5	1081	1081	5.20	7.45	23.165	14.4	1.1			Ê 25 0				_			
15	P2		1.8	5.7	15.5	16.8	1081	1070	7.45	10.41	23.165	17.1	0.1			25.0			•				_
16	P2	1	5.7	6.8	16.8	17.9	1070	1048	10.41	14.03	23.165	18.6	0.5			per hei					/		\sim
17	P2		5.8	7.6	17.9	19.2	1048	1048	14.03	16.26	23.165	18.9	0.1			ant							
18	P2		7.6	8.7	19.2	19.6	1048	1048	16.26	19.08	23.165	20.6	1.0			й Е 15 0					2		
19	P2		3.7	9.5	19.6	21.3	1048	1048	19.08	21.24	23.165	20.5	0.7			D 13.0		- X	×*•-				
20	P2		9.5	10.5	21.3	25.0	1048	1037	21.24	22.87	23.165	22.4	6.6			10.0							
21	P2	1).5	11.6	25.0	26.7	1037	1037	22.87	25.43	23.165	26.2	0.2			10.0		~					
22	P2	1	L.6	12.6	26.7	29.0	1037	1037	25.43	24.50	23.165	27.7	1.7			5.0							
23	P2	1	2.6	13.7	29.0	30.2	1037	1037	24.50	29.20	23.165	30.1	0.0			5.0							
24	P2	1	3.7	14.8	30.2	31.2	1037	1026	29.20	30.65	23.165	31.2	0.0										
25	P2	14	1.8	15.6	31.2	30.7	1026	1026	30.65	32.40	23.165	32.0	1.6			0.0	0.0	5.0		10.0	11	5.0	
26	P3		ł.1	4.8	10.7	12.8	1092	1092	4.32	5.84	17.445	11.8	1.1				0.0	5.0	4	ge (vears)	13		2
27	P3		1.8	5.7	12.8	13.5	1092	1092	5.84	7.47	17.445	14.3	0.6						<i>,</i>	ige (years)			
28	P3		5.7	6.8	13.5	14.4	1092	1092	7.47	9.21	17.445	15.0	0.4										
29	P3		5.8	7.6	14.4	15.6	1092	1080	9.21	10.73	17.445	15.3	0.1										
30	P3		7.6	8.7	15.6	15.8	1080	1080	10.73	12.25	17.445	16.8	1.1										,
4		Sheet1 a)	b) c)	d) d) (2) e)	e) +S e)	+S (2) f) +	S + N f) + S	+N (2) g			10.0											•

Using growth functions formulated as difference equations – ADA Lundqvist-Korf type

Lundqvist-k: with k as free parameter

 $hdom_2 = A \left(\frac{hdom_1}{A}\right)^{\left(\frac{t_1}{t_2}\right)^r}$

SUM	•	× ✓	fx	=\$N\$2*(<mark>Z\$</mark>	<mark>3/\$N\$</mark> 2)	^((Z\$4/	\$Y6)^\$N\$	3)														~
А	M	N	O F	P Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
1 Plot		-															hdom1,t1					
2 P1	Δ	309.1166	hd	lom2=A	*(hdd	om1/	'A)^((t	t1/t2))^m)				P1	P2	P3	P4	P5	P6	P7	P8	P9	
3 P1	m	0.189678										hdom1	15.1	13.2	10.7	8.2	16.4	16.9	16.9	16.6	17.1	
4 P1		-	use	the solver fu	nction fr	om EXC	EL to fit t	he differ	rence equ	ation		t1	4.1	4.1	4.1	4.1	6.0	6.0	6.0	6.0	6.0	
5 P1	SSree	72.22658	deri	ved from Lui	ndqvist							t2	hdom_P1	hdom_P2	hdom_P3	hdom_P4	hdom_P5	hdom_P6	hdom_P7	hdom_P8	hdom_P9	
6 P1			fund	tion with k a	as the fre	e parar	neter and	plot the	estimate	ed		4.0	=\$N\$2*(Z\$	13.04	10.60	8.06	13.00	13.38	13.41	13.15	13.54	
7 P1												5.0	16.94	14.87	12.19	9.38	14.83	15.24	15.27	14.99	15.41	
8 P1			4	0.0								6.0	18.70	16.48	13.61	10.56	16.44	16.88	16.92	16.61	17.06	
9 P1												7.0	20.27	17.93	14.89	11.64	17.89	18.36	18.39	18.07	18.55	
10 P1			3	5.0								8.0	21.70	19.26	16.06	12.64	19.21	19.70	19.74	19.40	19.90	
11 P1				5.0				• •				9.0	23.01	20.48	17.14	13.56	20.43	20.94	20.98	20.63	21.14	
12 P1			3	0.0				•				10.0	24.23	21.61	18.15	14.43	21.55	22.08	22.12	21.76	22.30	
13 P1			5	0.0			•					11.0	25.36	22.66	19.10	15.24	22.61	23.15	23.19	22.82	23.37	
14 P2			Ê,	5.0			-					12.0	26.42	23.65	19.99	16.01	23.60	24.16	24.20	23.82	24.38	
15 P2			sht	5.0		•						13.0	27.42	24.58	20.83	16.74	24.53	25.10	25.14	24.75	25.33	
16 P2			heig									14.0	28.36	25.47	21.63	17.44	25.41	26.00	26.04	25.64	26.23	
17 P2			ant	0.0								15.0	29.25	26.31	22.39	18.10	26.25	26.85	26.89	26.49	27.09	
18 P2			nina									16.0	30.10	27.11	23.12	18.74	27.05	27.66	27.70	27.29	27.90	
19 P2			Dor	5.0	7 ,							17.0	30.92	27.87	23.82	19.35	27.81	28.43	28.48	28.06	28.68	
20 P2												18.0	31.69	28.61	24.48	19.94	28.55	29.17	29.22	28.79	29.42	
21 P2			1	0.0	/							19.0	32.44	29.31	25.12	20.50	29.25	29.89	29.93	29.50	30.14	
22 P2												20.0	33.16	29.99	25.74	21.05	29.92	30.57	30.62	30.18	30.82	
23 P2				5.0																		
24 P2																						
25 P2				0.0	F.0		10.0	4.1		20.0												
26 P3				0.0	5.0		10.0	15	0.0	20.0												

Using growth functions formulated as difference equations – ADA Lundqvist-Korf type

Lundqvist-k: *with k as free parameter*

hdom₂ = A $\left(\frac{hdom_1}{\Delta}\right)^{\left(\frac{t_1}{t_2}\right)^{l}}$

SUN	1 -	· · · ×	✓ fx	=\$N\$2*	*(<mark>Z\$3/\$N\$</mark> 2)^	(<mark>(</mark> Z\$4 /\$ Y6))^\$N\$3)															~
	A	Ν	O P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	
1	Plot		4th measu	irement a	as initial value												hdom1,t1					
2	P1	309.1166	hdom2	2=A*(I	hdom1/A	A)^((t1	L/t2)′	` m)					P1	P2	P3	P4	P5	P6	P7	P8	P9	
3	P1	0.189678										hdom1	22.9	19.2	15.6	13.0	21.3	21.3	22.9	22.7	23.1	
4	P1		use the sol	ver functi	ion from EXCE	L to fit the	e differe	nce equa	ation deri	ved from		t1	7.6	7.6	7.6	7.6	10.8	10.8	10.8	10.8	10.8	
5	P1	72.22658	Lundqvist									t2	hdom_P1	hdom_P2	hdom_P3	hdom_P4	hdom_P5	hdom_P6	hdom_P7	hdom_P8	hdom_P9	
6	P1		function w	ith k as th	ne free parame	eter and p	lot the e	estimate	d values t	ogether		4	=\$N\$2*(Z\$	13.39	10.62	8.67	12.24	12.26	13.35	13.18	13.52	
7	P1		40.0									5	18.52	15.25	12.21	10.05	13.99	14.02	15.21	15.02	15.40	
8	P1		40.0									6	20.38	16.90	13.63	11.29	15.55	15.57	16.85	16.65	17.05	
9	P1		25.0									7	22.05	18.37	14.91	12.42	16.95	16.97	18.32	18.11	18.53	
10	P1		35.0					• •				8	23.55	19.72	16.09	13.46	18.22	18.25	19.67	19.44	19.88	
11	P1											9	24.93	20.95	17.17	14.43	19.40	19.43	20.90	20.67	21.13	
12	P1		30.0									10	26.20	22.10	18.18	15.33	20.49	20.52	22.04	21.80	22.28	
13	P1		Ê				<u> </u>					11	27.39	23.17	19.13	16.18	21.51	21.54	23.11	22.87	23.35	
14	P2) 25.0 te									12	28.49	24.17	20.02	16.98	22.47	22.50	24.12	23.86	24.36	
15	P2		leig									13	29.54	25.12	20.87	17.74	23.38	23.41	25.06	24.80	25.31	
16	P2		t 20.0				\sim					14	30.52	26.01	21.67	18.46	24.23	24.27	25.95	25.69	26.21	
17	P2		ina									15	31.45	26.86	22.43	19.15	25.05	25.08	26.80	26.53	27.07	
18	P2		L 15.0		1//							16	32.34	27.67	23.15	19.81	25.83	25.86	27.61	27.34	27.88	
19	P2					·*						17	33.19	28.45	23.85	20.44	26.57	26.60	28.39	28.11	28.66	
20	P2		10.0									18	33.99	29.19	24.52	21.05	27.28	27.32	29.13	28.84	29.40	
21	P2				•							19	34.77	29.90	25.16	21.63	27.97	28.00	29.84	29.55	30.12	
22	P2		5.0									20	35.51	30.58	25.78	22.20	28.63	28.66	30.52	30.23	30.80	
23	P2																					
24	P2		0.0																			
25	P2		0.0	C	5.0	10.0)	15.	0	20.0												
26	Р3					Age (ye	ears)															

- 1. Expressing the parameters as a function of site and/or tree/stand variables
- 2. Using growth functions formulated as difference equations ADA
- 3. Combining parameters and ADA

3. Combining parameters and ADA

G
$$\underline{l}_{2} = A \left(\frac{\mathbf{G}}{A} \right)^{\left(\frac{\mathbf{t}_{1}}{\mathbf{t}_{2}}\right)^{n}}$$
; $A = A_{0} + A_{1} \mathbf{S}$

SUM	• : ×	✓ fx	=(\$N\$2	+ <mark>\$N\$</mark> 3*J2)*	(H2 <mark>/(</mark> \$N\$2+	\$N\$3*J2))^	•((B2/ <mark>C2</mark>)^\$N	1\$4)												~
Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N	O P	Q	R	S	Т		
1 Plot	t1	t2	hdom1	hdom2	N1	N2	G1	G2	S	G_est	res^2									
2 P1	4.1	4.8	15.1	17.8	1125	1125	13.30	17.11	24.36	=(\$N\$2+\$N	0.67	A0	-22.346	G2=(/	40+As* <mark>S</mark>)*(G1/	<mark>(A0+A</mark> 9	s*S))^((t1/	
3 P1	4.8	5.7	17.8	19.8	1125	1114	17.11	21.10	24.36	20.84	0.07	AS	3.610724							
4 P1	5.7	6.8	19.8	20.6	1114	1114	21.10	25.08	24.36	25.15	0.00	m	0.898288							
5 P1	6.8	7.6	20.6	22.9	1114	1114	25.08	27.06	24.36	27.33	0.07									
6 P1	7.6	8.7	22.9	23.2	1114	1114	27.06	29.34	24.36	29.91	0.32	SSres	47.66513							
7 P1	8.7	9.5	23.2	24.3	1114	1114	29.34	31.04	24.36	31.27	0.05			50.0	0					
8 P1	9.5	10.5	24.3	24.4	1114	1114	31.04	32.31	24.36	33.10	0.63									
9 P1	10.5	11.6	24.4	29.6	1114	1114	32.31	34.77	24.36	34.30	0.22			45.0	0				\sim	
10 P1	11.6	12.6	29.6	29.7	1114	1114	34.77	36.85	24.36	36.39	0.21			40.0	0				•	
11 P1	12.6	13.8	29.7	32.9	1114	1102	36.85	38.42	24.36	38.51	0.01			40.0						
12 P1	13.8	14.8	32.9	33.8	1102	1102	38.42	39.46	24.36	39.70	0.06			35.0	0					
13 P1	14.8	15.6	33.8	34.1	1102	1080	39.46	41.18	24.36	40.44	0.55			<u> </u>						
14 P2	4.1	4.8	13.2	15.5	1081	1081	5.20	7.45	23.165	7.11	0.11			0.08 ght	0					
15 P2	4.8	5.7	15.5	16.8	1081	1070	7.45	10.41	23.165	10.15	0.07			25.0	0					
16 P2	5.7	6.8	16.8	17.9	1070	1048	10.41	14.03	23.165	13.70	0.11			lant						
17 P2	6.8	7.6	17.9	19.2	1048	1048	14.03	16.26	23.165	16.00	0.07			20.0	0	111			-	
18 P2	7.6	8.7	19.2	19.6	1048	1048	16.26	19.08	23.165	18.89	0.04			° d		• •/•		• • • • • • • • • • • • • • • • • • • •		
19 P2	8.7	9.5	19.6	21.3	1048	1048	19.08	21.24	23.165	20.93	0.10			15.0				-		
20 P2	9.5	10.5	21.3	25.0	1048	1037	21.24	22.87	23.165	23.27	0.16			10.0	0					
21 P2	10.5	11.6	25.0	26.7	1037	1037	22.87	25.43	23.165	24.86	0.33									
22 P2	11.6	12.6	26.7	29.0	1037	1037	25.43	24.50	23.165	27.09	6.68			5.0	0					
23 P2	12.6	13.7	29.0	30.2	1037	1037	24.50	29.20	23.165	26.16	9.24			0.0	0					
24 P2	13.7	14.8	30.2	31.2	1037	1026	29.20	30.65	23.165	30.67	0.00			0.0	0.0	5.0	10.0	1	15.0	
25 P2	14.8	15.6	31.2	30.7	1026	1026	30.65	32.40	23.165	31.69	0.50							Age (vears)		
26 P3	4.1	4.8	10.7	12.8	1092	1092	4.32	5.84	17.445	5.74	0.01							5 (7 -7		
27 P3	4.8	5.7	12.8	13.5	1092	1092	5.84	7.47	17.445	7.76	0.08									
28 P3	5.7	6.8	13.5	14.4	1092	1092	7.47	9.21	17.445	9.71	0.25									
29 P3	6.8	7.6	14.4	15.6	1092	1080	9.21	10.73	17.445	10.52	0.05									

3. Combining parameters and ADA

$$\mathbf{G} \ \underline{\mathbf{2}} = \mathbf{A} \ \left(\frac{\mathbf{G} \ \mathbf{1}}{\mathbf{A}} \right)^{\left(\frac{\mathbf{t}_1}{\mathbf{t}_2} \right)^n} \quad ; \ \mathbf{A} = \mathbf{A}_0 + \mathbf{A}_1 \ \mathbf{S}$$

Z7	•	× <	fx =	=(\$N\$2+	\$N\$3*Z	(Z\$4)*	4/ <mark>(</mark> \$N\$2·	+\$N\$3*Z	\$3))^((Z\$	5 /\$Y7)^\$	\$N\$4)													Y
А	M	N	O P		Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	
1 Plot																	1	G1,t1	1					
2 54		22.246	C 2-	-(^ 0.	۲۸c*	c)*/	1//A	Οτ Λ ς,	κ ς))ν((+1 /+*	$2\lambda m$			54			-	85	D.C.	67				
2 P1	AU	-22.346	92-	-(AU	TAS	3) (0)T/(H	UTAS	J]]*(([]/[/	د) ۱۱۱			P1	PZ	P3	P4	P5	P6	P7	48	P9		
3 P1	AS	3.610724											S	24.36	23.17	17.45	15.24	20.81	20.39	21.98	21.53	22.04		
4 P1	m	0.898288											G1	17.1	7.5	5.8	3.9	11.8	12.6	15.2	16.7	20.1		
5 P1													t1	4.1	4.1	4.1	4.1	6.0	6.0	6.0	6.0	6.0		
6 P1	SSres	47.66513											t2	Gest_P1	Gest_P2	Gest_P3	Gest_P4	Gest_P5	Gest_P6	Gest_P7	Gest_P8	Gest_P9	L	
7 P1				50									4	=(\$N\$2+\$	7.2	5.6	3.8	6.1	6.8	8.5	9.8	12.7		
8 P1													5	21.4	10.6	8.1	5.6	9.0	9.8	12.0	13.4	16.7		
9 P1				45									6	25.3	13.8	10.3	7.3	11.8	12.6	15.2	16.7	20.1		
10 P1				40									7	28.7	16.7	12.3	8.8	14.3	15.1	18.1	19.5	23.0		
11 P1				40					•••				8	31.5	19.4	14.1	10.3	16.5	17.3	20.6	21.9	25.5		
12 P1				35									9	33.9	21.7	15.7	11.5	18.6	19.3	22.8	24.0	27.7		
13 P1			(m)										10	36.0	23.9	17.1	12.7	20.4	21.1	24.7	25.9	29.5		
14 P2			ght	30									11	37.8	25.8	18.3	13.7	22.1	22.7	26.5	27.6	31.2		
15 P2			hei	25			^ /						12	39.4	27.5	19.5	14.6	23.6	24.1	28.1	29.1	32.6		
16 P2			ant	23		1							13	40.8	29.1	20.5	15.4	24.9	25.4	29.5	30.4	33.9		
17 P2			nin	20		- 1 - 1				•			14	42.1	30.5	21.4	16.2	26.2	26.6	30.8	31.6	35.1		
18 P2			Dol			<u>ا ا ا</u>	[]						15	43.2	31.8	22.2	16.9	27.3	27.7	31.9	32.7	36.2		
19 P2				15						_			16	44.2	33.0	23.0	17.5	28.3	28.6	33.0	33.7	37.1		
20 P2				10				-					17	45.2	34.1	23.7	18.1	29.3	29.5	34.0	34.6	38.0		
21 P2				10									18	46.0	35.2	24.4	18.7	30.2	30.4	34.8	35.4	38.8		
22 P2				5									19	46.8	36.1	25.0	19.2	31.0	31.1	35.7	36.2	39.5		
23 P2													20	47.5	37.0	25.5	19.6	31.7	31.8	36.4	36.9	40.1		
24 P2				0		E O		10.0	1		20.0													
25 P2				0.0		5.0	Α	TO'O	1	13.0	20.0													
26 P3							A	ge (years)																
27 P3																								
28 P3																								