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Analysis of Growth Equations 

Bores ZEIDE 

ABSTRACT. Growth of plants results from two opposing factors: the intrinsic tendency toward un- 
limited increase (biotic potential) and restraints imposed by environmental resistance and 
ag/ng. The expansion tendency prevails in the beginning of a tree's life, while growth 
decline becomes prominent toward the end. The existing growth equations can be trans- 
formed (by differentiation, decomposition into the division components, and taking log- 
arithms) so that the components that correspond to these two factors are exposed. This 
transformation reveals two basic forms intrinsic in most of the analyzed equations. Their 
common feature is that growth expansion is proportional to current tree size. Growth 
decline of individual trees appears to be more variable and can be rendered with equal 
accuracy by a variety of expressions. This may reflect that a greater number of factors 
hinder growth: scarcity of resources, competition, reproduction, diseases, herbivory, 
disturbances, etc. Consequently, the growth path is inherently imprecise and can be 
viewed as a wide valley rather than a single line. This analysis laid groundwork for the 
classification of known equations and made possible the discovery of a promising new 
equation form. FOR. SCL 39(3):594-616. 
ADDITIONAL KEY WORDS. Basic equation forms, classification of growth equations, com- 
ponents of growth, decomposition of equations, exponential increase. 

ROWTH EQUATIONS DESCRIBE THE CHANGE IN SIZE OF AN ORGANISM or a 
population with age. Biological growth, the outcome of numerous and 
enormously complex processes, appears remarkably simple, particularly 

for trees. As we combine more and more similar trees, the increase in their size 
follows an ever smoother sigmoid curve. In the beginning the curve is concave up, 
while in later life it becomes convex. Although growth responds to environmental 
trends and fluctuations, this long-term pattern remains surprisingly stable. 

Many equations have been proposed to describe plant growth. Kiviste (1988) 
described 75 of them in a comprehensive two-volume monograph. Although only 
a few have proven useful, probably no biologist believes that one equation would 
suit all growth processes. This seems to be a belief peculiar to biology. A physicist 
would not use more than one equation to describe, for instance, the fall of a body 
in a vacuum. "If physics has its laws, biology has its variety" (Dover 1988, p. 623). 

The variety of existing growth equations brings up a number of questions. Are 
there any relationships among the equations? Is it possible to reduce them to a 
small number of basic forms? How can the adequacy or inadequacy of an equation 
be interpreted so as to contribute to our understanding of nature? 

Besides satisfying our intellectual curiosity, answering these questions may 
solve many practical problems. For example, an optimal rotation age extracted 
from a more accurate picture of forest stand growth could differ by 10 or more 
years from the age computed using traditional methods (such as yield tables). This 
means that just by doing more accurate calculations, we can utilize forest re- 
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sources more efficiently. Another important area of application is the detection of 
changes in the environment, be it negative, such as stress, or positive, such as 
fertilization or thinning. These changes can be revealed by comparing the actual 
growth in an altered environment with the growth predicted by reliable equations 
from the data of growth prior to the change. 

Although these problems are not new, few would claim that they are solved. 
Therefore, given their theoretical and practical implications, I believe that further 
analysis of the existing equations could contribute to a better understanding of 
tree growth. 

GROWTH EQUATIONS AND 
COMPUTER MODELING 

Not everyone shares the belief that growth equations merit further consideration. 
Some view the curve-fitting approach as an ossified remnant of the precomputer 
past and doubt whether it is worthwhile to study these old-fashioned forms of 
modeling. Now we have much more comprehensive and flexible methods of com- 
puter modeling that utilize such methods as dynamic programming, difference- 
based equations, and neural networks. There are also conceptual objections to 
using growth equations. Huston et al. (1988) believe that growth equations and all 
models that deal with a population as a whole ("aggregated large-scale models") 
are based on unrealistic ecological assumptions, gloss over ecological mechanisms 
and individual variability, and ignore reality (in particular, feedback interactions). 
These authors view it as unacceptable to "combine many individuals and assume 
that they can be described by a single variable, such as population size. This 
procedure violates the biological principle that each individual is different, with 
behavior and physiology that result from a unique combination of genetic and 
environmental influences" (Huston eta. 1988, p. 682). According to these au- 
thors, the future of ecology belongs to the individual-based modeling approach, 
which will soon produce a mechanistic understanding of ecological systems. 

This belief is not new. It has been known in philosophy for centuries under the 
name of nominalism. It is based on the exaggeration of differences among indi- 
viduals of the same species or population and is equivalent to saying that they have 
nothing in common, apart from the species name. Nominalism is logically incon- 
sistent: were there nothing common to all individuals, they could not be consid- 
ered as members of the same species and combined under one name. Following 
the same line of reasoning a nominalist should do away with the concepts of not 
only population and species but of organism as well. An organism can be viewed 
as a population of individual cells that are different in behavior, physiology, loca- 
tion, and many other characteristics. Cells in their turn include many different 
components. 

One of the reasons offered by Huston et al. (1988) in support of individual-based 
models is that, along with detailed information on individual interactions, they are 
capable of producing a general and integral picture of a system. Following this 
suggestion, we could determine, for example, temperature of an organism by 
measuring the speed and mass of each constituent particle (one mole contains 
6.02 ß 10 2a particles). It is likely, however, that even in the remote future many 
would prefer to use a thermometer which describes the integral behavior of many 
individual particles with a single variable, temperature. 
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Experience shows that along with differences, individuals share many common 
features and that it makes sense to use an average to characterize a population as 
a whole. Both unicellular and multicellular organisms often exhibit aggregate be- 
havior, which is considered one of the major characteristics of complex adaptive 
systems (Holland 1992). Problems with the individual approach are well-known in 
forest ecology in which individual-based models have been applied since 1950. 
Substantial research has revealed that, while requiring much more effort, these 
models provide practically no improvement in the accuracy of growth predictions 
as compared with an aggregate approach (Alemdag 1978, Larocque and Marshall 
1988). Interactions among individual trees are often so complicated that they 
preclude reliable predictions. 

Even if it were possible, not all our problems could be solved by tracing the 
effects of numerous agents, detecting assorted disturbances, and fleeting day-to- 
day perturbations in growth. There is a need to describe lasting features of 
growth and to express long-term trends, such as aging. In studies of overall 
trends, a certain degree of rigidity is an asset rather than a liability. For this 
reason growth equations have not lost their significance even with the advent of 
computer modeling, although they are no longer viewed as biological versions of 
Newton's laws. Actually, growth equations are used more than ever before be- 
cause, in addition to their independent role, the equations serve as building blocks 
for computer models. Of course, these two approaches do not exclude, but 
complement each other. Each is tuned to its own frequency: detailed computer 
models are designed to reflect shorter wavelengths of daily changes, while growth 
equations consider the entire lifespan as one wave. 

Precisely because of their wide scope, growth equations, along with a descrip- 
tion of the change, afford a glimpse at the constancy resulting from the invariance 
of the genetic mechanism responsible for growth. The form of an equation is a 
means to achieve stability of parameters. The more accurate an equation is, the 
less variable are its parameters. A growth equation brings together two currents, 
age and size, to make explicit the hidden invariance that governs their relation- 
ship. 

THE PRIMARY COMPONENTS OF GROWTH 

Growth results from the interaction of two opposing forces. The positive com- 
ponent, most vividly manifested in expansion of an organism, represents the 
innate tendency toward exponential multiplication. This component is assodated 
with biotic potential, photosynthetic activity, absorption of nutrients, constructive 
metabolism, anabolism, etc. The opposing component represents the restraints 
imposed by external (competition, limited resources, respiration, and stress) and 
internal (self-regulatory mechanisms, and aging) factors. Those factors that ad- 
versely affect growth have been referred to as environmental resistance, destruc- 
tive metabolism, catabolism, respiration, and so on. 

Appropriately, hws or postulates of growth are often formulated in pairs that 
reflect both the multiplicative and limiting components. Hutchinson's (1978) two 
postulates of population growth are: 

1. Every living organism has arisen from at least one parent in like kind (the postulate of 
parenthood); 
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2. In a finite space there is an upper limit to the number of finite beings that can occupy 
or utilize the space under consideration (the postulate of an upper limit). 

In 1941 Medawar formulated five laws of biological growth. When he returned 
to the same problem 4 decades later, he condensed these five into two basic laws 
(Medawar and Medawar 1983). They are similar to Hutchinson's postulates: 

1. Fundamentally, growth is multiplicative. That which results from biological growth is 
itself, typically, capable of growing; 

2. The relative growth rate is always decreasing (Minot's law). 

The conflict between infinity implicit in multiplicative reproduction and the limit 
imposed by finite space is the chief source of all change in living beings, including 
growth. This conflict is the driving force of evolution and is crucial to understand- 
ing virtually all biological and social phenomena. Growth equations provide a 
succinct expression of this conflict and its resolution. 

ANALYZED EQUATIONS 

This study analyzes existing growth equations, including popular equations such 
as the Chapman-Richards, the Gompertz, and the logistic models, as well as 
several less known, yet promising models (Table 1). The structure of any other 
equation can be analyzed in a similar manner. Polynominal-based equations were 
not considered because they are devoid of any biological interpretation. 

Let's briefly review the equations starting with the oldest, the Hossfeld IV 
equation proposed for the description of tree growth as early as 1822 (Peschel 
1938). Despite its age, this equation performs remarkably well. According to 
Kiviste (1988), it is the third most accurate of 31 three-parameter equations when 
the three main stand variables (total tree height, stem diameter, and volume) are 
considered together. Kiviste found it to be the best equation for volume growth. 
The Hossfeld IV equation is almost as accurate as the Chapman-Richard equation, 
which dominates growth studies in this country. The most accurate equations with 
three (Levakovic I and III equations) and more (Yoshida I equation) parameters 
are modifications of the Hossfeld equation. 

The Gompertz (1825) equation was designed to describe age distribution in 
human populations. A century later it was applied as a growth model (Winsor 
1932). The equation presents relative growth rate (the ratio of increment of size 
to size itself, y'/y) as an elementary exponential function of age. Therefore, this 
equation was called (Laird et al. 1965), the equation of exponential decay. Another 
characteristics feature of the Gompertz equation is that the position of the inflec- 
tion point is controlled by only one parameter, final (asymptotic) size, a. This point 
occurs when current size is equal to a/e, that is, at about one-third (1/e = 0.3679) 
of the final size. Nokoe (1978, p. 41) applied the Gompertz equation to three tree 
species and concluded that this equation "demonstrated sufficient flexibility to 
warrant its use." The Gompertz equation was found by Causton and Venus (1981) 
and many other researchers (Laird et al. 1965, Zweifel and Lasker 1976, Zullinger 
et al. 1984) to be more appropriate in biological work than any other. Besides 
these empirical results, it was deduced theoretically by Medawar (1940) that 
growth should follow the Gompertz model. 
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The logistic equation (Verhulst 1838) is probably the most famous equation in 
ecology. An outstanding exposition of its history is given by Hutchinson (1978). 
The forces that counteract the exponential increase are assumed to be propor- 
tional to the square of size. No reason for this choice of the exponent is provided 
other than that 2 is the next integer after 1. It is doubtful that the principle of 
parsimony, invoked and discussed in depth on this occasion by Hutchinson (1978), 
is suffident to preclude the application of numbers other than integers. The 
inflection point of the logistic equation corresponds to one-half of final size. The 
relative growth rate of the equation declines linearly with size. Several other 
assumptions inherent in the logistic equation appear to be questionable (Krebs 
1985, p. 220). Despite its untenable assumptions and lack of accuracy--it was 
found (Zeide 1989) to be the least accurate among sigmoid equations for the 
description of diameter growth of trees--the equation is still used in research, 
mostly by zoologists (Ricklefs 1979, Murtaugh 1988). 

The monomolecular equation, the simplest among the analyzed equations, is 
not inflected and therefore presents a rather unrealistic picture of growth. This 
equation is known as the law of diminishing returns in agriculture and economics 
and as the law of mass action in chemistry. Ricker (1979) attributes the first 
biological application of a special form of this equation to Patter (1920), while 
Richards (1969) refers to it as the Mitscherlich formula, after the German agron- 
omist who used it at the beginning of this century. I have found an even earlier use 
of this equation in a study of tree growth by Weber (1891). 

The appeal of the Bertalanffy (1957) equation lies in the intended rigor of its 
theoretical foundation. Bertalanffy (1957, p. 223) claims to have succeeded in 
developing "a general theory of growth which establishes rational quantitative 
laws of growth and indicates the physiological mechanisms upon which growth is 
based." This theory considers animal growth to be the result of the combined 
action of two opposing processes, anabolism and catabolism. Bertalanffy (1957) 
derived his equation from the assumptions, which he attributed to Patter (1920), 
that the rate of anabolism is proportional to the surface area of an organism (or to 
is mass raised to the power of g/a), while catabolism is proportional to the organ- 
ism's mass. These assumptions define what he calls "the first metabolic type." 
Bertalanffy also describes two other types of metabolism and their corresponding 
growth types. Ricker (1979, p. 707) questioned these assumptions considering 
them to be "fanciful speculations." Nevertheless, to honor the presumably original 
author of these speculations, Ricker refers to the Bertalanffy equation as the 
Patter Growth Curve No. 2. 

The origin of this concept, however, goes deeper than Bertalanffy and Ricker 
believe. It might be one of few viable ideas from the prodigious legacy of Spencer. 
He was concerned with the question, "Why has individual growth a limit?" and 
proposed several answers that resemble structural and mechanical considerations 
put forth by Galileo in his "Dialogues concerning two new sciences." In particular, 
Spencer (1898, p. 151) wrote, "In similar bodies, the areas vary as the squares 
of the dimensions, and the masses vary as the cubes; it follows that the absorbing 
surface has become four times as great, while the weight to be moved by the 
matter absorbed has become eight times as great." As does Bertalanffy, Spencer 
restricts this reasoning to animals, believing that tree growth is unlimited. 

The trademark of the Chapman-Richards equation is its flexibility. Although the 
equation was reported by Mitscherlich (1919), it became known to American 
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researchers from the article fittingly titled "A flexible growth curve for empirical 
use" by Richards (1959). This equation is valued for its accuracy and is used more 
than any other function in studies of tree and stand growth. The Chapman- 
Richards equation was derived from the Bertalanffy equation "when limitations 
imposed by its theoretical background are discarded" (Richards 1959, p. 291). 
The difference between the equations is that the parameter c, restricted to a value 
of three in Bertalanffy's case, can assume any value in the Chapman-Richards 
equation. This modification dispensed with the biological interpretation proposed 
by Bertalanffy. In his review of this paper, Rolfe A. Leary remarked that com- 
pared with Bertalanffy's equation, the one by Chapman-Richards is "a giant leap 
backwards from explanation to description." 

It is not clear whether flexibility is a desirable quality of growth models. When 
the number of parameters is equal to the number of data points, any equation will 
pass through each point, thus exhibiting the ultimate flexibility. I doubt that we are 
looking for this sort of flexibility. Our understanding of growth would benefit little 
from an equation that passively follows all data points. We need an equation that 
sets its own, and hopefully correct, path through all data points, an equation that 
exposes a growth trend in the maze of data and separates the essential from the 
accidental. The law of physics that states that the distance covered by a falling 
body in a vacuum is proportional to the square of the time of fall rigidly adheres 
to the exponent of 2. This "rigidity" is the essence of the law. An equation with 
a variable exponent would certainly fit empirical data better than this law. Yet, this 
flexible equation would be a meaningless formula rather than a cornerstone of 
science. 

Flexibility depends on the number of parameters in an equation, and there is no 
reason to expect that the Chapman-Richards equation would be more flexible than 
any other equation with three parameters. Still, this equation is set apart from 
others by its computational properties. Ratkowsky (1983, pp. 83-84) showed that 
this equation is "the only model that has an unacceptable intrinsic nonlinearity as 
the solution locus departs significantly from a hyperplane." This property leads to 
so much instability in parameter estimates that it makes them useless. In his 
personal communication (of March 23, 1992), Richard Woolions writes that pa- 
rmeter estimates of the Chapman-Richards equation are worthless, especially for 
large datasets, because convergence is achieved by "means of a fait accompli." 

The Levakovic I and III (1935) equations are modifications of the Hossfeld 
equation. They were published over half a century ago in Serbian and are little 
known in other countries. The Levakovic III equation may look strange because 
it is unclear why age should be squared. Although squaring does not contribute to 
the accuracy of the logistic equation, it works well for the Levakovic equation: 
Kiviste (1988) found it to be the most accurate among all three-parameter equa- 
tions that he investigated. The Levakovic I equation is one of the best four- 
parameter equations. 

Korfs equation was proposed in 1939 (Kiviste 1988) in Czechoslovakia and has 
been rediscovered several times, in particular by Lundqvist (1957). He, as well as 
subsequent researchers (Stage 1963, Brewer et al. 1985), applied it to model 
height growth of forest stands with moderate success. Zarnovican (1979), who 
also used Korfs equation in a study of height growth, was better versed in the 
literature and cited three papers by Korf, including his original paper of 1939. This 
equation is especially suitable for the description of diameter growth of a fixed 
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number of trees. Zeide (1972, 1975) and Zeide et al. (1972) found that the relative 
growth rate of diameter is a power, rather than an exponential function of age and 
by integration arrived at the Korf equation. Using average growth of thousands of 
stem analyses of different species from different locations, it was shown that the 
Korf equation is substantially more accurate than other growth equations (Zeide 
1989). Its standard error of estimate was 2.1, 2.3, 3.4, and 4.8 times less than the 
errors of the Chapman-Richards, Weibull, Gompertz, and logistic equations, re- 
spectively. A special form of this equation with c = i was independently proposed 
by Terazaki in 1915 (cited in Peschel 1938), Johnson (1935), and Schumacher 
(1939). 

Originally intended to describe a probab•ity distribution, the Weibull equation 
has proven to be a good empirical model of tree growth. Yang et al. (1978) 
reported that this equation is more accurate than the Gompertz or Bertalanffy 
equations. No comparison with the Chapman-Richards equation was given in their 
work. When Dolph (1991) compared these equations in the process of construc- 
tion of site index curves for red fir, he found that the Weibull equation was more 
accurate than the Chapman-Richards equation. Unlike all other functions, the 
Weibull equation presents the increase of growth as a power function of age. It 
occupies the fourth place in Kiviste's (1988) ranking of three-parameter equations 
and is particularly good for modeling diameter growth of stands. Zeide (1989) 
found that Weibull's equation is less accurate than the Koff and Chapman-Richards 
equations. 

The Yoshida I equation, proposed in 1928 (Peschel 1938), is another modifi- 
cation of the Hossfeld equation. Kiviste (1988) found that this equation is the most 
accurate among 21 four-parameter equations. In addition to those of the Hossfeld 
equation, the Yoshida I equation contains an additive term (parameter c in Table 
1) that represents initial tree size. Because this size is negligible, so is the term. 

The Sloboda (1971) equation differs from the Gompertz equation by an addi- 
tional parameter d. The presence of this parameter probably is responsible for the 
greater accuracy of the Sloboda equation. According to Kiviste (1988), it is the 
second best four-parameter equation. 

DECOMPOSITION OF EQUATIONS 

In most cases, growth equations are used in an integral form which describes the 
accumulated size of an organism. The form of the equations affects the perception 
of differences or similarities among them. Using the integral form, Kiviste (1988) 
divided growth equations into seven classes. He placed the logistic and Korf 
equations in the same class of exponential functions. The Bertalanffy, Weibull, and 
Chapman-Richards equations were classified as Mitscherlich functions. The Korf 
and Levakovic equations were located in two different classes. 

It is easier to understand the process of growth and the structure of growth 
equations when we consider them in the differential form with the current incre- 
ment, y', as the dependent variable and tree age, t, as the independent variable 
(Table 1). In this form growth equations can be decomposed into two components 
that represent growth expansion and decline. The expansion component de- 
scribes the multiplication tendency and is responsible for an increase in the in- 
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crement with age or keeping the increment constant. The component of growth 
decline causes the increment to decrease. These opposite effects on growth allow 
one to detect the components and decompose an equation. 

The component that expresses growth decline is not just an optional "modifier" 
of exponential increase, as is sometimes suggested. This component is one of the 
two irreplaceable parts of any model of biological growth. Equations containing 
only one component, such as Malthus' (1798) law of population increase (geomet- 
ric progression), cannot be considered complete growth equations. This law (pro- 
posed with a balancing conjecture about the arithmetic progression of the means 
of subsistence) served as a progenitor and catalyst of growth equations because 
many sdentists, including its author, felt its incompleteness. For this reason 
Verhulst (1838) augmented the law (in its differential form) with a subtractor that 
offsets the multiplicative component. The same opposition is achieved in the 
Gompertz equation by division. 

These two example (Verhulst and Gompertz equations) are typical of all growth 
equations. Components with positive parameters are connected by subtraction or 
division but not by addition or multiplication. 

SUBTRACTION 

All the investigated equations can be presented in the differential form as a 
difference of two components. For example, using the integral form of the mono- 
molecular equation (Table 1), we can present the term ace-ot as a - y (a, b, c, 
and d throughout this paper are constant parameters). Substituting this result in 
the differential form of the same equation, one would obtain: 

y' = ab - by (1) 

The expansion component in this equation is a positive constant (ab), while the 
decline component (by) is proportional to the size, y. In this paper size refers to 
nondiminishing tree or stand variables, such as height, diameter, or volume. 

As another example of decomposition, the integral form of the Weibull equation 
can be written as: 

exp(-bD = i - y/a (2) 

Substitution in the differential form results in 

y' = abct c- • - bcyt •- • (3) 

Because the constants are positive, the first term causes increase of the incre- 
ment (y'), while the second term contributes to its decrease. 

As a form of connection of components, subtraction has received the most 
attention in previous accounts of equation structure. Our intimate familiarity with 
this simple operation (after all, we balance our checkbooks by subtraction, not by 
division or exponentiation) probably plays some role in this preference. Berta- 
lanffy (1957, p. 223) considered growth as the result of "a counteraction of 
synthesis and destruction, of the anabolism and catabolism of the building mate- 
rials of the body." He viewed this counteraction exclusively in terms of subtrac- 
tion. In a series of publications, Savageau (1979, 1980) and his students presented 
the most thorough and consistent development of this approach. He produced a 
generalized growth equation that "is not simply another empirically derived for- 
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mula but is based upon the nature of the elemental mechanisms in synergistic 
systems" (Savageau 1979, p. 5416). This equation is constructed as the difference 
of two terms. In order to present the Gompertz equation as a particular case of 
his generalized equation, Savageau admits the existence of two (and more) dom- 
inant processes of growth within the same system. The technical and linguistic 
difficulties (dominant, after all, means the most influential, prevailing, and, there- 
fore, unique) with this approach can be avoided by decomposing the Gompertz 
equation into division components. 

DIVISION 

Notwithstanding the familiarity and simplicity of subtraction, it is not the only 
possibility for decomposition of growth equations. Division, which is the subtrac- 
tion of logarithms, is an equally valid operation. Many, if not the majority of all 
biological phenomena are multiplicative in nature rather than additive. The com- 
ponents of the Gompertz equation can be presented equally well as dividend (y) 
and divisor (e½5. For the Gompertz equation and many others, components of the 
division method of decomposition are simpler than those of subtraction (Table 1). 
For example, each of the division components of the Korf equation (obtained by 
substituting the right side of the integral form into the differential form) contain 
only one of the equation's variables, while the subtraction components contain 
both. 

Decomposition of some equations depends not only on their form, but also on 
the values of parameters. In the $1oboda equation, for example, when the param- 
eter d > 0, the term t a- • increases the increment in the course of time and, 
therefore, is a part of the expansion component. When 0 < d < i the same term 
plays the opposite role and becomes a part of the decline component. 

Decomposition by division allows one to further simplify equations by taking 
logarithms. In many cases the equations become linear. The three steps de- 
scribed above (differentiation, decomposition into division components, and taking 
logarithms) transform equations into a form that allows one to do the following: 

1. Simplify the equations and linearize most of them. 
2. Homogenize their variance. 
3. Apply well-developed methods for the investigation of linear equations. 
4. Facilitate the design of new equations. 
5. Expose basic forms or families of equations. 

The last point is pursued in some detail below. 

BASIC FORMS OF EQUATIONS 

The described transformation reveals two basic forms behind most of the analyzed 
equations. To present these forms more vividly, the equations are rewritten to 
simplify the notation of the constant parameters. All intercepts are designated as 
k. Constants of size, y (or In(y)) are denoted by p, while those of age, t and In(t), 
are expressed by q (Table 2). For example, for the Korf equation the parameter 
k in Table 2 is equal to In(bc) in terms of the parameters of Table 1. Similarly, for 
the same equation p = 1 and q = -(c + 1). 
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TABLE 2. 

Growth equations in uniform notation. k > 0, p > 0, and q < 0 = parameters 
of equations. 

Equation name Logarithm of differential form 

Hossfeld IV ln(y') = k + 2In(y) + qln(t) 
Gornpertz ln(y') = k + In(y) + qt 
Logistic ln(y') = k + 2In(y) + qt 
Monornolecular ln(y') = k + qt 
Bertalanffy ln(y') = k + (g/3)ln(y) + qt 
Chapman-Richards ln(y') = k + pin(y) + qt 
Levakovic I ln(y') = k + pin(y) + qln(t) 
Levakovic III ln(y') = k + pin(y) - 3In(t) 
Korf ln(y') = k + In(y) + qln(t) 
Weibull ln(y') = k + pin(t) + qt •+• 
Yoshida I ln(y') = k + 21n(y - c) + qln(t) 
Slobode if d > 1 ln(y') = k + [In(y) + (d - 1)In(t)] + qt • 

if0<d< 1 ln(y') = k + In(y) + [(d- 1)In(t)] + q• 

It becomes transparent that all the equations, except Weibull's, are particular 
cases of the two following forms: 

ln(y') = k + pin(y) + qln(t) or y' = k•yPt q (4) 
ln(y') = k + pln(y) + qt or y' = klyPe qt (5) 

wherep>0, q<0, andk• = e k. 
In both forms the expansion component is proportional to In(y) or, in the antilog 

form, is a power function of size. The forms differ in the way the decline com- 
ponent is presented. In Equation (4) it is proportional to the logarithm of age, t. 
This form will be referred to as the LT-decline or LTD form. The decline com- 

ponent of Equation (5) is directly proportional to age, t. Accordingly, Equation (5) 
can be called the TD (T-decline) form. In the integral form, the decline component 
is either a power function or an exponential function of age. 

The LTD form includes the Hossfeld IV, Levakovic I and III, Korf, and Yoshida 
I equations. Each of these equations can be derived from the general equation 
form [Equation (4)] when its parameters assume a particular value. Thus, the 
Levakovic III equation is distinguished by q = 3 and the Korf equation by p = 1. 
The peculiarity of the Yoshida I equation (Table 2) is that its dependent variable 
is the difference between the current size and the initial size (c = y(0)). The same 
number of equations (Gompertz, logistic, monomolecular, Bertalarfffy, and Chap- 
man-Richards) belong to the TD form. The Slobode equation can be viewed as a 
hybrid between the two forms. 

Depending on the values of p and q, several distinct integral equations can be 
obtained from the same equation form. The Korf equation results from integration 
of the LTD form whenp = 1 and q • - 1. The Levakovic I follows from the same 
equation when p > 1 and q < - 1. The selection of a particular integral equation 
forces its parameters into a certain range. The parameters c (= - 1/(1 - p)) and 
d (= -q - 1) in the Levakovic I equation, for instance, must be greater than 
zero. 

The transformed equations reveal quite different and simpler relationships than 
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those of Kiviste's classification. Thus, despite the difference of their integral 
forms, Hossfeld IV and Korf equations are varieties of the same basic form (Table 
2). On the other hand, differentiation shows that the outward similarity between 
the Chapman-Richard and Weibull equations is misleading. 

COMPARISON OF THE BASIC EQUATION FORMS 

The preceding analysis brings forth a question: which of the two basic forms is 
more accurate? The answer provided in this paper should be considered as pre- 
'hminary because it was obtained from one data set. 

MATERIALS 

Probably the best-known data on tree growth are the measurements of Norway 
spruce (Picea abies [L.] Karst) published by Guttenberg in 1915. This set is 
considered a touchstone of tree growth and has been used repeatedly by many 
researchers (for example, Assmann 1970, Sloboda 1971, Zeide et al. 1972, Zeide 
1989). The data contain measurements of 107 average-size trees from five site 
classes selected from healthy, fully stocked stands growing in the Alps. Gutten- 
berg (1915) provided actual data for each tree as well as corrected (hand- 
smoothed) averages from 10 to 150 yr by site classes. The number of analyzed 
trees and their average size at age 50 are shown in Table 3. Despite the differ- 
ences in location and species, the growth pattern of these trees is s'm•ilar to that 
of several species in the western United States (Zeide 1989). 

Because stem diameter was measured at the height of 1.3 m aboveground, this 
variable was regressed on the age since the tree reached this height. This age can 
be easily calculated for each tree and site class from height growth data (Table 3). 
Tree height and volume were regressed on the age at stem base. 

DATA SCREENING 

Several trees showed an erratic pattern of growth. Unlike the majority of trees, 
their increment jumped up and down without apparent pattern. Sometimes out- 
liers may provide valuable information and even lead to new discoveries. Unfor- 

TABLE 3. 

Average size of Norway spruce (Picea abies [L.] Karst) trees at 50 yr, number 
of trees, and age at which trees reached the height of 1.3 m by site class. 

Site class 

Variable 1 2 3 4 5 

Height, m 20.0 16.4 12.2 9.4 6.1 
Diameter, cm 24.4 20.0 15.1 12.6 9.3 
Volume, m3/1000 433 245 104 56 23 
Number of trees 21 37 20 21 8 

Age at 1.3 m 9.5 10.0 12.0 12.4 20.0 
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tunarely, this does not happen often. Usually, they obscure the pattern without 
revealing anything meaningful. In order to exclude any bias for or against analyzed 
equations, the outliers were detected using a completely different equation (a 
polynomial). Current annual increment, i (= y'), was used to compute statistics 
of the following equation for each tree: 

i= a + bt + cF (6) 

where t is age and a, b, and c are constants. The choice of the equation did not 
affect the detection of outliers; the same trees show a poor fit using any other 
three-parameter equation. Seven trees with the smallest adjusted R 2 for each 
variable were considered outliers and were deleted from the data set. Any mea- 
sure of fit clearly showed that these trees were not typical as is seen from the 
distribution of R 2 for Equation (6) describing diameter growth (Table 4). The 
deleted trees had R 2 less than 0.32 for height, 0.60 for diameter, and 0.64 for 
volume. The remaining data set contained exactly 100 trees. 

ENVIRONMENTAL CHANGES AND TREE GROWTH 

Among other factors, tree growth is affected by long-term environmental change. 
This factor, however, is not reflected by the growth equations considered above 
that present tree growth (increment) as a function of tree size and age. To deride 
whether growth equations should contain a term responsible for environmental 
change it is necessary to investigate its effect on tree growth. 

The analyzed trees were cut at ages ranging from 60 to 150 yr. This makes it 
possible to divide them, within each site class, into two groups containing younger 
and older trees. The difference between mean ages between the groups was 
40-60 yr. For each group mean height, diameter, and volume were calculated at 
the age of 50 yr. 

The results (Table 5) shows that the size of 50-yr-old trees in both groups is 
practically identical. The differences are neither significant nor consistent. In 
some classes the trees cut at an older age were slightly bigger at 50 yr, while in 
others they were smaller than the trees cut at a younger age. These results allow 
one to conclude that during the 40-60 yr prior to Guttenberg's analysis, the 
environment did not change enough to affect growth of the investigated trees. 

TABLE 4. 

Distribution of R 2 for Equation (6) describing diameter growth of trees. 

Adjusted R 2 Frequency Cumulated frequency 

0.05 2 2 

0.15 1 3 

0.25 0 3 

O.35 0 3 
0.45 3 6 

0.55 1 7 

0.65 3 10 

0.75 16 26 

0.85 23 49 

0.95 58 107 

606/FoP, mTSC•'•CE 



TABLE 5. 

Height, diameter, and volume of average 50-yr-old trees in younger and older 
groups by site class. SD = standard deviation. 

Height (m) Diameter (cm) Volume (din s) 
Site No. of Group 
class trees age Mean SD Mean SD Mean SD 

i 8 80.0 19.9 1.6 23.0 2.5 402.5 92.2 

i 12 139.2 20.1 1.6 25.1 4.2 453.3 169.0 

2 26 92.3 17.2 1.5 19.9 2.8 258.7 85.1 
2 9 148.9 15.5 2.0 18.6 3.6 206.4 81.3 

3 9 108.9 12.9 1.1 14.7 1.2 102.3 21.2 

3 10 150.0 11.1 2.2 14.7 3.5 96.4 51.4 

4 9 113.3 10.0 0.9 13.5 2.6 72.4 30.4 
4 11 150.0 8.9 1.1 12.1 2.1 52.4 20.5 

5 3 116.7 6.1 1.8 8.2 0.6 18.3 5.0 

5 5 150.0 5.9 2.3 8.5 2.6 22.0 11.9 

ACCURACY OF THE BASIC EQUATION FORMS 

The two basic equation forms, LTD and TD, [Equations (4) and (5)] were com- 
pared using Guttenberg's data for three variables (total height, stem diameter at 
breast height, and stem volume). The equation forms were fitted to the following 
three types of data: (1) each tree separately, (2) all tress of the same site class 
(referred to in Table 6 as pooled data), and (3) smoothed average growth series 
provided by Guttenberg for each site class (referred to in Table 6 as average 
data). Comparisons were made using the standard error of estimate (Table 6). 
For individual trees the mean of the errors, found separately for each of the 100 
trees, was calculated. Other statistics (such as R 2 or Mallows' Cp statistic) pro- 
duced similar results. 

The results (Table 6) show that: 

1. The accuracy of the equation form depends on the data type. 
2. For individual tress, both equation forms are equally accurate for any tree variable 

(diameter, height, volume). 
3. When trees are pooled by site class, both equation forms provide an identical fit for 

height and volume. LTD is more accurate for diameter in all site classes. 
4. LTD is more accurate than TD for average growth series data in all classes and for all 

tree variables. In the integral form, this difference is likely to be more substantial. 
Thus, the standard error of estimate of Chapman-Richards equation (an integral form 
of TD) is twice as large as that of Korfs equation (an integral form of LTD) for the 
same data (Zeide 1989). 

5. The shape of growth curves depends on the data type, as is evident from the sub- 
stantial differences in parameters of the same equation. For example, when LTD 
[Equation (4)] was applied to volume the parameter q was equal to - 3.05, - 1.55, and 
- 2.29 for individual, pooled, and average groupings of the same data, respectively. 
These differences indicate that even in homogeneous tree groups (trees of average 
size stratified by site class) the growth of individual trees cannot be represented by the 
average growth of the group. 

6. If we are analyzing the process of tree growth, it is safer to investigate individual tress 
and avoid arbitrary tree groupings, averaging, and other kinds of data manipulation. 
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TABLE 6. 

Standard errors of estimate for the basic equation forms, LTD and TD 
[Equations (4) and (5)] by data type and variable (height, diameter, 

and volume). 

Height Diameter Volume 
Tree 

•oup LTD TD LTD TD LTD TD 

Mean results for individual trees 

Single 0.15 0.16 0.15 0.15 0.15 0.15 
Pooled data by site dasses 

SC = 1 0.21 0.21 0.26 0.32 0.24 0.23 

SC = 2 0.24 0.24 0.27 0.33 0.26 0.25 
SC = 3 0.24 0.20 0.22 0.27 0.25 0.21 

SC = 4 0.24 0.26 0.25 0.33 0.25 0.25 
SC = 5 0.32 0.28 0.27 0.36 0.29 0.29 

SC Mean 0.25 0.24 0.25 0.32 0.26 0.25 

Average data by site classes 
SC = 1 0.06 0.11 0.06 0.08 0.10 0.13 

SC = 2 0.07 0.11 0.03 0.05 0.08 0.10 
SC = 3 0.05 0.07 0.03 0.04 0.02 0.03 
SC = 4 0.05 0.06 0.03 0.05 0.06 0.06 

SC = 5 0.03 0.04 0.03 0.03 0.01 0.02 

SC Mean 0.05 0.08 0.04 0.05 0.05 0.07 

COMPARISON OF EQUATIONS WITH ALL 
COMBINATIONS OF TREE SIZE, AGE, AND 

THEIR LOGARITHMS 

The LTD form clearly differs from TD. In the TD form the carrier of growth 
decline is age, while in the LTD form the same component is represented by the 
logarithm of age. Yet, it was found that the accuracy of these forms is equal when 
they are applied to individual trees. If these two forms cannot be distinguished by 
accuracy, does the choice of an equation matter? Would other combinations of 
variables be equally successful in growth prediction? 

To answer these questions, the accuracy of growth prediction was tested for 15 
differential equations in which independent variables included all possible linear 
combinations of tree size, age, and their logarithms. Limited degrees of freedom 
precluded calculation of equations with 4 variables for the 2 out of 100 trees with 
the shortest life span (60 YD. Calculations were performed for data pooled from 
all 98 remaining trees and by site class (Table 7) as well as for individual trees 
(Table 8). 

Standard errors of estimate for analyzed equations were calculated for each 
tree. Their mean values are given in Table 8. Most of these means had a standard 
error of 0.01. Only four errors for volume increment were greater than 0.01. For 
equations with two or more independent variables the coefficients of determina- 
tion (R 2) exceeded 0.80, 0.90, and 0.95 for height, diameter, and volume incre- 
ments, respectively. 
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TABLE 7. 

Standard errors of estimate for equations predicting increment from all 
combinations of tree size (x), age (t), and their logarithms (In(x), In(t)). Size (x) 

designates height, diameter, and volume. The errors were calculated using 
pooled data for all 98 trees. Comparative accuracy of equations fitted to all 

trees coincided with that fitted to the data pooled by site class. 

Independent 
variables Height Diameter Volume 

In(x) 0.52 0.48 0.46 
x 0.50 0.50 1.00 

In(t) 0.41 0.34 0.94 
t 0.37 0.36 1.06 

In(x), x 0.48 0.48 0.44 
In(x), In(t) 0.26 0.26 0.27 
In(x), t 0.27 0.35 0.26 
x, In(t) 0.38 0.29 0.89 
x, t 0.32 0.33 0.97 
In(t), t 0.35 0.34 0.88 
In(x), x, In(t) 0.23 0.26 0.25 
In(x), x, t 0.26 0.32 0.26 
In(x), In(t), t 0.24 0.26 0.25 
x, In(t), t 0.31 0.28 0.73 
In(x), x, In(t), t 0.22 0.26 0.24 

These calculations showed that the basic equation forms (LTD and TD) were 
among the most accurate. In addition, for individual trees the equation containing 
tree size and its logarithm as independent variables 

ln(y') = k + pin(y) + qy or y' = k0PeqY (7) 

was equally successful (Table 8). Because the decline component is proportional 
to the size y, this form will be referred to as the Y-decline, or YD form. 

Other results of these calculations indicate that: 

1. The accuracy of equations increases drastically when the number of independent 
variables changes from one to two. Subsequent addition of variables had little effect. 
The best two-variable equations were almost as accurate as equations with three and 
four variables. 

2. In most cases comparative accuracy of equations fitted to all trees coincided with that 
fitted to the data pooled by site class. 

3. The effect of data type on the accuracy of a given equation, noticed for the two basic 
equation forms, was more pronounced when the set of 15 equations was considered 
(Table 7 and 8). This effect is espedally clear for the YD form: it was the best form 
for height and diameter (Table 8) growth of individual trees and the worst form for 
pooled data for the same variables (Table 7). 

4. The distinguishing feature of the three best two-variable equation forms (LTD, TD, 
and YD) is that growth expansion is proportional to the logarithm of size. 

AUTOCORRELATION OF RESIDUALS 

When comparing accuracy of equations, it is necessary to consider autocorrelation 
among residuals that often appears in time series such as tree growth data. 
Autocorrelation does not change parameter estimators in least square regres- 
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TABLE 8. 

Standard errors of estimate for equations predicting increment from all 
combinations of tree size (x), age (t), and their logarithms (ln(x), ln(t)). Size (x) 
designates height, diameter, and volume. The errors are averages of individual 

regressions of 98 trees. 

Independent 
variables Height Diameter Volume 

In(x) 0.32 0.22 0.30 
x 0.25 0.17 0.82 

In(t) 0.28 0.18 0.41 
t 0.23 0.18 0.65 

In(x), x 0.15 0.14 0.15 
In(x), In(t) 0.15 0.15 0.15 
In(x), t 0.16 0.15 0.15 
x, In(t) 0.18 0.15 0.18 
x, t 0.21 0.14 0.26 
In(t), t 0.16 0.14 0.17 
In(x), x, In(t) 0.14 0.14 0.13 
In(x), x, t 0.13 0.13 0.13 
In(x), In(t), t 0.14 0.13 0.13 
x, In(t), t 0.14 0.14 0.15 
In(x), x, In(t), t 0.12 0.12 0.12 

sions, but inflates their variance (as compared with completely uncorrelated data) 
and introduces bias into the standard error of estimate. This happens because 
autocorrelation reduces the effective number of degrees of freedom for estimating 
the parameters, which is equivalent to reducing the sample size. Therefore, the 
estimates of standard errors and the coefficient of determination (R 2) should be 
supplemented with an analysis of autocorrelation. 

The investigation of autocorrelation among residuals of the analyzed equations 
showed that autocorrelation is by far the largest at the first step. This fact 
permitted the restriction of this investigation to first-order autocorrelation. It was 
calculated (using the Durbin-Watson, DW, option in the regression procedure of 
SAS) for pooled data, which contained 100 trees, and for each tree separately. For 
individual trees the results (Table 9) represented mean absolute values. 

TABLE 9. 

First-order autocorrelation of equations predicting tree increment. 
Autocorrelations of individual trees are mean absolute values. 

Tree 
variable 

Pooled data Individual trees 

Equation Equation 
Number of 

observations LTD TD YD LTD TD YD 

Height 1099 0.57 0.58 0.86 0.29 0.31 0.28 
Diameter 1024 0.65 0.68 0.80 0.28 0.26 0.26 

Volume 1088 0.56 0.56 0.80 0.24 0.26 0.25 
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These calculations demonstrated that: 

1. Autocorrelation was practically identical for all equations when they were applied to 
individual trees. 

2. When applied to pooled data, autocorrelation of the YD form was substantially greater 
than that of the LTD and TD forms. Autocorrelation of the latter two was statistically 
indistinguishable. 

3. Autocorrelation for individual trees was equally likely to be positive or negative, and 
the mean of actual (not absolute) values was never different from zero. 

4. Autocorrelation varied by data type and equation in a way that was s'nuilar to that of 
their standard errors (Tables 7 and 8). This fact makes the analysis of autocorrelation 
redundant for Guttenberg's data. 

5. This analysis of autocorrelations did not change the previous conclusion based on 
standard errors; for individual trees all three two-variable equations, in which growth 
expansion was represented by the logarithm of size, were equally accurate. 

SINGLE EQUATION FORMS 

The preceding result brings forth the question of whether it is possible to achieve 
the ultimate reduction in the number of equations and obtain a single form. An 
easy way to do this is to combine equations (4), (5), and (7) at the expense of 
introducing additional parameters: 

y' = klyP•tq• + k2yP2e qzt + k3yP3e qay (8) 

The LTD form corresponds to k 2 = k 3 = 0, and the TD form arises when kx = 
k 3 = 0. When all three parameters are different from zero, Equation (8) becomes 
a single general form that includes the discussed forms (LTD, TD, and YD) as 
special cases. 

A similar general equation with five parameters was suggested by Dr. Insarov 
(personal communication, May 1, 1992): 

y' = k•yPtqe k2•3 (9) 
It summarizes all the equations given in Table 1. 

An undeservedly ignored paper by Grosenbaugh (1965) described an equation 
that generalizes many nonlinear functions including several growth equations such 
as Bertalanffy, Gompertz, and Johnson-Schumacher equations. In this equation, 

Y = H + A(e av•- vu - NUf viq-x (10) 
A, H, M, and N are parameters. U is an elementary function of an independent 
variable and contains two additional parameters. According to the author (personal 
communication, March 23, 1992), no one ever made use of his equation. 

An interesting attempt to arrive at a single equation form was made by Schnute 
(1981). Bredenkamp and Gregoire (1988) were the first to introduce this equation 
to forestry. While many scientists studied growth rate, y', and relative growth 
rate, z = y'/y, Schnute went further and investigated the rate of a rate, that is, 
acceleration of growth. Schnute (1981, p. 1129) believed that the relative growth 
rate of a relative growth rate is a linear function of the relative growth rate 
because it is "the simplest possible assumption": 

ldZ 

W-z dt - (a + bZ) (11) 
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where a and b are parameters (unrelated to those of Table 1). Schnute (1981) 
showed that many existing equations are special cases of his Equation (9). For 
example, the Gompertz equation follows from Equation (9) when a > 0 and b = 
0. When parameters a > 0 and b = - 1, the result is the logistic equation. 

The first thing that comes to the mind of an empirical researcher is to test this 
linear assumption (Schnute did not provide one). Perhaps this assumption is good 
for describing the growth of fish (the area of Schnute's research) but not that of 
trees. When I plotted relative acceleration, w, over relative growth rate calculated 
using Guttenberg's (1915) average height growth for five site classes, it became 
evident that the relationship is not linear (Figure 1). A power function 

w = az b (12) 

appeared to be more appropriate because when plotted on the log-log scale, the 
relationship became straight, especially if three outliers in the lower left comer 
are disregarded (Figure 2). This relationship is characterized by a coefficient of 
determination of about 0.95. Both intercepts and slopes changed litfie with site 
class. 

Although a single general solution is attractive, it is not clear whether it is worth 
the cost of additional variables [Equations (8) and (9)]. It is probably better to rely 
on two or three equation forms. 

DISCUSSION 

This investigation revealed that many of the existing growth equations belong to 
one of two basic forms. The type of data used drastically affected the comparative 
accuracy and shape of equations. Growth curves for groups of trees belonging to 
the same site class and average curves differed substantially from the growth of 
individual trees from the same groups. 

This investigation of known equations not only provided the basis for their 
classification but also made possible the discovery of a new promising equation 
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FIGURE 1. The relationship between relative growth acceleration and relative growth rate for Gut- 
tenberg's (1915) average height growth data. The plotted numbers indicate site class of investigated 
trees. 
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FIGURE 2. The relationship between relative growth acceleration and relative growth rate for Gut- 
tenberg's (1915) average height growth data on the log-log scale. The plotted numbers hndicate site 
class of hnvestigated trees. 

form (the Y-decline equation form). Both components of this equation are func- 
tions of tree size. It does not contain age, the most difficult variable to measure 
(especially in older hollow hardwoods). 

Strong linear relationships exist between the three parameters of the consid- 
ered two-variable equations. Thus, for LTD 

q = -0.29 - 1.30p (R 2 = 0.95, SEE = 0.22) (13) 
and 

k = -1.74 - 2.35p - 3.95q = -0.60 + 2.77p 
(R 2 = 0.92, SEE = 0.67) (14) 

These relationships, calculated from parameters describing height growth of in- 
dividual trees, are independent from site class (and age) and can simplify incre- 
ment estimations. 

All three best two-variable equations (LTD, TD, and YD) have one common 
feature: growth expansion is proportional to the current size of a tree. This 
indicates that geometrical progression is a fundamental characteristics of growth, 
as was postulated two centuries ago by Mathus (1798). For trees, unlike bacteria, 
this feature is not self-evident. In dicotyledon tree species the number of dividing 
cells (cambium) per unit of stem surface remains constant. Therefore, the expo- 
nential tendency in diameter growth probably results from decreased intervals 
between successive divisions and not from proliferation of dividing cells as is the 
case in a population of bacteria. 

Unlike the expansion component, growth decline in individual trees can be 
rendered with equal accuracy by a variety of expressions. This result may be 
explained by the great number of factors that hinder growth: scarcity of re- 
sources, competition, reproduction, aging, diseases, herbivory, disturbances, 
etc. This makes the growth path inherently imprecise. It should be regarded as 
a broad valley rather than a single line. 

This result does not mean that we loose the clarity of our picture of growth. We 
dispense with a misleading precision read into growth equations. Instead, we gain 
knowledge about the actual variability of the growth process, basic components of 
this process, and appropriate analytic expressions. This conceptual shift from a 
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misleadingly precise line to a fuzzy but realistic strip brings clarity to our under- 
standing of tree growth. 
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