
INSTITUTO SUPERIOR DE AGRONOMIA

ESTATÍSTICA E DELINEAMENTO

January 27, 2020 Final Exam 2019-20 (se
ond date) A possible solution

I

1. Given the total of N=2501 observations, but where the marginal (row/
olumn) totals were not

�xed in advan
e, the question may be answered using an independen
e test on this 
ontingen
y

table (two-dimensional table of 
ount data), whi
h has a=3 rows and b=4 
olumns. The Null

Hypothesis is the hypothesis of independen
e, whi
h assumes that the joint probability of an

observation falling in any given table 
ell is the produ
t of the marginal probabilities for the row

and the 
olumn asso
iated with the 
ell. In other words, H0 : πij=πi. × π.j , for all i and j. The

Alternative Hypothesis H1 is the negation of H0: there exists at least one table 
ell for whi
h

πij 6=πi.×π.j . Pearson's statisti
 is given by X2=
a∑

i=1

b∑

j=1

(Oij−Êij)2

Êij

. Its asymptoti
 distribution,

if H0 (independen
e) is true, is χ2
(a−1)(b−1). We reje
t H0 (at the α=0.05 signi�
an
e level) if

X2
calc>χ2

0.05(6)=12.5916.

2. The sample size is appropriate: we 
an use the asymptoti
 distribution. In fa
t, Co
hran's


riteria state that the asymptoti
 distribution for X2

an be used if: (i) none of the estimated

expe
ted values Êij is less than 1; and (ii) no more than 20% of the Êij are less than 5. In order

to 
he
k Co
hran's 
riteria, we 
an 
hoose the 
ell with the smallest expe
ted value and see

whether it is larger than 5 (Note: Co
hran's 
riteria use the expe
ted values Êij , and not the

observed values Oij). The 
ell with the smallest Êij is the one in the row (Spe
ies) and 
olumn

(Orientation) with the least observations. This is 
ell (3, 2), where Ê32 =
N3.×N.2

N
= 466×366

2501 =
68.19512 ≫ 5. It is therefore safe to use the asymptoti
 distribution for Pearson's statisti
.

3. The 
ontribution of 
ell (3, 3) to the value of X2
calc is

(O33−Ê33)2

Ê33
. We have O33 = 243 and

Ê33=
N3.×N.3

N
= 466×484

2501 =90.18153. Therefore, the value of the term is 258.9608. This value is

larger than the sum of the remaining 11 terms of the statisti
 (whi
h is given in the question:

229.6256). Su
h a huge value is the result of a positive asso
iation: the observed number of

individuals in this 
ell is mu
h larger than would be expe
ted under the independen
e hypothesis.

The test statisti
's value isX2
calc=488.5864, and so we 
learly reje
t the independen
e hypothesis

(the sum of the 11 terms given in the question would already be su�
ient to ensure reje
tion).

This reje
tion is not unexpe
ted: a visual inspe
tion of the data table shows that the spe
ies

Zygophyllum simplex 
learly prefers South, unlike the other two spe
ies whi
h prefer North.

II

1. This is a multiple linear regression with n=109 observations and p=4 predi
tors.

(a) Sin
e R2=0.7363, the model explains 73.63% of the varian
e of the observed values of the

response variable (brix). This is a reasnobaly good value.

(b) What is being requested is a test on whether β3 is negative. Without giving the bene�t of

the doubt to this hypothesis, we have H0 : β3 ≥ 0 vs. H1 : β3 < 0. Sin
e the borderline
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value is β3 =0, the 
omputed value of the test statisti
 is given in the question's output:

Tcalc =−3.512 [Note: the a

ompanying p-value is for a test with a two-sided (bilateral)


riti
al region, and is therefore not useful here℄. Given the nature of the hypotheses, the


riti
al region for this test is one-sided (unilateral), and spe
i�
ally it is the left-hand tail of

the distribution. We reje
t H0 if Tcalc=−3.512 < −t0.01(104)=−2.362739. Hen
e, we reje
t
H0 in favour of H1 : β3 < 0 and b3=−0.61539 may be 
onsidered signi�
antly smaller than

zero. The statement in the question is therefore legitimate.

(
) The plot has the values of the (internally) standardized residuals (Ri) on the verti
al axis.

In no 
ase are their absolute values greater than 3 (although two are 
lose). Thus, we


annot see any outlying observations. However, three observations have a large leverage (the

values of whi
h de�ne the horizontal axis, measuring the degree to whi
h ea
h observation

'attra
ts' the �tted hyper-surfa
e), bigger than 0.15, whi
h is three times larger than the

mean leverage h= p+1
n

=0.04587. Among these observations, only one (observation 102) has
a value of Ri far from zero. This means that its Cook's distan
e must be high (see on the

formula sheet the expression forDi). Its Cook's distan
e is 
lose to the 0.5 threshold. Cook's
distan
e is a measure of in�uen
e, that is, of the impa
t that ex
luding an observation will

have on the �tted hyper-surfa
e. It tends to be larger for points that are further away from

the 
enter of gravity of the s
atterplot of n points in R
p+1

. Observation 102 is extreme in

three of the predi
tor variables (it has the smallest yield and a
idity, and the largest pH,

among all n= 109 observations), and for the other two predi
tors it has values in one of

the extreme quartiles (between the minimum value and the �rst quartile for grape weights

and between the third quartile and the maximum value for the response variable brix).

Observation 102 has, overall, a substantial an impa
t on the �tted model, and it should

therefore be inspe
ted with 
are.

2. The simple linear regression of brix (y) on pH (x).

(a) A partial F test is requested, to 
ompare the full model from the previous question with

the simple linear regression submodel (hen
e k=1) of brix on pH. The Null Hypothesis of

this test is that both models are the same, H0 :R2
c =R2

s. The Alternative Hypothesis is

H1 :R2
c >R2

s. The test statisti
 may be written as F = n−(p+1)
p−k

R2
c−R2

s

1−R2
c
, whose distribution

under H0 is F[p−k,n−(p+1)]. We reje
t H0 if Fcalc > f0.05(3,104)≈2.7. To 
ompute the value

of the test statisti
, it is ne
essary to know the submodel's 
oe�
ient of determination,

R2
s. Sin
e the submodel is a simple linear regression, its 
oe�
ient of determination is the

square of the linear 
orrelation 
oe�
ient between the response and the predi
tor variables,

whi
h is given in the question. Thus, R2
s=0.83052=0.6897. We have Fcalc=6.1222, so we

reje
t H0 at the α=0.05 signi�
an
e level. The �tted submodel has a signi�
antly worse

�t than the full model.

(b) The formula sheet gives the expression for the leverage of an observation in a simple linear

regression: hii =
1
n
+ (xi−x)2

(n−1) s2x
. We know that n=109; x102 =3.93; x=3.684495; and s2x=

0.0751362 =0.005645418. Hen
e, h102,102 =0.1080, whi
h is about half the 
orresponding

value in the multiple linear regression model dis
ussed above. However, the observation's

Cook's distan
e is again 
lose to the threshold 0.5. In fa
t, by the expression for Di (see

the formula sheet), D102=R2
102 ·

h102,102

1−h102,102
· 1
2 =0.404, whi
h is relatively high.

3. The simple linear regression of brix (y) on a
idez (x).

(a) This being a simple linear regression, the 
orrelation 
oe�
ient between x and y is one

of the square roots of the 
oe�
ient of determination. It must be the negative square
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root, given the regression line's negative slope (b1=−0.9263), whi
h indi
ates a de
reasing

relation. Thus, rxy=−
√
R2=−

√
0.1005=−0.3170.

(b) The goodness-of-�t test has as the Null Hypothesis H0 : R2 =0 (with H1 : R2 > 0). The

test statisti
 (for a simple linear regression) is F =(n− 2) · R2

1−R2 , with distribution F[1,n−2]

under H0. The 
riti
al region is a one-sided right-hand region, with reje
tion of H0 if

Fcalc > f0.05(1,107) ≈ 3.94. Now, Fcalc = 11.95497, so we reje
t H0, despite the very small

value of R2
. This fa
t is not 
ontradi
tory, be
ause the goodness-of-�t test is only telling

us that R2 = 0.1005 is signi�
antly di�erent from zero, and not that the �tted model is

ne
essarily good.

III

1. Sin
e there is nothing that allows us to asso
iate �elds in di�erent environments, this experimen-

tal design must be 
onsidered nested (hierar
hi
al), with two fa
tors: environment (dominant

Fa
tor A, with a=8 levels) and �elds (subordinate Fa
tor B, where, within ea
h environment

there are bi=9 levels). This is a balan
ed design, with nc=6 repetitions for ea
h of the
a∑

i=1
bi=72

experimental situations, giving a total of n=6× 72=432 observations.

Model equation: Yijk = µ11 + αi + βj(i) + ǫijk, where i= 1, ..., 8 indi
ates environment; j =
1, ..., 9 �eld (within environment); k=1, ..., 6 repetition (for ea
h experimental situation);

Yijk indi
ates the yield in the k-th repetition in �eld j within environment i; ǫijk is the


orresponding random error. With the 
onstraints α1 = 0 and β1(i) = 0 for any i, µ11

represents the mean population yield for the �rst �eld in environment 1; αi indi
ates the

e�e
t asso
iated with environment i; and βj(i) indi
ates the e�e
t of the j-th �eld within

environment i.

Distribution of the random errors: ǫijk ⌢ N (0, σ2), for any i, j, k.

Independent errors: {ǫijk}i,j,k are independent random errors.

2. There are two types of e�e
ts (of the fa
tor environment and of the fa
tor �eld). The summary

table will therefore have three rows (one for ea
h kind of e�e
t and one row asso
iated with

residual variability). Two table values are given in the question: the Residual (Error) Mean

Square, QMRE=2.2347 and the environment Sum of Squares, SQA=1666.2. The degrees of

freedom are: a−1 = 7 (Fa
tor A);

a∑

i=1
(bi−1) = 64 (Fa
tor B) and n−

a∑

i=1
bi = 432−72 = 360

(Residual). Thus, we have QMA= SQA
a−1 =238.0286, hen
e FA

calc=
QMA
QMRE

=106.5148; SQRE=
(

n−
a∑

i=1
bi

)

×QMRE=804.492. The Sum of Squares for the subordinate fa
tor B results from

the fa
t that SQB(A) = SQT−(SQA+SQRE) = (n−1) s2y−(1666.2+804.492)=431×6.05404−
2470.692=2609.291−2470.692=138.5992. Its Mean Square is QMB(A)= SQB(A)∑a

i=1 (bi−1)
=2.165612.

Finally, the test statisti
 for the e�e
ts of the subordinate fa
tor is F
B(A)
calc = QMB(A)

QMRE
=0.969084.

Here is the full summary table:

Sour
es of Variation df Sums of Squares Mean Squares Fcalc

Environment (Fa
tor A) 7 1666.2 238.0286 106.5148

Field (Fa
tor B(A)) 64 138.5992 2.165612 0.969084

Residual 360 804.492 2.2347 �

Total 431 2609.291 � �
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3. There are two F tests of interest in this model, one for ea
h fa
tor's e�e
ts. In the test for

environment e�e
ts, the hypotheses are H0 : αi = 0,∀ i and H1 : ∃ i, such that αi 6= 0. The

test statisti
 is FA= QMA
QMRE

⌢ F[ a−1 , n−
∑a

i=1 bi ], under H0. The reje
tion rule at the α=0.05

signi�
an
e level is to reje
t H0 if Fcalc > f0.05(7,360) ≈ 2.02. As FA
calc=106.5148, there is a very


lear reje
tion of H0, in other words, we 
learly 
on
lude that environment e�e
ts on yields exist.

As for the test on �eld e�e
ts, the Null Hypothesis H0 :βj(i)=0 for all �elds (in all environments)

is not reje
ted (H1 was that there exist i, j su
h that βj(i) 6= 0). The 
omputed value of the

statisti
, FB(A)=0.969084, is less than 1, and therefore less than any tabulated value that 
ould

represent the borderline of a 
riti
al region (whi
h for α = 0.05, is f0.05(64,360) ≈ 1.32). Thus,

we 
on
lude that the variability of yields along the �elds is not signi�
ant, on
e the variability

along the environments that were studied is taken into a

ount. The subordinate fa
tor does

not a

ount for further signi�
ant variability.

4. Two population mean yields, in two di�erent �elds (from any environments) may be 
onsi-

dered di�erent (i.e., we may reje
t µij = µi′j′ in favour of µij 6= µi′j′) whenever we have the

inequality |yij.−yi′j′.| > qα(
∑

i

bi , n−
∑

i

bi)

√
QMRE

nc
. To 
ompute the 
omparison term, we note

that

√
QMRE

nc
=

√
2.2347

6 = 0.6102868. Using the overall α = 0.05 signi�
an
e level, we have

q0.05(72,360)=5.939 (value given in the question, sin
e the parameter values for the Tukey distri-

bution are very far away from those available in the tables). Thus, the signi�
an
e threshold is

5.939 × 0.6102868 = 3.624493. The smallest sample mean yield for environment 2 is registered

in �eld 1, and is y21.=4.873. The largest mean yield is in �eld 6, and is y26.=8.617. The dif-

feren
e between these two sample means is 8.617−4.873 = 3.744 > 3.624493, and it is therefore

a signi�
ant di�eren
e (although only just) for α= 0.05. This 
on
lusion seems 
ontradi
tory

with the result of the F test for �eld e�e
ts. Su
h a result is possible, sin
e the theoreti
al

results that underpin Tukey's tests and F tests are di�erent. Besides, the di�eren
e that was

now 
onsidered is only borderline signi�
ant (for α=0.05).

5. If nine types of �elds had been previously de�ned, and in ea
h environment �elds of ea
h type

were sele
ted, we would have a fa
torial experimental design, sin
e ea
h of the 8 environments

would be 
ombined with ea
h of the nine types of �elds. Sin
e there are repetitions on ea
h of

the 72 resulting experimental situations, we 
an �t the two-way ANOVA model with intera
tion

e�e
ts. This model's equation is Yijk = µ11 + αi + βj + (αβ)ij + ǫijk, and it di�ers from the

equation of the nested model in that the former terms βj(i) are now repla
ed by the sum of two

terms: the �eld e�e
ts βj (whi
h 
orrespond to the main e�e
ts of ea
h of the b= 9 di�erent

types of �elds, but with the 
onstraint β1=0, giving b−1=8 su
h e�e
ts); and the intera
tion

e�e
ts (αβ)ij whi
h 
orrespond to ea
h experimental situation (with the 
onstraints (αβ)ij =0
when i=1 and/or j=1, giving (a−1)(b−1)=56 su
h e�e
ts).

IV

1. We have y= 1
1+e−(c+d x) .

(a) Thus, 1−y = 1− 1
1+e−(c+d x) = ✁1+e−(c+d x)

−✁1
1+e−(c+d x) = e−(c+d x)

1+e−(c+d x) . Dividing y by 1−y gives:

y

1− y
=

1

✭✭✭✭✭
1+e−(c+d x)

e−(c+d x)

✭✭✭✭✭
1+e−(c+d x)

=
1

e−(c+d x)
= ec+d x .
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Taking logarithms, we get ln
(

y
1−y

)

= c + dx, in other words, the logit of y is linearly

related to the predi
tor x.

(b) The relative rate of 
hange that is requested is the ratio

y′(x)
y(x) . We must therefore 
al
ulate

the derivative y′(x). Now,

y′(x) = [(1 + e−(c+dx))−1]′ = (−1)[1 + e−(c+dx)]−2(1 + e−(c+dx))′

= (−1)[1 + e−(c+dx)]−2e−(c+dx)(−d) =
d e−(c+dx)

(1 + e−(c+dx))2
.

Dividing by y(x) gives the relative rate of 
hange:

y′(x)

y(x)
=

d e−(c+dx)

(1+e−(c+dx))✄2
1

✭✭✭✭✭
1+e−(c+d x)

=
d e−(c+dx)

1 + e−(c+dx)
= d [1− y(x)] ,

taking into a

ount the expression for 1− y(x) that was 
al
ulated above.

2. (a) The ve
tor (In −H)~Y = ~Y −H~Y = ~Y − ~̂
Y has a generi
 element Yi − Ŷi, whi
h is the

residual for the i-th observation. In other words, (In −H)~Y = ~E is the ve
tor of residuals.

The norm of any ve
tor is the square root of the sum of squares of the ve
tor's elements.

Therefore, ‖(In −H)~Y‖2 = ‖~E‖2 =
n∑

i=1
E2

i = SQRE.

(b) If we multiply any matrix, on the right, by a ve
tor, we get a linear 
ombination of the


olumns of the matrix, whose 
oe�
ients are the ve
tor's elements. Thus, the ve
tor

~1n, whi
h is the �rst 
olumn of the matrix model X, results from the produ
t Xv with

v
t = (1, 0, 0, ..., 0), i.e., the ve
tor whose only non-zero element is a 1 in its �rst position.

Thus, we have H~1n = X(Xt
X)−1

X
t · Xv = X (Xt

X)−1(Xt
X)

︸ ︷︷ ︸

=I

v = Xv = ~1n. (Note: In


lass and in the 
ourse notes, the fa
t that H~1n =~1n is shown in a di�erent, but equally

a

eptable, way).

The produ
t H~1n also de�nes a linear 
ombination of the 
olumns of matrix H, with all


oe��
ients in this linear 
ombination of the 
olumns of H given by 1 (all elements of ve
tor

~1n are 1). Hen
e, H~1n is the ve
tor that results from adding all the 
olumns in H. In ea
h

position of the ve
tor H~1n we have the sum of the elements in the 
orresponding row of

H. Sin
e H~1n=~1n, all su
h sums are equal to 1.

(
) The mean of the observations in

~Y may be 
al
ulated as Y = 1
n

n∑

i=1
Yi =

1
n
~1tn

~Y, be
ause the

inner produ
t of the ve
tor

~1n with any other ve
tor has the e�e
t of adding up that ve
tor's

elements. In the same way, the mean of the �tted values (Ŷi) results from 
onsidering

Ŷ = 1
n
~1tn

~̂
Y = 1

n
~1tnH

~Y. But

~1tnH = (H~1n)
t
, be
ause (H~1n)

t = ~1tnH
t
and the matrix of

orthogonal proje
tions H is a symmetri
 matrix. Hen
e, Ŷ = 1
n
(H~1n)

t ~Y = 1
n
(~1n)

t ~Y = Y .

(d) We have

~̂
Y = H~Y. Therefore, ea
h �tted value Ŷj is given by the 
orresponding element

in the produ
t H~Y. This is given by the inner produ
t of row j of H with the ve
tor

of observations

~Y, that is, Ŷj =
n∑

i=1
hjiYi. We saw in (b) that the sum of hji in any row

j is 1, therefore
n∑

i=1
hji = 1. So Ŷj is a weighted mean of all the observations Yi, with

weights given by the 
oe�
ients hji. The 
ontribution of the observation Yj towards its


orresponding �tted valur Ŷj has the weight hjj , whi
h is the leverage of observation Yj .
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