INSTITUTO SUPERIOR DE AGRONOMIA

Applied Operations Research - Linear Programming

Part 2 31 March 2022

I. Consider the following linear programming problem (LPP):

Max Z = subject to:	4	y1	+	5	y2	
		y1 v1			'	≤ 4 ≤ 2
	-	уı	т		у∠	<u> </u>
		y1			y2	≥ 0

- a) Display the feasible region in a graphic and highlight the corner points.
- b) Find the optimal solution graphically and indicate the corresponding optimal objective function value.
- b) Write the LP problem in the standard form.
- c) Apply the Simplex Method and display all Simplex tableaus
- d) For each tableau, make sure you indicate the:
 - feasible solution and objective function value
 - the basic and non-basic variables
 - corresponding corner point in the graphic
 - operations carried out to update each row/table

e) Consider the optimal solution: indicate which constraints are binding and interpret your answer from a graphical point of view

f) Define shadow price. Without resolving the simplex, indicate the impact on the objective function that a unitary change in the RHS of constraint 2 would have.

- II. If the objective function was Max Z = 4y1 + 2y2 (instead of Max Z = 4y1 + 5y2) what change in the solution would you expect? Show it in the graphic.
- III. Write the standard form of the LP problem considering
 - a. A change in the non-negativity constraint: $y1 \le 0$ (instead of $y1 \ge 0$). Present the Simplex starting table.
 - b. A change in the second constraint: $-y1 + y2 \ge 2$ (instead of $-y1 + y2 \le 2$). Present the Simplex starting table.