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Module 2: Statistical Modelling

Introduction to the main statistical models.
1 The Linear Model
2 Generalized Linear Models
3 Linear Mixed Models

The best-known and most used statistical models are instances of the
Linear Model.

Linear Regression (Simple and Multiple)

Polynomial Regression

Analysis of Variance (ANOVA)

Analysis of Covariance (ANCOVA)
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Statistical Modelling

Goal: To study the relation between

a response variable (or dependent variable) y ; and

one or more predictor variables (explanatory or independent
variables), x1,x2, ...,xp .

This relation is studied based on n observations of the variables
involved in the relation.
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Our models

In this course we only consider models:

with a single numerical response variable.

fitted with n independent observations (does not include time
series or spatial data).

As for the predictors:

there can be one or more predictors;

the predictors can be numerical or categorical (factors).

We motivate our discussion with some examples.
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Example 1: simple linear regression (descriptive)

Example 1: Goat milk

Response: Production of goat milk in Portugal (y , milk) (106 litres).
Predictor: Years (x , year) (1986 to 2011).
Data: n=26 pairs of values, {(xi ,yi)}26

i=1. In the data frame Cabra.
Source: Portugal’s National Statistics Institute (INE).
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The underlying trend is approximately linear.
The focus is on the descriptive context (this is not a sample).
What is the “best” equation y = b0 +b1 x , to describe the linear relation with
a given set of n observations (and what does “best” mean)?
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Example 2 - simple linear regression (inferential)
Example 2: Volume of cherry tree trunks
Response (numerical): Volume of the trunks (y ) of cherry trees.
Predictor (numerical): Diameter of the tree trunk at 1.30m. (x , DAP).
Data: n=31 pairs of observations, {(xi ,yi)}31

i=1. Data frame trees.
Source: In R: see help(trees) for details. Converted to the metric system.
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An approximately linear underlying trend.
We have a random sample from a much larger populations. We are
interested in the inferential context: what can we say about the population
straight line y = β0 +β1x?
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Statistical Inference in a Simple Linear Regression

y = b0 +b1 x

POPULATION
(unknown line)

RANDOM

SAMPLING

STATISTICAL

INFERENCE

(known line)
SAMPLE

y = β0 +β1 x
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Example 3: one-way ANOVA

Example 3: Sepal width in iris
Response (numerical): sepal width in iris flowers.
Predictor (factor): species.
Data: n=150 measurements, 50 for each of 3 species. Data frame iris.
Source: R: see help(iris) for details.
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Are there differences in the mean population values for each species?
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Example 4 - non-linear relation (descriptive)
Example 4: Weight of babies at birth
Response (numerical): weight of new-born babies (y ), in g.
Predictor (numerical): Duration of pregnancy (x ), in weeks.
Data: n = 251 pairs of observations, {(xi ,yi)}251

i=1.
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The underlying trend is clearly non-linear: y = f (x).
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Example 4 (cont.)

Now, there is a further issue:
What is the nature of the function f in y = f (x)?

◮ f exponential (y = c edx )?
◮ f power law (y = c xd )?

Once the class of functions f is defined, there are similar issues as
before: how to determine the “best” parameters c and d?

Non-linear relations are studied by a Non-linear regression (not
covered in the MMA course).

But many non-linear relations can be linearised through appropriate
transformations of the variables, and the resulting linearised relation
can be studied using the Linear Model.
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Example 5 - non-linear relation (inferential)
Example 5: Vineleaves’ surface area
Response (numerical): Surface area of vine leaves (y , Area).
Predictor (numerical): length of the main vein (x , NP).
Data: n = 600 pairs of observations, {(xi ,yi)}600

i=1. Data frame videiras.
Source: Prof. Carlos Lopes, Viticulture, ISA.
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Non-linear trend y = f (x). Parabolic? Exponential? Power function?
Data are a random sample. What can be said about the parameters in the
population?
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Example 6 - ANCOVA-type relation

Example 6: Vineleaves’ surface area
Response (numerical): Surface area of vine leaves (y , Area).
Predictor (numerical): length of the main vein (x , NP).
Predictor (factor): variety (3 varieties: Água Santa, Fernão Pires and Vital).
Data: n = 200 observations for each variety. Data frame videiras.

4 6 8 10 12 14 16

1
0
0

2
0
0

3
0
0

4
0
0

NP

A
re

a

Agua Santa
Fernao Pires
Vital

Does a single curve fit all varieties well?
Or are different curves for different varieties preferable?
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Example 7 - Multiple linear regression
Example 7: Anthocyanine content

Response (numerical): Anthocyanine content (y , antoi) (in mg/dm3).
Predictor (numerical): Total phenol content (x1, fentot).
Predictor (numerical): pH (x2, pH).
Data: n=24 genotypes of the Tinta Francisca variety. Data frame Antoi.
Source: Prof. Elsa Gonçalves, ISA (Tabuaço 2003).
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Descriptive: what is the “best” sample plane y = b0 +b1x1 +b2x2?
Inferential: what can be said about the population plane y = β0+β1x1+β2x2?
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Modelling: initial considerations

All models are just approximations of reality.

There may be different suitable models.

The principle of parsimony: among models considered suitable,
simpler ones are to be prefered.

Models may be:
◮ theoretical, based on physical, biological or other principles;
◮ empirical, describing a relation observed in the data.

Statistical models are not deterministic: they describe underlying
trends, but there is variability around that trend. This variability
should be incorporated into the model.
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Initial considerations (cont.)

There need not be a cause-and-effect relation between predictors
and response variables. Statistics deals with association. A
possible cause-and-effect relation can only be shown by
extra-statistical considerations.

Different approaches may exist when studying statistical models:
◮ descriptive: fitting a model to highlight relations in the data,

regardless of their origin.
◮ inferential: when the data are a random sample from a population,

we seek to draw conclusions regarding the population.

Inference requires more assumptions and a much heavier
mathematical-statistical framework.
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The Linear Model

The Linear Model is one category of statistical models;

it encompasses many different more specific models:
Linear Regressions (Simple and Multiple), Polynomial Regression,
Analysis of Variance, Analysis of Covariance;

is the most used type of model, with a long tradition;

it serves as a reference for numerous generalizations:
Nonlinear Regression; Generalized Linear Models;
Mixed Linear Models, etc.
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Review: descriptive Simple Linear Regression
Given n pairs of observations {(xi ,yi)}n

i=1, we have:

The regression line of y over x

y = b0 +b1 x

is given by:

Slope b1 =
covxy

s2
x

(
units of y
units of x

)

Intercept b0 = y −b1x (units of y)

with

x =
1
n

n

∑
i=1

xi ; y =
1
n

n

∑
i=1

yi

s2
x =

1
n−1

n

∑
i=1

(xi −x)2 =
∑n

i=1 x2
i −nx2

n−1
; covxy =

1
n−1

n

∑
i=1

(xi −x)(yi −y) =
∑n

i=1 xi yi −nxy

n−1
.
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Review: descriptive Simple Linear Regression (cont.)
How was this equation obtained?

Criterion: Minimize the sum of squared residuals (Legendre 1805, Gauss
1795-1809).

Residuals and Residual Sum of Squares
Residuals are (signed, vertical) distances between each point and the line:

ei = yi − ŷi = yi − (b0 +b1xi) ,

where ŷi = b0 +b1xi are the “values of y, fitted by the regression line”.

Residual Sum of Squares (RSS):

SQRE =
n

∑
i=1

e2
i =

n

∑
i=1

[yi − (b0 +b1xi)]
2 .

Criterion: Determine the b0 and b1 that minimise SQRE .
Note: SQRE has units of measurement: the square of the units of y .
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Review: Descriptive Simple Linear Regression (cont.)

To minimise SQRE , its partial derivatives with respect to b0 and b1

must be set to zero:

SQRE(b0,b1) =
n

∑
i=1

[yi − (b0 +b1xi)]
2







∂SQRE
∂b0

(b0,b1) = 0

∂SQRE
∂b1

(b0,b1) = 0
⇔







(−2)
n

∑
i=1

[yi − (b0 +b1xi)] = 0

2
n

∑
i=1

[yi − (b0 +b1xi)] (xi) = 0

⇔







n

∑
i=1

yi −nb0−b1
n

∑
i=1

xi = 0

n

∑
i=1

yi xi −b0
n

∑
i=1

xi −b1
n

∑
i=1

x2
i = 0

⇔







b0 = y −b1 x

b1 =
covxy

s2
x

.

This critical point is a minimum, beacuse function SQRE is quadratic and
always positive.
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Descriptive Simple Linear Regression with R

Linear regressions are fitted in R using the command lm (the initials of linear
model).

The command lm has two main arguments:

formula – identifies the response variable and the predictors; in a simple
linear regression of variable y over the predictor x : y ∼ x .

data – indicates the name of the data frame containing the data.

R command for the linear regression in Example 1
> lm( leite ∼ ano , data=Cabra )

Call: lm(formula = leite � ano, data = Cabra)

Coeffiients:

(Interept) ano

-575.7004 0.2923 <� fitted values of b0 and b1
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Descriptive Simple Linear Regression - Example 1

Example 1: Goat Milk

x - Year ; y - goat milk production ; n=26 pairs {(xi ,yi)}26
i=1.
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The fitted line minimises the sum of squared vertical distances between
points and line.
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The parameters of the regression line

Properties of the parameters

The intercept b0:

◮ is the value of y (on the line) corresponding to x = 0;
◮ has units of measurement equal to those of y .

The slope b1:

◮ is the (mean) difference in y corresponding to an increase of one
unit in x ;

◮ has units of measurement equal to units of y
units of x .

Example 1: Goat milk
The fitted slope b1=0.2923 means that, on average, the production of goat
milk increased 0.2923×106 litres per year.
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Additional properties of the regression line

Properties of the regression line

The regression line always crosses the centre of gravity of the
scatterplot, that is, point (x ,y).

Given the formula for the intercept: b0 = y −b1 x ⇔ y = b0 +b1 x .

The mean of the observed values yi equals the mean of the fitted values
ŷi : y = ŷ .

ŷ = 1
n

n

∑
i=1

ŷi =
1
n

n

∑
i=1

(b0 +b1 xi ) =
1
n

n

∑
i=1

b0

︸︷︷︸

=nb0

+b1
1
n

n

∑
i=1

xi

︸ ︷︷ ︸

=x

= b0 +b1 x = y .

The mean (and sum) of residuals is zero: e = 0.

e = 1
n

n

∑
i=1

ei =
1
n

n

∑
i=1

(yi − ŷi ) =
1
n

n

∑
i=1

yi

︸ ︷︷ ︸

=y

− 1
n

n

∑
i=1

ŷi

︸ ︷︷ ︸

=ŷ

= y − ŷ = 0 .
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R commands to study a regression

Save the regression for Example 1:

> Cabra.lm <- lm( leite ∼ ano , data=Cabra )

fitted gives the fitted values ŷi = b0 +b1 xi :

> fitted(Cabra.lm)
1 2 3 4 5 6 7 8 9 10

4.737154 5.029418 5.321683 5.613948 5.906212 6.198477 6.490742 6.783006 7.075271 7.367535

11 12 13 14 15 16 17 18 19 20

7.659800 7.952065 8.244329 8.536594 8.828858 9.121123 9.413388 9.705652 9.997917 10.290182

21 22 23 24 25 26

10.582446 10.874711 11.166975 11.459240 11.751505 12.043769
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R commands (cont.)

residuals gives the residuals ei = yi − ŷi :

> residuals(Cabra.lm)
1 2 3 4 5 6 7 8

-0.40915385 0.58058154 1.22831692 0.87805231 0.23178769 -0.06247692 -0.29474154 -0.47900615

9 10 11 12 13 14 15 16

0.05772923 0.44946462 0.52220000 -1.57206462 -1.76532923 -0.15359385 0.13814154 -1.52012308

17 18 19 20 21 22 23 24

-0.52738769 -0.55265231 -0.26891692 0.98281846 1.69155385 0.73428923 -0.70797538 -0.17124000

25 26

0.03249538 0.95723077

The Residual Sum of Squares, SQRE , can be obtained as follows:

> sum(residuals(Cabra.lm)ˆ2)

[1℄ 18.04768

SQRE has units of measurement: the squared units of y .
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R commands for regression (cont.)

predit – predicts fitted values of new observations given in a data

frame (the name of the predictor must be the same as in the fitted
regression).

> novos <- data.frame( ano=c(1985, 2012) )
> predict( Cabra.lm , new=novos )

1 2

4.444889 12.336034

The value ŷ fitted by the regression line, for x =2012, is:

ŷ = b0 +b1 x

⇔ 12.336034 = −575.7004+0.2923×2012 .
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The Least Squares criterion

The criterion of minimising the Residual Sum of Squares SQRE =
n

∑
i=1

(yi−ŷi)
2

assumes that:

In a simple linear regression, the role of the variables x and y , is not
symmetric.

the response variable y is the variable we wish to model, using variable x .

the predictor x is the variable we assume known, used to draw conclusions
regarding y .

The y over x regression line is different from the x over y regression line.
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The Least Squares criterion (cont.)

The i-th residual is the (signed) deviation of observation yi in relation
to the corresponding value predicted by the regression line:

ei = yi − ŷi

Minimising the sum of squared residuals means minimising the sum of
squared “prediction errors”.

The underlying concern for the criterion is predict variable y as well as
possible, based on its relation with predictor x .
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Review: The three Sums of Squares
Recall: s2

y =
1

n−1

n

∑
i=1

(yi−y)2 is the sample variance of observations yi .

Total Sum of Squares (SQT)

Total SS (SQT )
n

∑
i=1

(yi − y)2 = (n−1) s2
y

We have: s2
ŷ
= 1

n−1

n

∑
i=1

(ŷi−y)2 is the sample variance of the fitted ŷi .

Regression Sum of Squares (SQR)

Regression SS (SQR)
n

∑
i=1

(ŷi − y)2 = (n−1) s2
ŷ

Residual Sum of Squares (SQRE) - already considered

Residual SS (SQRE)
n

∑
i=1

e2
i =

n

∑
i=1

(yi − ŷi)
2 = (n−1) s2

e
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Review: descriptive simple linear regression (cont.)

Fundamental Formula of Regression

SQT = SQR+SQRE ⇔ s2
y = s2

ŷ +s2
e

Coefficient of Determination

R2 =
SQR

SQT
=

s2
ŷ

s2
y

∈ [0,1]

R2 gives the proportion of the total variability of the response variable
Y that is accounted for by the regression. The larger, the better.
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Properties of the Coefficient of Determination

Properties of R2 = SQR
SQT

0 ≤ R2 ≤ 1 (All the SSs are non-negative and SQT = SQR+SQRE)

R2 = 1 if, and only if, all n points are collinear. (“ideal”)
(SQT = SQR ⇔ SQRE = 0. Therefore, all residuals are zero: the points are all
on the line.)

R2 = 0 if, and only if, the regression line is horizontal. (“useless”)
(SQR = 0 ⇔ SQRE = SQT . All variability of y is residual, there is no variability
among the ŷis (they are all the same). The regression line is y = y ⇔ b1 = 0)

In a simple linear regression, R2 is the squared coefficient of linear
correlation between x and y (See Exercises):

R2 = r2
xy =

(
covxy

sx sy

)2

if sx 6= 0 and sy 6= 0
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Example 1: goat milk

The coefficient of determination R2 is obtained using the command
summary on a fitted regression. The output says Multiple R-Squared.

> summary(Cabra.lm)

Call: lm(formula = leite ~ ano, data = Cabra)

[...℄

Residual standard error: 0.8672 on 24 degrees of freedom

Multiple R-squared: 0.8738, Adjusted R-squared: 0.8685

F-statisti: 166.1 on 1 and 24 DF, p-value: 2.807e-12

The value of R2 (with greater precision) can be obtained as follows:

> summary(Cabra.lm)$r.sq
[1] 0.8737681
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Extracting information from a fitted regression

The lm command creates an object of type list:

> is.list(Cabra.lm) <– asks whether Cabra.lm is a list

[1℄ TRUE

> names(Cabra.lm) <– requests the names of the list components

"oeffiients" "residuals" "effets" "rank" "fitted.values" "assign"

"qr" "df.residual" "xlevels" "all" "terms" "model"

Each list component can be extracted by writing the list and component
names, separated by a dollar sign:

> Cabra.lm$coef <– component name may be incomplete if unambiguous

(Interept) ano

-575.7003723 0.2922646

For more information on each list element: help(lm).
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Extracting information from a regression (cont.)

The summary command, applied on a fitted regression, produces a
second object of type list. Here are its components:

> names(summary(Cabra.lm))

[1℄ "all" "terms" "residuals" "oeffiients"

[5℄ "aliased" "sigma" "df" "r.squared"

[9℄ "adj.r.squared" "fstatisti" "ov.unsaled"

Individual components may be extracted from this output list, as seen
before: summary(Cabra.lm)$r.sq gives the value of R2.
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Regression - a bit of History

The name Regression has its origins in a study by Francis Galton
(1886), relating the height of n = 928 young adults with the (mean)
height of their parents. Galton invented the term eugenics, a concept
that was considered reputable until the early 20th century.

Galton noted that parents with above average heights tended to have
children with heights above the mean - but less tall than their parents
(likewise for those below the mean height).

Galton called his article Regression towards mediocrity in hereditary

stature. This is the origin of the association of the name regression
with the method.

Curiously, Galton’s dataset has a very low Coefficient of Determination.
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A bit of History (cont.)
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A disadvantage of the Least Squares criterion
The fitting criterion (minimise SQRE) is sensitive to outliers.

We illustrate with a dataset from R’s MASS package (initials of the book
Modern Applied Statistics with S, by Venables and Ripley).

Animals - MASS package
> library(MASS) <– to load package MASS
> help(Animals)

Animals pakage:MASS R Doumentation

[...℄

Average brain and body weights for 28 speies of land animals.

[...℄

'body' body weight in kg.

'brain' brain weight in g.

[...℄

Soure:

P. J. Rousseeuw and A. M. Leroy (1987) _Robust Regression and

Outlier Detetion. Wiley, p. 57.
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Example: Animals dataset
> Animals

body brain

Mountain beaver 1.350 8.1

Cow 465.000 423.0

Grey wolf 36.330 119.5

Goat 27.660 115.0

Guinea pig 1.040 5.5

Dipliodous 11700.000 50.0

Asian elephant 2547.000 4603.0

Donkey 187.100 419.0

Horse 521.000 655.0

Potar monkey 10.000 115.0

Cat 3.300 25.6

Giraffe 529.000 680.0

Gorilla 207.000 406.0

Human 62.000 1320.0

Afrian elephant 6654.000 5712.0

Trieratops 9400.000 70.0

Rhesus monkey 6.800 179.0

Kangaroo 35.000 56.0

Golden hamster 0.120 1.0

Mouse 0.023 0.4

Rabbit 2.500 12.1

Sheep 55.500 175.0

Jaguar 100.000 157.0

Chimpanzee 52.160 440.0

Rat 0.280 1.9

Brahiosaurus 87000.000 154.5

Mole 0.122 3.0

Pig 192.000 180.0
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Simple linear regression and outliers
Example: Animals
Most observations follow a linear relation between the logarithms of brain and
body weights.

But three species of dinosaurs are outliers and affect the fitted line.
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Simple linear regression and outliers (cont.)

Exemplo: Animals
Excluding those observations changes the fitted line and its quality.
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R

2 = 0.92

In this case, we can exclude the 3 outliers because they are from a “different
reality” (extinct species). There are alternative fitting criteria that are robust.
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Non-linear relations and linearizing transformations

In some cases, an underlying non-linear trend between x and y can be
linearized by suitable transformations of one, or both, variables.

Such transformations enable us to apply simple linear regressions
even when the original relation is non-linear.

These linearizing transformations can also be useful when there is
more than one predictor.

We consider some particularly frequent examples of non-linear
relations that can be linearized by transformations of the response
variable and, in some cases, also of the predictor.
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The exponential relation

Exponential relation

y = c ed x

(y>0 ; c>0)
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Linearizing transformation: y∗=ln(y) and x∗=x
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Linearizing an exponential relation

Taking logarithms in the exponential equation, we obtain a linear relation
between y∗=ln(y) and x :

y = c ed x ⇔ ln(y) = ln(c) + ln(ed x ) = ln(c) + d x

⇔ y∗ = b0 + b1 x

with slope b1=d and intercept b0=ln(c).

The sign of the line’s slope indicates whether the original exponential relation
is increasing (b1 > 0) or decreasing (b1 < 0).
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Linearizing the relation
Example 4: weight of babies at birth
A scatterplot of log-weights of new-born babies versus the duration of
pregnancy shows an underlying linear relation:
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This linearization means that the original relation (weight vs. duration of
pregnancy) may be considered exponential.
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The exponential relation

Differential equation corresponding to the exponential
An exponential relation results from assuming that y is a function of x

and that the rate of change of y , that is, the derivative y ′(x), is
proportional to y :

y ′(x) = d ·y(x) ,
i.e., that the relative rate of change of y is constant:

y ′(x)
y(x)

= d .

Integrating (in relation to x), we have (since y > 0):

ln |y(x)| = d x +K ⇔ y(x) = eK+d x ⇔ y(x) = eK ed x .

The slope of the line b1 is the constant d relative rate of change of y .

The integration constant K is the intercept: K =b0.
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Logistic model for population growth

An exponential model is frequently used to describe population growth, in an
initial phase where the impact of limiting resources is not yet felt. But
exponential population growth is not sustainable in the long run.

In 1838 Verhulst1 suggested an alternative model for population growth,
which accounted for effects of resource shortages: the logistic model.

We consider here a simplified (2 parameter) version of a logistic curve,
associated with a response variable that gives the proportion of the carrying
capacity of the environment (size of population in relation to its maximum
possible value).

1Verhulst, P.-F. (1838), Notice sur la loi que la population poursuit dans son
accroissement. Corresp. Math. Phys. 10, 113-121
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Logistic relation (with 2 parameters)

Two-parameter logistic relation

y = 1
1+e−(c+d x)

(y ∈ ]0,1[)
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Linearizing transformation: logit transformation of y , i.e.,

y∗ = ln
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e x∗ = x
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Linearizing the logistic relation

Since y ∈ ]0,1[, the logit transformation, y∗ = ln
(

y
1−y

)

, is well defined.

The logistic relation between y and x corresponds to a linear relation

between y∗ = ln
(

y
1−y

)

and x∗=x :

y =
1

1+ e−(c+d x)
⇔ 1− y = 1− 1

1+ e−(c+d x)
=

e−(c+d x)

1+ e−(c+d x)

⇔ y

1− y
=

1
e−(c+d x)

= ec+d x

⇔ ln

(
y

1− y

)

︸ ︷︷ ︸

=y∗

= c
︸︷︷︸

=b0

+ d
︸︷︷︸

=b1

x
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More on the Logistic

Differential equation of the logistic (with 2 parameters)
The logistic relation results from assuming that y is a function of x and
that y ’s relative rate of growth decreases linearly with the growth of y :

y ′(x)
y(x)

= d · [1−y(x)] .

The previous equation is equivalent to:

y ′(x)
y(x) · [1−y(x)]

= d ⇔ y ′(x)
y(x)

+
y ′(x)

1−y(x)
= d

Integrating (in relation to x), gives (since
∫ f ′

f
= ln(|f |):

lny(x)− ln(1−y(x)) = d x +K

⇔ ln

(
y

1−y

)

= b1 x +b0 .

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 51 / 360



Power (or allometric) relation

Power law

y = c xd

(x ,y>0 ; c>0)
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Linearizing transformation: y∗=ln(y) and x∗=ln(x).
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The linearization of a power relation

Taking logarithms, we have:

y = c xd ⇔ ln(y) = ln(c xd ) = ln(c) + ln(xd )

⇔ ln(y) = ln(c) + d ln(x)

⇔ y∗ = b0 + b1 x∗

which is a linear relation between y∗ = ln(y) and x∗ = ln(x).

The slope b1 of the line is the exponent d in the power law.

The intercept is b0=ln(c), that is, c = eb0 .
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Another linearization in Example 4

A different linearization for the weight of babies
The scatterplot of log-weights of new-born babies vs. the log-duration of
pregnancy results in another underlying linear trend:
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This linearization means that the original relation (weight vs. duration of
pregnancy) can also be considerad a power relation.
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More on the power relation

A differential equation for a power relation
A power relation results from assuming that y is a function of x and the
relative rate of growth of y , i.e., the ratio y ′(x)

y(x) , is inversely proportional to x :

y ′(x)
y(x)

=
d

x
.

Integrating (in relation to x), gives (since y > 0 and x > 0):

ln |y(x)|
︸ ︷︷ ︸

=y∗

= d
︸︷︷︸

=b1

ln |x |
︸︷︷︸

=x∗

+ K
︸︷︷︸

=b0

⇔ y(x) = eK+ln(xd ) ⇔ y(x) = eK xd .

The line’s slope b1 is the constant of (inverse) proportionality d .

The constant of integration K is the line’s intercept: K =b0.
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Another differential equation for the power relation

The allometric differential equation
A different way of obtaining a power relation, used in the study of allometry, is
to assume that y and x are both functions of a third variable t (i.e, y(t) and
x(t)) and that the relative rates of growth of y and x are proportional:

y ′(t)
y(t)

= d · x ′(t)
x(t)

.

Integrating (in relation to t) gives:

lny = d lnx +K

and exponentiating,

y = ed lnx+K = ed lnx · eK = xd · eK
︸︷︷︸

=c

⇔ y = c xd .

Studies of allometry compare the size of different parts of an organism.
Isometry results when d =1.
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A hyperbolic (or inverse proportionality) relation

Hyperbolic-type relation

y = 1
c+d x

(x ,y>0 ; c,d>0)
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Linearizing transformation: y∗ = 1/y and x∗ = x
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The linearization of a hyperbolic relation

Taking reciprocals in a hyperbolic-type relation, gives a
linear relation between y∗ = 1

y and x :

y =
1

c + d x
⇔ 1

y
= c + d x

⇔ y∗ = b0 + b1 x .

with b0 = c and b1 = d .

Relations of a hyperbolic type have been used, in Agronomy, to model the
relation between yield per plant (y ) and crop density (x ), for some crops.

Attention: For values of y close to zero, the reciprocal becomes very large.
Observations with yi ≈0 tend to dominate the fit in a linearized relation.
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More about hyperbolic-type relations

Differential equation for a hyperbolic-type relation
Assume that the (decrease) in the rate of variation of y is proportional to the
square of y :

y ′(x) =−d y2(x)

or equivalently, that the relative rate of growth of y is proportional to y :

⇔ y ′(x)
y(x)

=−d y(x) .

Re-writing the equation as y ′(x)
y2(x)

=−d , and integrating
(
∫

f α .f ′ = f α+1

α+1

)

, we have:

− 1
y(x)
︸ ︷︷ ︸

=y∗

=− d
︸︷︷︸

=b1

x + K
︸︷︷︸

=b0

⇔ y(x) =
1

d x +c
,

with c =−K . The constant of proportionality (−d) is minus the slope of the line (b1).
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Michaelis-Menten relation

Michaelis-Menten relation

y = x
c+d x
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The horizontal line y = 1
d

is an asymptote on the right.

Linearizing transformation: y∗ = 1
y

e x∗ = 1
x
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Linearizing the Michaelis-Menten relation

Taking reciprocals in the Michaelis-Menten relation, we obtain a
linear relation between y∗ = 1

y and x∗ = 1
x :

y =
x

c + d x
⇔ 1

y
=

c+d x

x

⇔ 1
y

=
c

x
+ d = c · 1

x
+ d

⇔ y∗ = b0 + b1 x∗ ,

with b0 = d e b1 = c.

Attention: For values of y or x close to zero, the reciprocals become very
large. Observations with yi ≈0 and/or xi ≈0 tend to dominate the fit in the
linearized relation.
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Michaelis-Menten relation (cont.)

The Michaelis-Menten relation is used in the study of enzymatic
reactions, relating the rate of reaction with the concentration of the
substrate.

In agronomical yield models it is known as the Shinozaki-Kira
model, with y giving the total yield and x the crop density.

In fisheries it is known as the Beverton-Holt model: y is the
recruitament (size of the next generation) and x is the size of the
stock (previous generation).
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Michaelis-Menten relation (cont.)

Differential equation for a Michaelis-Menten relation
A Michaelis-Menten relation results by assuming that y is a function of x and
the growth rate of y is proportional to the squared ratio of y over x :

y ′(x) = c

[
y(x)

x

]2

.

Re-writing the equation as y ′(x)
y2(x)

= c 1
x2 , and integrating

(
∫

f α .f ′ = f α+1

α+1

)

, we have:

− 1
y(x)

= −c
1
x
+K ⇔ 1

y(x)
= c

1
x
−K

︸ ︷︷ ︸

⇔ y∗ = b1 x∗+b0

=
c−K x

x

⇔ y(x) =
x

d x +c
,

with d =−K = b0 and c = b1, the constant of proportionality.

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 63 / 360



Warning about linearizing transformations

A simple linear regression does not directly model non-linear relations
between x and y . It may model a linear relation between transformed
variables.

Transformations of the response variable y have a major impact on the fit: the
scale of residuals is changed.

Concepts that depend on the scale of y values, such as SQRE and R2, are
not directly comparable, with or without a transformation of the response
variable.

Note: Linearizing, obtaining the parameter values b0 and b1 for the regression
line and then undoing the linearizing trasnformation does not give the same
parameter values as would result from directly minimising the sum of squared
residuals on the non-linear relation, using a Non-linear Regression.
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Multiple Linear Regression

It may be necessary to have more than one predictor to model the response
variable of interest.

Example 7: Antoi dataset
In a study of an experimental population of clones of the Tinta Francisca
grape variety, carried out in Tabuaço in 2003, the following variables were
observed on 24 grapevines:

anthocyans (variable antoi, in mg/dm3);

total phenols (variable fentot);

pH (variable pH).

We seek to study the relation between the anthocyan content (response
variable) and the content of total phenols and pH.
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The scatterplot for Example 7
The n = 24 observations of three variables produce a 24-point scatterplot in
R3, which seems to be well approximated by a plane. The scatterplot was
obtained using command satterplot3d, from the R package with the same
name.

 5 10 15 20 25

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

4.0

4.1

4.2

4.3

4.4

4.5

fenois totais

p
H

a
n

to
c
ia

n
a

s

The alternative rggobi package, permits the use of the Ggobi software and is
a powerful tool for the visualization of 3-dimensional plots.
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Planes in R3

Any plane in R3, on the x0y0z system of axes, has an equation

Ax +By +Cz +D = 0 .

In our context, and associating:

the vertical axis (z) with the response variable y ;

axis x with one predictor, x1;

the third axis (y ) with the other predictor, x2,

The equation becomes (if C 6= 0, i.e., for non-vertical planes):

Ax1 +Bx2 +Cy +D = 0 ⇔ Cy =−D−Ax1 −B x2

⇔ y =−D

C
− A

C
x1 −

B

C
x2

⇔ y = b0 +b1x1 +b2x2

This equation extends the straight line equation to 2 predictors.
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Multiple linear regression (p=2 predictors)
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Y = b0 +b1x1 +b2x2

y = b0 +b1x1 +b2x2 is the equation of a plane in R3 (x10x20y ).
The equation has 3 parameters: b0, b1 and b2. It can be fitted with the same
Least Squares criterion used in a simple linear regression: minimise SQRE.
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The general case: p predictors

We seek to model a response variable, y , based on p predictors, x1, x2, ...,
xp. We have n observations on those p+1 variables:

{(
x1(i),x2(i), ...xp(i),yi

)}n

i=1 .

Problem: The standard representation can no longer be visualised when
p > 2, since the observations define an n-point scatterplot in the space Rp+1.

The main traits of the standard representation are:

p+1 axes – one for each variable.

n points – one for each observed individual (experimental unit).

An n-point scatterplot in (p+1)-dimensional space.
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Multiple linear regression: the fitted hyperplane
We assume that the observed values of y have an uderlying trend given by a
linear (affine) combination of the p predictor variables:

y = b0 +b1x1 +b2x2 + ...+bpxp .

This is the equation of a hyperplane in Rp+1.

The criterion used to fit the hyperplane to the n-point scatterplot in Rp+1 is
that of minimising the Sum of Squared Residuals, that is, choosing the p+1
parameters {bj}p

j=0 that minimise:

SQRE =
n

∑
i=1

e2
i =

n

∑
i=1

(yi − ŷi)
2

where yi are the observed values of the response variable and

ŷi = b0 +b1 x1(i)+b2 x2(i)+ ...+bp xp(i)

are the corresponding values fitted using the hyperplane equation.
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Two approaches to obtaining the fitted parameters

To obtain the parameters that define the best-fitting hyperplane it is
possible to use two approaches:

analytic; or

geometric.

In both approaches, the use of a vector-matrix notation is crucial.

No simple formulas exist, as was the case in a simple linear
regression, for each individual parameter bj . But it is possible to obtain
a single matrix formula to obtain all p+1 model parameters at once.

We shall follow the geometric approach.
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An alternative representation: the space of variables

The standard representation of the n observations of y and the p+1
predictors, in Rp+1, is not the only possible one.

There is an alternative representation of the data, that merges geometric
concepts and statistical concepts.

The n observations of y define a vector with n coordinates, i.e., in Rn:

~y = (y1,y2,y3, ...,yn)
t .

Likewise, the n observations of any given predictor variable define a vector in
Rn:

~xj = (xj(1)
,xj(2)

,xj(3)
, ...,xj(n)

)t (j = 1,2, ...,p).

Thus, we can represent the variables as points/vectors in Rn.
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The representation in Rn

In this alternative representation,

each axis corresponds to an observed individual;

each vector corresponds to a variable.

Ind. 2

Ind. 3

Ind. 4

...

Ind. 1 Rn

Ind n

~x3

~x2

~xp

~x1

~1n

~xp−1

The vector of n ones, represented by~1n, is also a vector in Rn.
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The vector of fitted values

The n fitted values ŷi also define a vector in Rn, ~̂y:

~̂y =









ŷ1
ŷ2
ŷ3
. . .
ŷn









=










b0 +b1x1(1)
+b2x2(1)

+ ...+bpxp(1)

b0 +b1x1(2)
+b2x2(2)

+ ...+bpxp(2)

b0 +b1x1(3)
+b2x2(3)

+ ...+bpxp(3)

. . .
b0 +b1x1(n)

+b2x2(n)
+ ...+bpxp(n)










= b0










1
1
1
...
1










+b1











x1(1)

x1(2)

x1(3)

...
x1(n)











+ ...+bp











xp(1)

xp(2)

xp(3)

...
xp(n)











= b0
~1n +b1~x1 +b2~x2 + ...+bp~xp

The vector ~̂y is a linear combination of the vectors~1n,~x1,~x2, ...,~xp
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The model matrix X

The vector ~̂y of fitted values can also be written as a product of a matrix X,
whose columns are the vectors~1n,~x1, ...,~xp.

The model matrix X

X =











1 x1(1)
x2(1)

· · · xp(1)

1 x1(2)
x2(2)

· · · xp(2)

1 x1(3)
x2(3)

· · · xp(3)

...
...

...
. . .

...
1 x1(n)

x2(n)
· · · xp(n)











︸︷︷︸

=~1n

︸︷︷︸

=~x1

︸︷︷︸

=~x2

· · ·
︸︷︷︸

=~xp

The model matrix X has size n× (p+1).
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The matrix products X~a
Products of the form X~a are linear combinations of the columns of matrix X:

X~a =











1 x1(1) x2(1) · · · xp(1)

1 x1(2) x2(2) · · · xp(2)

1 x1(3) x2(3) · · · xp(3)

...
...

...
. . .

...
1 x1(n) x2(n) · · · xp(n)




















a0
a1
a2
...

ap










=










a0 +a1x1(1) +a2x2(1) + ...+apxp(1)

a0 +a1x1(2) +a2x2(2) + ...+apxp(2)

a0 +a1x1(3) +a2x2(3) + ...+apxp(3)

. . .
a0 +a1x1(n) +a2x2(n) + ...+apxp(n)










= a0
~1n +a1~x1 +a2~x2 + ...+ap~xp

The vector ~̂y can be written in this way: ~̂y = X~b, for some vector of (as of yet
unknown) coefficients ~b ∈ Rp+1.
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The model matrix X and its column-space

The set of all linear combinations of a set of vectors is called the
subspace spanned by those vectors.

The subspace spanned by the columns of the model matrix X is called
the column-space of matrix X, C (X).

The vector ~̂y belongs to the subspace C (X) (the vectors~1n,~x1, ...,~xp are

columns of X and ~̂y=b0
~1n+b1~x1+b2~x2+...+bp~xp).

C (X) is a subspace of Rn (C (X) ⊂ Rn), but of dimension p+1
(assuming the columns of X are lineary independent, that is, if none of those
vectors can be written as a linear combination of the others).

Any linear combination of the columns of matrix X, that is, any element
of C (X) can be written as X~a, where~a = (a0,a1,a2, ...,ap) is the vector of
coefficients of the linear combination.
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The parameters

Each possible choice of coefficients~a = (a0,a1,a2, ...,ap) corresponds to
a point/vector of subspace C (X).

That choice of coefficients is unique if the columns of X are linearly
independent, that is, if there is no linear dependence (multi-collinearity)
between the variables ~x1, ...,~xp,~1n.

One of the points/vectors in the subspace is the linear combination given
by the vector of coefficients ~b = (b0,b1, ...,bp), that minimises:

SQRE =
n

∑
i=

e2
i =

n

∑
i=

(yi − ŷi)
2

where the yi are the observed values of the response variable and
ŷi = b0 +b1 x1(i)+b2 x2(i)+ ...+bp xp(i) are the fitted values. This is the
linear combination that we seek.

How do we identify this point/vector?
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Geometry

Let us use geometric arguments.

We have a vector of n observations of~y which belongs to Rn but,
in general, does not belong to the subspace C (X).

We wish to approximate this vector by another vector,
~̂y = b0

~1n +b1~x1 + ...+bp~xp, which belongs to the subspace C (X).

Let us approximate the vector of observations~y by the vector ~̂y in
subspace C (X) that is closest to~y.

SOLUTION:

Take the orthogonal projection of~y onto C (X) : ~̂y = H~y.
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The orthogonal projection of~y onto C (X)

C (X)

Rn
~y

~̂y = H~y

The vector of C (X)⊂ Rn closest to vector~y ∈ Rn is the vector ~̂y that
results from orthogonally projecting~y onto C (X).

This orthogonal projection creates a right triangle in Rn.
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The criterion minimises SQRE
Recall definitions regarding vectors:

The norm (size) of vector~x = (x1,x2, ...,xn)
t is ‖~x‖=

√
~xt~x =

√
n

∑
i=1

x2
i .

The distance between two vectors~x is~y the norm of their difference:

dist(~x,~y) = ‖~x−~y‖=
√

n

∑
i=1

(xi − yi)2.

Choosing the vector ~̂y ∈ C (X) that minimises the distance to the vector of
observations~y means minimising the squared distance:

dist2(~y,~̂y) = ‖~y−~̂y‖2 =
n

∑
i=1

(yi − ŷi)
2 = SQRE .

In other words, minimising the sum of squared residuals.

The geometric concept is equivalent to the statistical criterion used to fit the
parameters in a Linear Regression.
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SQRE in the orthogonal projection

C (X)

Rn

√
SQRE = ‖~y−~̂y‖

~y

~̂y = H~y

The squared distance between~y and ~̂y is SQRE , the sum of squared
residuals.
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Orthogonal projections

The orthogonal projection of a vector~y ∈ Rn onto the subspace C (X)
spanned by the (linearly independent) columns of X results from
pre-multiplying ~y by the matrix of orthogonal projections onto C (X):

Matrix of orthogonal projections onto C (X)

H = X
(
Xt X

)−1
Xt .

The matrices of orthogonal projections P onto some subspace of Rn are n×n

matrices that are:

symmetric (that is, Pt = P); and

idempotent (that is, PP = P).

Matrix H has these properties (Exercise RL 11: confirm!).
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Orthogonal projections in the context of a MLR
In the context of a multiple linear regression, we have:

~̂y = H~y

⇔ ~̂y = X(Xt X)−1Xt~y
︸ ︷︷ ︸

= ~b

The linear combination of the vectors~1n,~x1, ...,~xp that generates the vector
closest to~y has coefficients given by the elements of vector ~b:

The vector of fitted parameters

~b =

















b0
b1
b2
...

bp

















= (XtX)−1Xt~y .
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The three Sums of Squares
Recall the three Sums of Squares:

SQRE The Residual Sum of Squares:

SQRE =
n

∑
i=1

(yi − ŷi)
2 .

SQT The Total Sum of Squares:

SQT =
n

∑
i=1

(yi −y)2 =
n

∑
i=1

y2
i −ny2 .

SQR The Regression Sum of Squares:

SQR =
n

∑
i=1

(ŷi −y)2 =
n

∑
i=1

ŷ2
i −ny2 .
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Pythagoras and Linear Regression

Pythagoras’ Theorem is valid in any Euclidean space Rn.
The right triangle on slide 82 produces the following relation:

C (X)

Rn

√
SQRE = ‖~y−~̂y‖

~y

~̂y = H~y

‖~y‖2 = ‖~̂y‖2 + ‖~y−~̂y‖2

⇔
n

∑
i=1

y2
i =

n

∑
i=1

ŷ2
i +

n

∑
i=1

(yi − ŷi)
2

︸ ︷︷ ︸

= SQRE

⇔
n

∑
i=1

y2
i −ny2 =

n

∑
i=1

ŷ2
i −ny2 +SQRE

⇔ SQT = SQR+SQRE
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Revisiting Pythagoras

The fundamental relation of Linear Regressions (SQT = SQR+SQRE)
results from applying Pythagoras’ Theorem. But it was necessary to subtract
ny2 from both sides of the equation. A different right triangle is statistically
more interesting.

Define the centred vector,~yc , the generic element of which is the deviation of
each yi from the mean: yi − y.

~yc =








y1−y
y2−y

...
yn−y







=








y1
y2
...

yn







−








y
y
...
y








= ~y− (y)~1n.

The norm of this vector is ‖~yc‖ =

√
n

∑
i=1

(yi − y)2 =
√

SQT .
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Revisiting Pythagoras (cont.)

The orthogonal projection of vector~yc onto the subspace C (X) produces the
vector:

H~yc = H
[

~y− (y) ·~1n

]

⇔ H~yc = H~y− (y) ·H~1n

⇔ H~yc = ~̂y− (y) ·~1n

since H~1n =~1n, because vector~1n already belongs to the subspace C (X),
and so remains invariant when projected onto that same subspace – see
Exercise 11.

The vector H~yc has the generic element ŷi − y . Its norm is:

‖H~yc‖=
√

n

∑
i=1

(ŷi − y)2 =
√

SQR .
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Revisiting Pythagoras (cont.)

The distance between vector~yc and its orthogonal projection onto
C (X) continues to be

√
SQRE:

~yc −H~yc = [~y−✚
✚✚y~1n]− [~̂y−✚

✚✚y~1n]

⇔ ~yc −H~yc = ~y−~̂y

and so:

‖~yc −H~yc‖= ‖~y−~̂y‖=
√

n

∑
i=1

(yi − ŷi)2 =
√

SQRE .
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Revisiting Pythagoras (cont.)

The fundamental formula of Linear Regression, SQT = SQR + SQRE ,
results from a direct application of the Pythagorean Theorem to the triangle
defined by~yc and its orthogonal projection onto C (X).

~yc

√
SQRE = ‖~yc −H~yc‖= ‖~y−H~y‖

Rn

C (X)
H~yc

√
SQT = ‖~yc‖

√
SQR = ‖H~yc‖
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Pythagoras and the Coefficient of Determination

Another important connection between the geometry of space Rn and
Linear Regression exists:

The coefficient of determination R2 = SQR
SQT

is the squared cosine of the
angle between the centred vector of observations of the response
variable,~yc, and its orthogonal projection onto subspace C (X):

cos2(θ) =
SQR

SQT
= R2 ,

where θ is the angle between vectors~yc and H~yc.
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Pythagoras and Coefficients of Determination (cont.)

Rn

C (X)

√
SQT = ‖~yc‖

√
SQR = ‖H~yc‖

√
SQRE = ‖~y−H~y‖

θ

~yc

H~yc

The Coefficient of Determination in a Linear Regression, R2 = SQR
SQT

,
is the squared cosine of the angle between~yc and H~yc.
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Properties of the Coefficient of Determination

The geometric approach confirms that, in a Multiple Linear Regression too,
the Coefficient of Determination has well-known properties:

R2 can take values between 0 and 1.

The closer R2 is to 1, the smaller the angle θ , and so the better the
match between the (centred) vector of observations~yc and its fit onto
C (X).

If R2 ≈ 0, vector~yc is almost perpendicular to the subspace C (X) where
it is being approximated and the projection will almost nullify all the
elements of the projected vector, that is, ŷi − y ≈ 0. The result is of poor
quality: we lose almost all the variability in the values of ŷi ≈ y .
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Properties of models with an intercept

C (X) contains the vector~1n with n ones. Hence, H~1n =~1n, because the
projection of any vector onto a subspace that already contains it leaves the
vector invariant. Therefore, (see also Exercise 11):

The mean of the observed and fitted values of y is the same:

ŷ = 1
n

n

∑
i=1

ŷi =
1
n
~1t

n
~̂y = 1

n
~1t

nH~y = 1
n
~1t

nHt~y = 1
n (H

~1n)
t~y = 1

n
~1t

n~y = y

The sum of residuals is zero:
e = 1

n

n

∑
i=1

ei =
1
n

n

∑
i=1

(yi − ŷi ) = y − ŷ = 0.

In Rp+1, the fitted hyperplane contains the centre of gravity of the
observed n-point scatterplot: y = b0 +b1 x1 +b2 x2 + ...+bp xp .

We have already seen that y = ŷ = 1
n

n

∑
i=1

ŷi . But 1
n

n

∑
i=1

ŷi =

1
n

n

∑
i=1

(bo +b1 x1(i)+b2 x2(i)+ · · ·+bp xp(i)) = bo +b1 x1 +b2 x2 + · · ·+bp xp
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The coefficients bj

The vector of parameters fitted by the least squares method, ~b = (Xt X)−1Xt~y,
generates n fitted values:

~̂y = H~y = X(Xt X)−1Xt~y = X~b

⇔ ŷi = b0 +b1x1(i)+ ...+bpxp(i) , ∀ i .

The units of measurement:

of b0 are the same as those of y (and of ŷ ).

of the parameters bj that multiply variables (j 6= 0) are the ratio of the
units of y over the units of the corresponding xj .

The coefficients {bj}p
j=1 of the predictors can be interpreted as the mean

difference in y , associated with increasing predictor xj by one unit, while
keeping constant all remaining predictors.
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Residuals
The units of measurement of the residuals ei = yi − ŷi are the same as those
of y :

ei = yi − ŷi = yi − (b0 +b1x1(i)+ ...+bpxp(i)) , ∀ i

⇔ ~e = ~y−~̂y = ~y−H~y ,

The vector of residuals,~e, can also be obtained by pre-multiplying vector~y by
the matrix I−H, where I is the n×n identity matrix:

~e = ~y−H~y = (I−H)~y ,

Matrix I−H is symmetric and idempotent, hence it too is a matrix of
orthogonal projections. It projects onto the subspace of Rn of the vectors that
are orthogonal to all vectors of C (X), a subspace called the orthogonal
complement of C (X) and denoted C (X)⊥.

Vector~e is the orthogonal projection of~y onto C (X)⊥.
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Multiple Linear Regressions in

The command lm also fits Multiple Linear Regressions in .
The response variable y and the predictors x1, ...,xp are defined using
a formula similar to that used in simple linear regressions.

E.g., if y is the response variable and x1, x2 and x3 are three
predictors, the formula that specifies the relation will be:

y ∼ x1 + x2 + x3

R command fitting a multiple linear regression
> lm ( y ∼ x1 + x2 + x3 + ... + xp, data=dados)

The command returns the vector ~b with the fitted values of the p+1
model parameters, b0, b1, ..., bp.
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An example of MLR in R

We illustrate a Multiple Linear Regression in R with a famous dataset: the iris
data of Anderson/Fisher, available in the data frame iris.

> help(iris)

iris pakage:datasets R Doumentation

Edgar Anderson's Iris Data

Desription:

This famous (Fisher's or Anderson's) iris data set gives the

measurements in entimeters of the variables sepal length and

width and petal length and width, respetively, for 50 flowers

from eah of 3 speies of iris. The speies are Iris setosa,

versiolor, and virginia.
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MLR example (cont.)

Figura: iris setosa Figura: iris versicolor Figura: iris virginica
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MLR example (cont.)
An initial inspection of the data can be carried out with command head, that
shows the first rows of the data frame:

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Speies

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

The main indicators are given by the command summary:

> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Speies

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versiolor:50

Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginia :50

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Note that the fifth column is a factor. It will, for now, be ignored.
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A descriptive Multiple Linear Regression in (cont.)

A linear regression model to predict the response variable petal width was
fitted, using the petal length and both sepal measurements (width and length)
as predictors, ignoring species.

Multiple LR - iris data

> iris2.lm <- lm(Petal.Width ~ Petal.Length + Sepal.Length +

+ Sepal.Width , data=iris)

> iris2.lm

(...)

Coeffiients:

(Interept) Petal.Length Sepal.Length Sepal.Width

-0.2403 0.5241 -0.2073 0.2228

The fitted hyperplane in R4 (Rp+1) is:

PW = −0.2403+0.5241PL−0.2073SL+0.2228SW
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Confirming the formula (cont.)

Let us confirm the formula for the parameters fitted by the least squares
method. The command model.matrix returns matrix X.

> X <- model.matrix(iris2.lm)
> X

(Interept) Petal.Length Sepal.Length Sepal.Width

1 1 1.4 5.1 3.5

2 1 1.4 4.9 3.0

3 1 1.3 4.7 3.2

4 1 1.5 4.6 3.1

5 1 1.4 5.0 3.6

6 1 1.7 5.4 3.9

7 1 1.4 4.6 3.4

8 1 1.5 5.0 3.4

[...℄

149 1 5.4 6.2 3.4

150 1 5.1 5.9 3.0
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Confirming the formula (cont.)

The necessary R commands for the matrix operations in ~b = (XtX)−1Xt~y are:

t(A) indicates the transpose of matrix A

A %*% B indicates the matrix product of A and B.

solve(A) computes the matrix inverse of A.

> y <- iris$Petal.Width
> b <- solve( t(X) % ∗% X ) %∗% ( t(X) %∗% y )
> b

[,1℄

(Interept) -0.2403074

Petal.Length 0.5240831

Sepal.Length -0.2072661

Sepal.Width 0.2228285

The values on slide 101 are confirmed.
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Models and submodels

Submodels
Given a multiple linear regression model, with equation

y = b0 +b1x1 +b2x2 + ...+bpxp ,

we call a linear regression with only some of these predictors a submodel.

For example, a simple linear regression

Petal.Width = b0 +b1Petal.Length

is a submodel of the multiple linear regression that was fitted above,

Petal.Width = b0 +b1Petal.Length+b2Sepal.Length+b3Sepal.Width

Warning: A submodel (S) cannot have predictors that were not used in the
complete (C), or full, model. The response variable must be the same.
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R2 in submodels

Coefficients of Determination in submodels: R2
s ≤ R2

c

The R2
s of a submodel cannot be larger than the R2

c of the full model.
The column-space of a submodel is contained in the column-space of the full model:
C (Xs)⊆ C (Xc). Hence, the angle between~y and ~̂ys ∈ C (Xs) cannot be smaller than
the angle between~y and ~̂yc ∈ C (Xc) , since ~̂ys also belongs to C (Xc).

For the model in slide 101: R2=0.9379.
For the simple linear regression with predictor Petal.Length: R2=0.9271.

Still the iris example
> summary(iris2.lm)$r.sq

[1℄ 0.9378503

> iris.lm <- lm(Petal.Width ~ Petal.Length, data = iris)

> summary(iris.lm)$r.sq

[1℄ 0.9271098
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Equation of submodels

The fitted parameter values are not the same
The fitted equation in a submodel is not the corresponding part of the fitted
equation for the full model.

Again the iris example
> oef(iris.lm)

(Interept) Petal.Length

-0.3630755 0.4157554

> oef(iris2.lm)

(Interept) Petal.Length Sepal.Length Sepal.Width

-0.2403074 0.5240831 -0.2072661 0.2228285
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Polynomial regression

A specific case of non-linear relation, even if only with a single
predictor, may be easily studied using multiple linear regression: the
case of polynomial relations between y and one or more predictors.

Imagine an underlying parabolic relation between a response variable
y and a single predictor x given by:
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Polynomial Regression - Example

Example 5 – Vine leaves
Consider the dataset with measurements on n=600 vine leaves.

This is the scatterplot for areas vs. length of the main vein, with the
regression line on top.
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There is an underlying curvature. Maybe a 2d degree polynomial?
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Polynomial regression- Example (cont.)
A parabola, with equation

Y = β0 +β1x +β2x2 ,

can be fitted as a linear regression of y on 2 predictors X1=X and X2=X2:

> videiras.lm2 <- lm( Area ∼ NP + I(NPˆ2) , data=videiras )
> videiras.lm2

Call:

lm(formula = Area ~ NP + I(NP^2), data = videiras)

Coeffiients:

(Interept) NP I(NP^2)

7.5961 -0.2172 1.2941

> summary( videiras.lm2 )$r.sq

[1℄ 0.8161632

The equation of the fitted parabola is y = 7.5961−0.2172x+1.2941x2. The value
R2=0.8162 indicates that some 82% of the observed variability in leaf surface areas
is accounted for by the quadratic regression (here, y was not transformed).
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Polynomial regression - Example (cont.)

The fitted parabola
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y = 7.5951 − 0.2172x + 1.2941x
2

R
2 = 0.8162

R
2 = 0.8003

The equation of the fitted line is y =−144.15+28.34x , confirming that the fitted
equation of a submodel (in this case, the regression line) is not the relevant part of the
equation fitted for the full model (in this case, the parabolic model).
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Polynomial regressions (cont.)

A similar reasoning applies with polynomials of any degree, and for
any number of predictors. Two examples:

A p-th degree polynomial on a single variable:

Y = β0 +β1 x
︸︷︷︸

=x1

+β2 x2
︸︷︷︸

=x2

+β3 x3
︸︷︷︸

=x3

+...+βp xp
︸︷︷︸

=xp

A second degree polynomial with two variables:

Y = β0 +β1 x
︸︷︷︸

=x1

+β2 x2
︸︷︷︸

=x2

+β3 z
︸︷︷︸

=x3

+β4 z2
︸︷︷︸

=x4

+β5 xz
︸︷︷︸

=x5
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Linear regression - Inference

So far, linear regression was only used as a descriptive method. If the n

observations were the totality of the population of interest, there would
be little to add.

But the n observations are often just a random sample from a larger
population.

A fitted hyperplane, y = b0 +b1 x1 +b2 x2 + ...+bp xp, based on any one
sample is merely an estimate of a population hyperplane

y = β0 +β1x1 +β2x2 + ...+βpxp .

Other samples would give rise to different fitted hyperplanes.

The issue of statistical inference becomes relevant.
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Statistical inference in Linear Regression

POPULATION

RANDOM

SAMPLING

STATISTICAL

INFERENCE

SAMPLE

(unknown hyperplane)

(known hyperplane)

y = β0 +β1 x1 + ...+βp xp

y = b0 +b1 x1 + ...+bp xp
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MODEL - Linear Regression

In order to make inference about the population hyperplane possible, we
must make additional assumptions.

Y – random response variable.

x1, ..., xp – non-random predictor variables (controlled by the
experimenter or the model will be conditional on the observed
values of x1, ..., xp)

The model will be fitted based on:

{(x1(i),x2(i), ...,xp(i),Yi )}n
i=1 – n sets of independent observations of the

variables x1, x2, ..., xp and Y , on n experimental units.
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LR MODEL – Linearity

We also assume that there is an underlying relation between Y and x1,
x2, ..., xp, that is linear (affine), with random variability around that
trend relation. This variability is represented by a random error ε . For
all i = 1, ...,n:

Yi = β0 + β1 x1(i) + ... + βp xp(i) + εi

↓ ↓ ↓ ↓ ↓ ↓ ↓
r.v. ct. ct. ct. ct. ct. r.v.
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Linear Regression MODEL – Random errors

We also assume that the random errors εi :

Have an expected value (mean value) of zero:

E [εi ] = 0 , ∀ i = 1, ...,n

(this is not a restrictive assumption).

Have a Normal distribution (this is restrictive, but fairly general).

Variance homogeneity: all errors have the same variance

V [εi ] = σ2 , ∀ i = 1, ...,n

(restrictive, but convenient).

Are independent random variables (r.v.)
(restrictive, but convenient).
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The Linear Model
The model for inferential purposes in a linear regression is therefore:

The Linear Model
1 Yi = β0 +β1x1(i)+β2x2(i)+ · · ·+βpxp(i)+ εi , ∀ i = 1, ...,n.

2 εi ⌢ N (0 , σ2), ∀ i = 1, ...,n.
3 {εi}n

i=1 are independent r.v..

NOTE: The random errors are independent and identically distributed (i.i.d.)
random variables.

Given the model, the expected (mean) value of Yi , conditional on the values
x1,x2, ...,xp of the predictors, is:

µi = E [Yi |x1,x2, ...,xp] = β0 +β1x1 +β2x2 + ...+βpxp .

NOTE: βj (j 6= 0) is the mean change in Y , associated with an increase of one
unit in xj , whilst keeping the remaining predictors constant.
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Simple Linear Regression MODEL

Ilustrating the model in the case of a simple linear regression:

Y

x

Y = β0+β1x
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Studying the model

A first inferential goal: the p+1 model parameters, βj (j = 0,1, ...,p).

The fitted parameters ~b = (b0,b1,b2, ...,bp), obtained applying the formula on
slide 84 for a given sample, are estimates of those parameters.

In order to obtain confidence intervals and/or carry out hypothesis tests on
the values of the population parameters βj , we must:

Define estimators β̂j for the population parameters;

Determine their probability distributions (given the model);

The validity of the inference depends on the validity of the model
assumptions.
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The matrix/vector notation

Studying the model (namely when there is more than one predictor) requires
appropriate tools to deal with random vectors.

The model equations for the n observations (slide 117) may be written as a
single equation, using vector/matrix notation:

Y1 = β0 +β1x1(1)+β2x2(1)+ · · ·+βpxp(1) + ε1
Y2 = β0 +β1x1(2)+β2x2(2)+ · · ·+βpxp(2) + ε2
Y3 = β0 +β1x1(3)+β2x2(3)+ · · ·+βpxp(3) + ε3
...

...
...

...
...

Yn
︸︷︷︸

=~Y

= β0 +β1x1(n)+β2x2(n)+ · · ·+βpxp(n)
︸ ︷︷ ︸

=X~βββ

+ εn
︸︷︷︸

=~εεε
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Matrix/vector notation (cont.)

The n equations correspond to a single vector equation:

~Y = X~βββ + ~εεε ,

where:

~Y=










Y1
Y2
Y3
...

Yn










, X=











1 x1(1)
x2(1)

· · · xp(1)

1 x1(2)
x2(2)

· · · xp(2)

1 x1(3)
x2(3)

· · · xp(3)

...
...

...
. . .

...
1 x1(n)

x2(n)
· · · xp(n)











, ~βββ =










β0
β1
β2
...

βp










, ~εεε =










ε1
ε2
ε3
...

εn










~Y and~εεε are random vectors,

X is a non-random matrix and ~βββ a non-random vector.
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The vector of estimators
~̂
βββ

The vector of estimators ~̂
βββ = (β̂0, β̂1, ..., β̂p)

t is defined from the equation for
the vector of estimates ~b (slide 84), but replacing the vector~y of observed
values of y with the random vector ~Y.

Least Squares parameter estimators
~̂
βββ = (XtX)−1Xt~Y .

The resulting estimators are the least squares estimators.

Given the Linear Model, they are also maximum likelihood estimators.
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Tools for random vectors
Three random vectors have already been introduced:

~Y (the n observations of the response variable);

~εεε (the n random errors); and

~̂
βββ (the p+1 estimators β̂j ).

We need tools to work with random vectors.

For any random vector ~Z = (Z1,Z2, ...,Zk )
t , we define:

The expected vector of ~Z, with the expected values of each component:

~µµµZ = E [~Z] =











E [Z1]
E [Z2]

...
E [Zk ]











.

If W is a random matrix, we can also define E [W] as the matrix of the expected values

of each element.
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Tools for random vectors (cont.)

the variance-covariance matrix of ~Z has as elements the covariances for
each pair of components:

V [~Z] =
























V [Z1] C[Z1,Z2] C[Z1,Z3] . . . C[Z1,Zk ]

C[Z2,Z1] V [Z2] C[Z2,Z3] . . . C[Z2,Zk ]

C[Z3,Z1] C[Z3,Z2] V [Z3] . . . C[Z3,Zk ]

...
...

...
. . .

...

C[Zk ,Z1] C[Zk ,Z2] C[Zk ,Z3] . . . V [Zk ]
























This is necessarily a symmetric matrix.
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Propeties of the expected vector

As in the case with random variables, so too the expected vector of a
random vector ~Zk×1 has simple properties:

If b is a non-random scalar, E [b~Z] = b E [~Z].

If~ak×1 is a non-random vector, E [~Z+~a] = E [~Z]+~a.

If~ak×1 is a non-random vector, E [~at~Z] =~at E [~Z].

If Bm×k is a non-random matrix, E [B~Z] = BE [~Z].

Also, the expected vector of the sum of two random vectors has the
simple property:

If ~Zk×1, ~Uk×1 are random vectors, E [~Z+~U] = E [~Z]+E [~U].
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Properties of the (co)variance matrix

If b is a non-random scalar, V [b~Z] = b2 V [~Z].

If~ak×1 is a non-random vector, V [~Z+~a] = V [~Z].

If~ak×1 is a non-random vector, V [~at~Z] =~at V [~Z]~a.

If Bm×k is a non-random matrix, V [B~Z] = BV [~Z]Bt .

The variance-covariance matrix of the sum of two random vectors has
a simple property when the random vectors are independent:

If ~Zk×1 and ~Uk×1 are independent random vectors, then
V [~Z+~U] = V [~Z]+V [~U].
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The Multivariate Normal Distribution

Random vectors have multivariate probability distributions. The most
important multivariate distribution is the Multinormal:

Multivariate Normal Distribution

The k-dimensional random vector ~Z has a Multinormal distribution,
with parameters given by the vector ~µµµ and the invertible matrix ΣΣΣ if its
joint density function is:

f (~z) =
1

(2π)k/2
√

det(ΣΣΣ)
e−

1
2 (~z−~µµµ)t ΣΣΣ

−1
(~z−~µµµ) , ~z ∈ Rk .

Notation: ~Z ⌢ Nk (~µµµ ,ΣΣΣ).

Warning: A generalized Multinormal is also defined when matrix ΣΣΣ is
not invertible, using the generalized inverse ΣΣΣ−.
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The Binormal (Multinormal with k = 2) density function

x

y

z
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Some properties of the Multinormal distribution

Theorem (Properties of Multinormal distribution)

If ~Z ⌢ Nk (~µµµ ,ΣΣΣ):

1 The expected vector of ~Z is E [~Z] =~µµµ .

2 The (co)variance matrix of ~Z is V [~Z] =ΣΣΣ.

3 If two components of ~Z have zero covariance, they are independent:

Cov(Zi ,Zj) = 0 ⇒ Zi , Zj independent.

Note: In introductory Statistics courses it is shown that
X ,Y independent ⇒ cov(X ,Y ) = 0. When the joint distribution of X and Y is
Multinormal, the converse implication is also true.

Note: Any zero in a (co)variance matrix of a Multinormal indicates that the
corresponding components are independent.
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Properties of the Multinormal (cont.)

Theorem (Properties of the Multinormal)

If ~Z ⌢ Nk (~µµµ ,ΣΣΣ):

4 All the marginal distributions of ~Z are (multi)normal. In particular,

each component Zi is Normal with mean µi and variance ΣΣΣ(i ,i):

Zi ⌢ N (µi ,ΣΣΣ(i ,i)).

5 If~a is a (non-random) k ×1 vector, then ~Z+~a ⌢ Nk (~µµµ +~a,ΣΣΣ).

6 Linear combinations of the components of a Multinormal vector have

Normal distributions: ~at~Z = a1 Z1 +a2 Z2 + ...+ak Zk ⌢ N (~at~µµµ,~atΣΣΣ~a).

7 If B is a non-random matrix m× k (of rank m ≤ k), then

B~Z ⌢ Nm(B~µµµ ,BΣΣΣBt).

Note: In the latter result, if B is a non-random matrix of rank m > k , the
distribution of B~Z has a generalized Multinormal distribution.
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Linear Regression Model - vector version

The Linear Model in vector notation

1 ~Y = X~βββ +~εεε.

2 ~εεε ⌢ Nn(~0 , σ2 In), with ~0 =








0
0
0
. . .
0








; σ2 In =












σ2 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ2 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 . . . σ2












In the second assumption, four statements are being made (considering the
properties of Multinormal distributions discussed above):

Each individual random error εi has a Normal distribution.

Each individual random error has mean zero: E [εi ] = 0.

Each individual random error has the same variance: V [εi ] = σ2.

Different random errors are independent, because Cov [εi ,εj ] = 0 when
i 6= j and, for a Multinormal, that implies independence.
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The distribution of ~Y

The following Theorem is a direct consequence of slides 129 and 130.

Theorem (First implications of the Model)
Given the Linear Regression Model, we have:

~Y ⌢ Nn(X~βββ , σ2 In).

In fact, ~Y is the sum of the non-random vector (X~βββ ) with the random vector (~εεε):

~Y = X~βββ
︸︷︷︸

=′′~a′′

+ ~εεε
︸︷︷︸

=′′~Z′′

.

~εεε ⌢ N (~0,σ2In).

Adding a non-random vector (X~βββ ) to a Multinormal random vector (~εεε) does not destroy Multinormality.

E [~Y] = E [X~βββ +~εεε] = X~βββ +E [~εεε ] = X~βββ .

V [~Y] = V [X~βββ +~εεε] = V [~εεε] = σ2 In .
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The distribution of ~Y (interpretation)

~Y ⌢ Nn(X~βββ , σ2 In).

Taking into account the properties of a Multinormal:

Each individual observation Yi has a Normal distribution.

Each individual observation Yi has mean value
µi = E [Yi ] =~xt

[i ,]
~βββ = β0 +β1x1(i)+β2x2(i)+ ...+βpxp(i).

Each individual observation has the same variance: V [Yi ] = σ2.

Different observations of Y are independent, because Cov [Yi ,Yj ] = 0
when i 6= j and, in a Multinormal, that implies independence.
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The estimator of the Model parameters

We saw that vector
~̂
βββ that estimates the vector ~βββ of population parameters is:

~̂
βββ =

(
XtX

)−1
Xt~Y ,

where X and ~Y are the matrix and vector defined on slide 121.

Vector ~̂βββ has size p+1. Its first element is the estimator of β0, its second
element is the estimator of β1, etc...

In general, the estimator of βj is in position j +1 of vector ~̂βββ .

The general results discussed above make it easy to determine the

probability distribution of estimator ~̂βββ .
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The distribution of the vector of estimators
~̂
βββ

Theorem (Distribution of the estimator
~̂
βββ )

Given the Linear Regression Model, we have:

~̂
βββ ⌢ Np+1(

~βββ , σ2 (XtX)−1) .

~̂
βββ is the product of a non-random matrix, (Xt X)−1Xt , and a random vector,~Y:

~̂
βββ = (Xt X)−1Xt

︸ ︷︷ ︸

“B′′

~Y
︸︷︷︸

“~Z′′

.

~Y ⌢ Nn(X~βββ ,σ
2In).

Multiplying a non-random matrix, (Xt X)−1Xt , by a Multinormal random vector (~Y) does not destroy Multinormality.

E [
~̂
βββ ] = E [(Xt X)−1Xt~Y] = (Xt X)−1Xt E [~Y] = (Xt X)−1Xt X~βββ = In

~βββ =~βββ .

V [
~̂
βββ ] = V [(Xt X)−1Xt~Y] = (Xt X)−1Xt V [~Y][(Xt X)−1Xt ]t = (Xt X)−1Xt ·σ2 In ·X[(Xt X)−1]t = σ2 · (Xt X)−1Xt X[(Xt X)t ]−1 =

σ2(Xt X)−1.
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The distribution of
~̂
βββ (interpretation)

~̂
βββ ⌢ Np+1(

~βββ , σ2 (XtX)−1) .

Taking into account the properties of a Multinormal (slides 129 and 130):

Each individual estimator β̂j has a Normal distribution.

Each individual estimator has mean value E [β̂j ] = βj , and is therefore unbiased.

Each individual estimator has variance V [β̂j ] = σ2
(
XtX

)−1
(j+1,j+1).

(Note the ’+1’ in the indices).

Different individual estimators are not (in general) independent, because

(XtX)−1 is not, in general, a diagonal matrix: Cov [β̂i , β̂j ] = σ2
(
XtX

)−1
(i+1,j+1).

Hence, the estimator β̂j of an individual parameter βj has distribution

β̂j ⌢ N (βj , σ2
β̂j

) , with σ2
β̂j

= σ2 (XtX)−1
(j+1,j+1).
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The sampling distribution of β̂j (interpretation)

β̂j ⌢ N (βj , σ2
β̂j
) with σ2

β̂j
=σ2 (Xt X)−1

(j+1,j+1) .

Sampling Universe

POPULATION
(βj unknown)

b†††
j

b††
j b

†
j

b∗j b∗∗j

b∗∗∗
j

bj =−0.21

Sample value

The set of all possible samples of size n is called the Sampling Universe.

The probability distribution of β̂j can be seen as the distribution of the values
of bj along the Sampling Universe.
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The sampling distribution of β̂j (interpretation)

β̂j ⌢ N (βj , σ2
β̂j
) with σ2

β̂j
=σ2 (Xt X)−1

(j+1,j+1) .

Distribuição na amostragem de β^

β^j

d
n
o
rm

(x
)

βj − 3σj βj − 2σj βj − σj βj βj + σj βj + 2σj βj + 3σj

σj = σ2(XtX)j+1j+1,
−1

% amostras

68.2%
95.4%
99.7%
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The distribution of an individual estimator

As was seen, ∀ j = 0,1, ...,p:

β̂j ⌢ N

(

βj , σ2 (Xt X)−1
(j+1,j+1)

)

⇔ β̂j −βj

σ
β̂j

⌢ N (0,1) ,

with σ
β̂j
=
√

σ2 (Xt X)−1
(j+1,j+1).

This distributional result would enable building confidence intervals or
carrying out hypothesis tests on the parameters ~βββ , were it not for the fact that
the variance σ2 of the random errors is unknown.
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The problem of the unknown value of σ2

In order to use the estimator β̂j for inference, we need to know its
probability distribution, with no unknown quantities, other than βj .

To overcome this problem, it is necessary to:

find an estimator for σ2; and

see what happens to the distribution of β̂j when σ2 is replaced by
its estimator.

As σ2=V (εi), ∀ i , and since the random errors εi are unknown, it is
natural to seek an estimator of σ2 using the residuals.
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Estimating σ2

Random errors (random variables – unobservable)
εi = Yi − (β0+β1x1(i)+β2x2(i)+ ...+βpxp(i))

Residuals (random variables – observable)
Ei = Yi − (β̂0+ β̂1x1(i)+ β̂2x2(i)+ ...+ β̂pxp(i)

︸ ︷︷ ︸

=Ŷi

)

Residuals (observed)
ei = yi − (b0 +b1x1(i)+b2x2(i)+ ...+bpxp(i))

The Maximum Likelihood estimator of σ2 (variance of the random errors) is:

σ̂2
ML

=
SQRE

n
.

But the estimator σ̂2
ML

is biased: E
[

σ̂2
ML

]

=E
[

SQRE
n

]

= n−(p+1)
n ·σ2
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The Residual Mean Square
A simple modification of the maximum likelihood estimator produces an
unbiased estimator.

Residual Mean Square (QMRE)
Define the Residual Mean Square as:

QMRE =
SQRE

n− (p+1)
=

n

∑
i=1

E2
i

n− (p+1)

Given a Linear Model, σ̂2 = QMRE is an unbiased estimator of the variance
that is common to all random errors, σ2 = V [εi ]:

E [QMRE ] = σ2 .

The Residual Mean Square has as units of measurement the square of the
units of Y .
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Pivots for inference on βj

Theorem (Distributions for inference on βj)

Given the Multiple Linear Regression Model, we have:

β̂j −βj

σ̂
β̂j

⌢ tn−(p+1) , ∀ j =0,1, ...,p

with σ̂
β̂j
=
√

QMRE · (XtX)−1
(j+1,j+1).

This Theorem provides results that are at the root of building confidence
intervals and hypothesis tests for the population parameters βj .
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Deduction of confidence intervals for βj

We know that
β̂j−βj

σ̂
β̂j

⌢ tn−(p+1). Thus,

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

x

d
t(

x
, 
n
)

tn−(p+1)

1 − α

α 2 α 2

− tα 2 tα 2

P

[

−t α
2

<
β̂j−βj

σ̂
β̂j

< t α
2

]

= 1−α
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Deduction CI for βj (cont.)

Work on the double inequality so as to isolate βj :

P

[

−t α
2

<
β̂j−βj

σ̂
β̂j

< t α
2

]

= 1−α

−t α
2
· σ̂

β̂j
< β̂j −βj < t α

2
· σ̂

β̂j

⇔ t α
2
· σ̂

β̂j
> βj − β̂j > −t α

2
· σ̂

β̂j

⇔ β̂j − t α
2
· σ̂

β̂j
< βj < β̂j + t α

2
· σ̂

β̂j
.

The random interval
]

β̂j − t α
2
· σ̂

β̂j
, β̂j + t α

2
· σ̂

β̂j

[

contains βj with probability 1−α.
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Random interval for βj (interpretation)
]

β̂j − t α
2
· σ̂

β̂j
, β̂j + t α

2
· σ̂

β̂j

[

POPULATION

]a† ,b†[]a†† ,b††[]a††† ,b†††[ ]a∗ ,b∗[ ]a∗∗ ,b∗∗[ ]a∗∗∗ ,b∗∗∗[

(βj unknown)

b†††
j

b††
j b

†
j

b∗
j b∗∗j

b∗∗∗
j

bj =−0.21

Sampling Universe

]a,b[

Each sample in the Sampling Universe generates a concrete interval, called
Confidence Interval.

A proportion 1−α of those intervals contain the true value of βj . The
remaining α do not contain βj .
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Confidence Interval for βj

(1−α)×100% Confidence Interval for βj

Given the Multiple Linear Regression Model and a sample, the (1−α)×100%
confidence interval for parameter βj is:

]

bj − t α
2 [n−(p+1)]

· σ̂
β̂j

, bj + t α
2 [n−(p+1)]

· σ̂
β̂j

[

,

with:

bj element j+1 of the vector of estimates ~b (slide 83);

t α
2 [n−(p+1)]

the quantile of order 1− α
2 in a tn−(p+1) distribution;

σ̂
β̂j
=
√

QMRE ·(Xt X)−1
(j+1,j+1) (with the value of QMRE from our sample).

NOTE: The size of the CI increases with QMRE and the diagonal element of matrix

(XtX)−1 associated with parameter βj .
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Confidence Intervals for βi in
The information needed for computing the confidence intervals for each βj

can be obtained with the command summary. In the example on slide 101:

> summary(iris2.lm)

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) -0.24031 0.17837 -1.347 0.18

Petal.Length 0.52408 0.02449 21.399 < 2e-16 ***

Sepal.Length -0.20727 0.04751 -4.363 2.41e-05 ***

Sepal.Width 0.22283 0.04894 4.553 1.10e-05 ***

It is estimated that on average, the petal width decreases 0.20727cm for each
additional 1cm in the sepal length (with other measurements fixed).

Since t0.025(146) = 1.976346, the 95% CI for β2 is

] (−0.20727)− (1.976346)(0.04751) , (−0.20727)+(1.976346)(0.04751) [

⇔ ] −0.3012 , −0.1134 [
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Confidence Intervalos for βj in (cont.)

Alternatively, it is possible to use the command onfint to obtain the
confidence intervals for each individual βj :

> onfint(iris2.lm) <� 95% onfidene (by default)

2.5 % 97.5 %

(Interept) -0.5928277 0.1122129

Petal.Length 0.4756798 0.5724865

Sepal.Length -0.3011547 -0.1133775

Sepal.Width 0.1261101 0.3195470

> onfint(iris2.lm , level=0.99) <� 99% onfidene

0.5 % 99.5 %

(Interept) -0.70583864 0.22522386

Petal.Length 0.46016260 0.58800363

Sepal.Length -0.33125352 -0.08327863

Sepal.Width 0.09510404 0.35055304
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Hypothesis Tests on the parameters
The result used to build CIs also enables us to carry out Hypothesis Tests on
any βj . Assuming the Null Hypothesis H0 : βj = c:

T =
β̂j −

=c
︷︸︸︷

βj|H0

σ̂
β̂j

⌢ tn−(p+1) , ∀ j =0,1, ...,p

We reject H0 for the Alternative Hypothesis H1 : βj 6= c if the computed value
of T in the sample, Tcalc , falls in one of the tails of the distribution.

Setting the Significance Level α, we have the Critical Region:

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
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0
.4
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d
t(

x
, 
n
)

tn−(p+1)

1 − α

α 2 α 2

− tα 2 tα 2
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Hypothesis Test (bilateral) on β̂j

Hypothesis Tests for βj (Multiple Linear Regression Model)

Hypotheses: H0 : βj = c vs. H1 : βj 6= c

Test Statistic: T =
β̂j−

=c
︷︸︸︷
βj |H0

σ̂
β̂j

⌢ tn−(p+1) , if H0 is true.

Significance Level: α

Critical Region (bilateral Rejection Region): Reject H0 when

Tcalc > t α
2 [n−(p+1)] or Tcalc <−t α

2 [n−(p+1)]

⇐⇒ |Tcalc| > t α
2 [n−(p+1)]
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Hypothesis Test on β̂j (one-sided)

T =
β̂j −

=c
︷︸︸︷

βj|H0

σ̂
β̂j

⌢ tn−(p+1)

With the Alternative Hypothesis H1 : βj > c, only
large values of the test statistic suggest the rejec-
tion of H0 : βj ≤ c (or H0 : βj = c):

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

x

d
t(

x
, 

6
)

With the Alternative Hypothesis H1 : βj < c, only
small values of Tcalc suggest the rejection of H0 :
βj ≥ c (or H0 : βj = c):
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x
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)
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Hypothesis Tests for the parameters

Given the Multiple Linear Regression Model,

Hypothesis Tests for βj (Multiple Linear Regression)

Hypotheses: H0 : βj

≥
=
≤

c vs. H1 : βj

<
6=
>

c

Test Statistic: T =
β̂j−

=c
︷︸︸︷
βj |H0

σ̂
β̂j

⌢ tn−(p+1) , if H0 is true.

Significance Level: α

Critical Region (Rejection Region): Reject H0 when
Tcalc < −tα[n−(p+1)] (Left tail region)
|Tcalc| > tα/2[n−(p+1)] (Two-tail region)
Tcalc > tα[n−(p+1)] (Right tail region)
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Linear combinations of parameters
Let~a = (a0,a1, ...,ap)

t be a non-random vector in Rp+1.The inner product~at~βββ
defines a linear combination of the model parameters:

~at~βββ = a0β0 +a1β1 +a2β2 + ...+apβp .

Important specific instances are when:

~a has a single non-zero element, aj+1 = 1: ~at~βββ = βj .

~a has only two non-zero elements, ai+1=1 and aj+1=±1: ~at~βββ =βi ±βj .

~a = (1,x1,x2, ...,xp): ~at~βββ is the expected value of Y associated with the
values indicated for the predictors:

~at~βββ = β0 +β1x1 +β2x2 + ...+βpxp

= E [Y |X1=x1,X2=x2, ...,Xp =xp]

= µ
Y |~x
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Inference on linear combinations of the βjs
~at~βββ is estimated by the same linear combination of the estimators:

~at~̂βββ = a0β̂0 +a1β̂1 +a2β̂2 + ...+apβ̂p .

We know the probability distribution of~at~̂βββ :

We know that
~̂
βββ ⌢ Np+1

(
~βββ , σ2 (XtX)−1

)

(slide 135);

Hence,~at~̂βββ ⌢ N1(~a
t~βββ , σ2~at(XtX)−1~a) (slide 130);

That is, ~Z =
~at~̂βββ−~at~βββ√

σ2~at(Xt X)−1~a
⌢ N (0,1);

By a similar reasoning to that used when dealing with individual
βj , we have:

~at~̂βββ −~at~βββ
√

QMRE ·~at(XtX)−1~a
⌢ tn−(p+1) .

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 155 / 360



Pivotal quantities for inference on~at~βββ

Theorem (A result for inference on linear combinations of βs)
Given the Multiple Linear Regression Model, we have

~at~̂βββ −~at~βββ

σ̂
~at~̂βββ

⌢ tn−(p+1) ,

com σ̂
~at~̂βββ

=
√

QMRE ·~at(XtX)−1~a.

This is a result that can be used to build confidence intervals and
hypothesis tests for any linear combination of the model parameters βj .

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 156 / 360



Confidence Interval for~at~βββ

The similar structure to that of the pivotal quantity on slide 156 generates
confidence intervals with a similar structure to those for individual βjs.

(1−α)×100% Confidence Interval for~at~βββ

Given the Linear Regression Model and a sample, the (1−α)×100%
confidence interval for a linear combination of the parameters,
~at~βββ = a0β0 +a1β1 + ...+apβp, is:

]

~at~b − t α
2 [n−(p+1)]

· σ̂
~at~̂βββ

, ~at~b + t α
2 [n−(p+1)]

· σ̂
~at~̂βββ

[

,

with ~at~b = a0b0 +a1b1 + ...+apbp and σ̂
~at~̂βββ

=
√

QMRE ·~at(Xt X)−1~a.
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Formulas for inference on βi ±βj

The general formula σ̂
~at~̂βββ

=
√

QMRE ·~at(Xt X)−1~a has an alternative

expression in the specific instance of a sum or difference of two βs.

From the general formula for the variance of the sum or difference of
random variables,

V [β̂i ± β̂j ] = V [β̂i ]+V [β̂j ]±2Cov [β̂i , β̂j ] .

⇔ σ2
β̂i±β̂j

= σ2 ·
[
(Xt X)−1

[i+1,i+1] + (Xt X)−1
[j+1,j+1] ±2 (Xt X)−1

[i+1,j+1]

]
.

Hence, the standard error of β̂i ± β̂j is:

σ̂
β̂i±β̂j

=
√

QMRE ·
[
(Xt X)−1

[i+1,i+1] + (Xt X)−1
[j+1,j+1] ±2 (Xt X)−1

[i+1,j+1]

]
.
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CIs for linear combinations in

In a Multiple Linear Regression, the confidence interval of a generic
linear combination~at~βββ , requires the estimated (co)variance matrix of

the estimators
~̂
βββ ,

̂
V [

~̂
βββ ]=QMRE · (XtX)−1 .

This is given by the R command vov.

The estimated (co)variance matrix in the MLR iris example is:

> vov(iris2.lm)

(Interept) Petal.Length Sepal.Length Sepal.Width

(Interept) 0.031815766 0.0015144174 -0.005075942 -0.002486105

Petal.Length 0.001514417 0.0005998259 -0.001065046 0.000802941

Sepal.Length -0.005075942 -0.0010650465 0.002256837 -0.001344002

Sepal.Width -0.002486105 0.0008029410 -0.001344002 0.002394932

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 159 / 360



CIs for linear combinations in (cont.)

The (estimated) standard error of β̂2 + β̂3 (formula on slide 158) is:

σ̂
β̂2+β̂3

=

√

V̂ [β̂2 + β̂3] =

√

V̂ [β̂2]+ V̂ [β̂3]+2 ˆCov [β̂2, β̂3]

σ̂
β̂2+β̂3

=
√

0.002256837+0.002394932+2(−0.001344002)= 0.04431439 .

> vov(iris2.lm)

(Interept) Petal.Length Sepal.Length Sepal.Width

(Interept) 0.031815766 0.0015144174 -0.005075942 -0.002486105

Petal.Length 0.001514417 0.0005998259 -0.001065046 0.000802941

Sepal.Length -0.005075942 -0.0010650465 0.002256837 -0.001344002

Sepal.Width -0.002486105 0.0008029410 -0.001344002 0.002394932
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Confidence intervals for E [Y |X1=x1, ...,Xp=xp]

Another specific case of the general result is of interest:

CI for the expected value of Y , given the predictor values
Given the Linear Regression Model and a sample with the values
~x = (x1,x2, ...,xp)

t for the predictors, the expected value of Y ,

µ
Y |~x = E [Y |X1=x1, ...,Xp = xp] = β0 +β1x1 + ...+βpxp ,

is estimated by µ̂Y |~x = b0 +b1 x1 + ...+bp xp .

A (1−α)×100% confidence interval for µ
Y |~x is given by:

]

µ̂
Y |~x − t α

2 [n−(p+1)]
· σ̂µ̂

Y |~x
, µ̂

Y |~x + t α
2 [n−(p+1)]

· σ̂µ̂
Y |~x

[

,

with σ̂µ̂
Y |~x

=
√

QMRE ·~at(X
t
X)−1~a , where~a = (1,x1,x2, ...,xp).
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Tests on linear combinations of parameters

Given the Linear Regression Model,

Hypothesis Tests for~at~βββ

Hypotheses: H0 : ~at~βββ
≥
=
≤

c vs. H1 : ~at~βββ
<
6=
>

c

Test Statistic: T =
~at~̂βββ−

=c
︷ ︸︸ ︷

~at~βββ |H0
σ̂
~at ~̂βββ

⌢ tn−(p+1) , if H0 is true

Significance Level: α

Critical Region (Rejection Region): Reject H0 when
Tcalc < −tα[n−(p+1)] (Left-tailed)
|Tcalc| > tα/2[n−(p+1)] (Two-tailed)
Tcalc > tα[n−(p+1)] (Right-tailed)
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Inference on µY |~x = E [Y |~x] in

Estimated values and confidence intervals for µY |~x can be obtained with the
command predit. The new predictor values are given in a data frame (with
names equal to those in the original fit).

In the Simple Linear Regression iris example, the expected petal widths for
flowers with petal lengths 1.85 and 4.65, are:

> predit(iris.lm, new=data.frame(Petal.Length=(1.85,4.65)))

1 2

0.406072 1.570187
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Inference for E [Y |~x] in (cont.)
A confidence interval for µY |~x is obtained adding the argument int=�onf�:

> predit(iris.lm,data.frame(Petal.Length=(4.65)),int="onf")

fit lwr upr

1 1.570187 1.5328338 1.6075405
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Confidence bands for the regression line
Considering the CIs for many values of x in some interval, we obtain a
confidence band that contains the regression line with (1−α)×100%
confidence.
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The confidence intervals for µY |x depend on the value of x (formula in slide
166). They will be wider the further x is from the mean x of the predictor
observations. Thus, the bands are curved.
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Formulas for a simple linear regression

In a simple linear regression, a formula for the variance µ̂Y |x is:

σ2
µY |x = V [µ̂Y |x ] = σ2 ·

[

1
n
+

(x −x)2

(n−1) ·s2
x

]

=⇒ σ̂2
µ̂Y |x

= QMRE ·
[

1
n
+

(x −x)2

(n−1) ·s2
x

]

.

The confidence interval for µY |x in a Simple Linear Regression is:

] (b0 +b1 x)− t α
2
· σ̂µ̂Y |x , (b0 +b1 x)+ t α

2
· σ̂µ̂Y |x [ .
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MLR: Confidence intervals for E [Y |~x] in
The command predit also enables us to obtain confidence intervals for µY |~x
in a multiple linear regression.

In the multiple linear regression for the iris data, here is the 95% CI for the
expected petal width for flowers with:

Petal.Length=2 Sepal.Length=5 Sepal.Width=3.1

> predit(iris2.lm, new=data.frame(Petal.Length=(2),

+ Sepal.Length=(5), Sepal.Width=(3.1)), int="onf")

fit lwr upr

[1,℄ 0.462297 0.4169203 0.5076736

The CI for E [Y | X1=2,X2=5,X3=3.1] is: ] 0.4169203 , 0.5076736 [.

It is not possible to visualize this interval in R4.
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Variability of an individual observation of Y

We considered confidence intervals for the expected value of Y ,

µY |~x = E [Y |X1=x1,X2=x2,...,Xp=xp] = β0 +β1 x1 +β2 x2 + ...+βp xp ,

which use the variability corresponding to estimator µ̂Y |~x:

σ2
µ̂Y |~x

= V [β̂0 + β̂1 x1 + β̂2 x2 + ...+ β̂p xp] = σ2 ·~at(Xt X)−1~a,

with~a = (1,x1,x2, ...,xp).

An individual observation of Y has additional variability, because:

Y = µY |~x + ε = β0 +β1x1 +β2 x2 + ...+βp xp + ε .

The random fluctuation of individual observations around the hyperplane is
V [ε] = σ2. It will be necessary to add the variance associated with the
estimation of the hyperplane and the variance of individual observations:

σ2
Indiv = V [µ̂Y |~x]+V [ε] = σ2 ·~at(XtX)−1~a+σ2 = σ2 ·

[

~at(Xt X)−1~a+1
]

.
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Prediction intervals for Y

We can obtain prediction intervals for individual observations of Y , associated
with the predictor values X1 = x1, ...,Xp = xp.

In these intervals, the estimated variance of an individual observation of Y is
the estimate σ2

Indiv , that results by replacing σ2 with the sample value of
QMRE :

Prediction intervals for individual observations
]

µ̂Y |~x − t α
2 [n−(p+1)]

· σ̂indiv , µ̂Y |~x + t α
2 [n−(p+1)]

· σ̂indiv

[

where
µ̂Y |X = b0 +b1x1 +b2x2 + ...+bpxp

and
σ̂indiv =

√

QMRE [1+~at (Xt X)−1~a] com ~a=(1,x1,x2,...,xp).
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Formulas for simple linear regressions
In a simple linear regression we can use the formula on slide 166:

σ2
Indiv = σ2 ·

[
1
n
+

(x − x)2

(n−1) ·s2
x

]

︸ ︷︷ ︸

=V [µ̂Y |~x]

+ σ2
︸︷︷︸

=V [ε]

= σ2 ·
[

1+
1
n
+

(x − x)2

(n−1) ·s2
x

]

.

Hence,

Simple LR: Prediction interval for an individual observation of Y
]

µ̂Y |x − tα/2 (n−2) · σ̂Indiv , µ̂Y |x + tα/2 (n−2) · σ̂Indiv

[
.

com µ̂Y |x = b0 +b1x e σ̂Indiv =

√

QMRE ·
[

1+ 1
n+

(x−x)2

(n−1)·s2
x

]

.

Both in simple and multiple linear regressions, these intervals are necessarily
wider than the confidence intervals for µY |~x (for any given confidence level
(1−α)×100%).
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Prediction intervals for Y in

With R, a prediction interval for an individual observation of Y is obtained with
the argument int=�pred� in command predit:

> predit(iris.lm,data.frame(Petal.Length=(4.65)), int="pred")

fit lwr upr

1 1.570187 1.160442632 1.9799317
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Prediction bands for observations of Y

As with confidence intervals for E [Y |X = x ], varying the x values gives
rise to prediction bands for individual values of Y .
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Prediction intervals for Y (cont.)

With the iris multiple linear regression, the prediction interval for the petal
width of an iris flower with petal length 2, and sepals of length 5 and width 3.1
is:

> predit(iris2.lm, data.frame(Petal.Length=(2),

+ Sepal.Length=(5), Sepal.Width=(3.1)), int="pred")

fit lwr upr

[1,℄ 0.462297 0.08019972 0.8443942

The requested prediction interval is: ] 0.0802 , 0.8444 [.

The corresponding confidence interval for µY |~x was ] 0.4169 , 0.5077 [, necessarily
shorter.
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Testing the overall goodness of fit

In a Linear Regression, the model is useless if it is indistinguishable from the
Null Model, i.e., the model with equation Yi = β0 + εi . The Null Model can be
seen as a submodel of any linear model, in which all the predictors have
coefficient zero: βj =0, ∀j > 0.

The goodness-of-fit test tests whether a given linear model is significantly
different from the null model.

The hypotheses from which to choose are:

H0 : β1 = β2 = ...= βp = 0
[FULL MODEL ≡ NULL MODEL]

vs.
H1 : ∃ j = 1, ...,p t.q. βj 6= 0

[FULL MODEL 6≡ NULL MODEL]

Note: β0 plays no role in the hypotheses.
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The goodness-of-fit test (cont.)

Defining:

The Regression Mean Square as QMR = SQR
p .

The Residual Mean Square as QMRE = SQRE
n−(p+1) .

If the goodness-of-fit Null Hypothesis is true:

F =
QMR

QMRE
⌢ F[ p , n−(p+1) ] .

This is the F statistic for the goodness-of-fit test.
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Alternative expression for the F -test statistic

The statistic of the goodness-of-fit F -test in a Multiple Linear Regression
model has an equivalent alternative expression:

F =
n− (p+1)

p
· R2

1−R2 .

The F statistic is an increasing function of the sample Coefficient of
Determination, R2. This justifies the right-hand sided Critical Region.

The test hypotheses can also be written as

H0 : R2 = 0 vs. H1 : R2 > 0 .

The hypothesis H0 : R
2 = 0 indicates the lack of a linear relation between Y

and the predictors. It corresponds to a “disastrous” model fit. But its rejection
is not synonymous with a good fit.
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The goodness-of-fit F -test

Goodness-of-fit F -test with a Multiple Linear Regression

Hypotheses: H0 : β1 = β2 = ...= βp = 0
vs.

H1 : ∃ j = 1, ...,p such that βj 6= 0.

Test statistic: F = QMR
QMRE

⌢ F[p,n−(p+1)] if H0.

Significance level: α

Crítical Region (Refection Region): One-sided, right-hand region

Reject H0 when Fcalc > fα[p,n−(p+1)]
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A different formulation of the goodness-of-fit F -test

F -test for a Multiple Linear Regression (alternative)

Hypotheses: H0 : R2 = 0 vs. H1 : R2 > 0.

Test statistic: F = n−(p+1)
p · R2

1−R2 ⌢ F[p,n−(p+1)] if H0.

Significance level: α

Critical Region (Rejection Region): One-sided (right)

Reject H0 when Fcalc > fα(p,n−(p+1))

The Null Hypothesis H0 : R2 = 0 states that, in the population, the
coefficient of determination is zero.
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MLR inference example: the Brix data (Exercise 9)
Multiple Linear Regression of Brix over all other variables:

> brix.lm <- lm(Brix ~ . , data=brix) <� note the use of `.'

> summary(brix.lm)

[...℄

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) 6.08878 1.00252 6.073 0.000298 ***

Diametro 1.27093 0.51219 2.481 0.038030 *

Altura -0.70967 0.41098 -1.727 0.122478

Peso -0.20453 0.14096 -1.451 0.184841

pH 0.51557 0.33733 1.528 0.164942

Auar 0.08971 0.03611 2.484 0.037866 *

�-

Residual standard error: 0.1366 on 8 degrees of freedom

Multiple R-squared: 0.8483, Adjusted R-squared: 0.7534

F-statisti: 8.944 on 5 and 8 DF, p-value: 0.003942

The final output line has the information for a goodness-of-fit F test.
The last 2 columns of table Coeffiients provide information for the
(bilateral) t-tests for each H0 : βj =0.
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The principle of parsimony in MLR

Recall the principle of parsimony in modelling: we want a model that
suitably describes the relation between the variables, but which is as
simple (parsimonious) as possible.

If a Multiple Linear Regression model has a fit considered suitable, this
principle suggests exploring whether it is possible to find a submodel,
with fewer predictors, without a significant loss of goodness-of-fit.
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Model and Submodels

Given a Multiple Linear Regression model, with equation

Y = β0 +β1x1 +β2x2 +β3x3 +β4x4 +β5x5 ,

we call any linear regression with only some predictors a submodel.
E.g.,

Y = β0 +β2x2 +β5x5 ,

The submodel can be identified by the set S of predictors belonging
to the submodel. In the example, S = {2,5}.

The model and submodel are identical if βj = 0 for any predictor xj

whose subscript does not belong to S .
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Comparing a model with a submodel

To assess whether a given model significantly differs from one of its
submodels (identified by the set S of indices of its predictors), we must
choose between the following hypotheses:

H0 : βj = 0 , ∀j /∈ S vs. H1 : ∃ j /∈ S such that βj 6= 0.

[SUBMODEL OK] [SUBMODEL WORSE]

NOTE: This discussion only involves coefficients βj of predictor variables. The
intercept β0 is always part of the submodel equations.

The intercept β0 is irrelevant from the point of view of parsimony: it does not
require additional work when collecting the data, nor in interpreting the
model. But it ensures better fits.
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A test statistic for model/submodel comparison

Consider a full model with p predictors and Residual Sum of Squares SQREc ;
and a submodel with k preditors and Residual Sum of Squares SQREs

Given the Null Hypothesis:

βj = 0 for all variables xj that do not belong to the submodel,

we have:

F =

SQRES−SQREC
p−k

SQREC
n−(p+1)

⌢ F[p−k ,n−(p+1)] ,

Note: The denominator SQREC
n−(p+1) is the Residual Mean Square of the full

model, QMREc .
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The test for a submodel (partial F test)

F -test comparing a model with one of its submodels
Given the Multiple Linear Regression Model,

Hypotheses:
H0 : βj = 0 , ∀j /∈ S vs. H1 : ∃ j /∈ S such that βj 6= 0.

Test statistic:
F =

(SQRES−SQREC)/(p−k)
SQREC/[n−(p+1)] ⌢ F[p−k ,n−(p+1)], sob H0.

Significance level: α

Critical Region (Rejection Region): One-sided, right

Reject H0 if Fcalc > fα [p−k ,n−(p+1)]
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Alternative expression for the test statistic

The test statistic F to compare a full model with p predictors and one of its
submodels with only k predictors can alternatively be written as:

F =
n− (p+1)

p− k
· R2

C −R2
S

1−R2
C

.

The test hypotheses can also be written as:

H0 : R2
C = R

2
S vs. H1 : R2

C > R
2
S ,

The hypothesis H0 indicates that the strength of the linear relation between
Y and the set of predictors is identical in the model and in the submodel.
If we do not reject H0, we choose the submodel (more parsimonious).
If we reject H0, we choose the full model (with a significantly better fit).
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Partial F test: alternative formulation

Partial F -test to compare a model with one of its submodels
Given the Multiple Linear Regression Model,

Hypotheses:
H0 : R2

C = R2
S vs. H1 : R2

C > R2
S .

Test statistic:
F = n−(p+1)

p−k · R2
C−R2

S

1−R2
C

⌢ F[p−k ,n−(p+1)], under H0.

Significance level: α

Critical Region (Rejection Region): One-sided, right region

Reject H0 when Fcalc > fα [p−k ,n−(p+1)]
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Testing submodels with
The necessary information for a partial F test is obtained with the command
anova, with two arguments: the lm object resulting from fitting the full model
and the submodel with which it is being compared.

With the iris dataset examples, we have:

> anova(iris.lm, iris2.lm)

Analysis of Variane Table

Model 1: Petal.Width ~ Petal.Length

Model 2: Petal.Width ~ Petal.Length + Sepal.Length + Sepal.Width

Res.Df RSS Df Sum of Sq F Pr(>F)

1 148 6.3101

2 146 5.3803 2 0.9298 12.616 8.836e-06 ***

The values R2
s = 0.9271 and R2

c = 0.9379 of the models iris.lm and
iris2.lm are significantly different.
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Partial F -test relations

The goodness-of-fit test is equivalent to a partial F test comparing a linear
model and its Null submodel (with no predictors).

If the model and submodel differ by a single predictor, Xj , the partial F test is
equivalent to the t-test (slide 153) with the hypotheses H0 : βj = 0 vs.
H1 : βj 6= 0.

In this case, not only are the the hypotheses of both tests the same, as the
test statistic for the partial F test is the square of the associated t-test
statistic.

In a simple linear regression, the t-test on a zero slope is equivalent to the
goodness-of-fit F test. The latter test statistic is the square of the former.
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(No) How to choose a submodel?

The partial F test (for nested models) allows us to choose between a
model and a submodel. Sometimes a submodel is suggested by:

theoretical reasons, which suggest that certain predictors may
not, in fact, be important in predicting the values of Y .

practical reasons, such as the difficulty, cost or workload
associated with collecting observations or setting up an
experiment with certain predictors.

In such cases, it may be clear which submodels are to be tested.
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(No) How to choose a submodel? (cont.)

But in many situations it is not initially clear which subsets of predictors are to
be retained in the submodel. The only aim is to see whether the model may
be simplified. In such cases, choosing a submodel is not an easy problem.

Given p predictors, the number of possible subsets, with any number of
predictors, except 0 (the empty set) and p (the full model) that can be chosen
is 2p −2. The following table indicates the number of such subsets for
p = 5,10,15,20.

p 2p −2
5 30

10 1 022
15 32 766
20 1 048 574
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(No) Beware of simultaneous exclusion of predictors

For small values of p, it is possible to analyse all possible subsets. With
appropriate algorithms and computer software, a full search of all possible
subsets is still possible for larger values of p (up to p ≈ 35). But for very large
values of p, a full search is computationally unfeasible.

We cannot justify the joint exclusion of several predictors based on the t-tests
for the significance of each single coefficient βj in the full model.

In fact, the t-tests on each coefficient βj assume that all the remaining predictors are

in the model. The exclusion of any predictor changes the model fit: it changes the

estimated values bj , and their standard errors, for the predictors that remain in the

submodel. It may happen that a predictor can be dropped from a full model, but not

from a submodel, or vice-versa.
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(No) An example: the Brix data (Exercise 9)

The individual exclusion of three predictors is admissible (for α =0.05):

Estimate Std. Error t value Pr(>|t|)

(Interept) 6.08878 1.00252 6.073 0.000298 ***

Diametro 1.27093 0.51219 2.481 0.038030 *

Altura -0.70967 0.41098 -1.727 0.122478

Peso -0.20453 0.14096 -1.451 0.184841

pH 0.51557 0.33733 1.528 0.164942

Auar 0.08971 0.03611 2.484 0.037866 *

But it is not legitimate to claim that the joint exclusion of Altura, Peso and pH

will not significantly affect the goodness-of-fit.

> anova(brix2.lm,brix.lm)

Analysis of Variane Table

Model 1: Brix ~ Diametro + Auar

Model 2: Brix ~ Diametro + Altura + Peso + pH + Auar

Res.Df RSS Df Sum of Sq F Pr(>F)

1 11 0.42743

2 8 0.14925 3 0.27818 4.97 0.03104 *
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(No) Full searches

For a small or medium number p of predictors, there are algorithms
and software routines that perform a complete search and determine
the subset of k predictors with the largest value of R2 (or some other
criterion of model quality).

The leaps and bounds algorithm of Furnival and Wilson 2 is a
computationally efficient algorithm that identifies the best subset of
predictors, for a given cardinality k .

A software implementation of the algorithm is available in R, in the
package leaps (command with the same name). A similar routine can
be found in command eleaps in the package subselet.

2Furnival, G.W and Wilson, R.W.,Jr. (1974) Regressions by leaps and bounds,
Technometrics, 16, 499-511.
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(No) Example using the leaps function

Despite the samll number of predictors, we illustrate the use of the leaps

command with the brix dataset.

> olnames(brix) <�- to see the variable names

[1℄ "Diametro" "Altura" "Peso" "Brix" "pH" "Auar�

> library(leaps) <�- to load the pakage (must be installed)

> leaps(y=brix$Brix, x=brix[,-4℄, method="r2", nbest=1) <�- arguments: y response, x preditors

$whih <�- logial matrix, speifying the seleted preditors

1 2 3 4 5 <�- olumns: preditors; rows: size k of subset

1 FALSE FALSE FALSE FALSE TRUE <�- k=1 ; best individual preditor: Auar

2 TRUE TRUE FALSE FALSE FALSE <�- k=2 ; best pair of preditors: Diametro and Altura

3 TRUE TRUE FALSE FALSE TRUE <�- k=3 ; best trio of preditors: Diametro, Altura and Auar

4 TRUE TRUE FALSE TRUE TRUE

5 TRUE TRUE TRUE TRUE TRUE

[...℄

$r2 <�- Coef. Determination of best solution with k=1,2,3,4,5 preditors

[1℄ 0.5091325 0.6639105 0.7863475 0.8083178 0.8482525

Notice how the best two-predictor submodel (highest R2
s ) is not the submodel

with the predictors Diametro and Auar, as suggested by the p-values in the
full model.
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(No) Stepwise search algorithms

Alternatively, computationally lighter search algorithms may be used,
that do not analyse all possible submodels and do not guarantee the
identification of the best subsets.

Simple algorithms of this kind are sequential, adding or dropping one
predictor at each step of the algorithm, until some stopping rule is met.
In particular, stepwise algorithms may be:

backward elimination when, starting with the full model, the exclusion of
a single variable is considered at each step of the algorithm.

forward selection when, starting with the Null Model, the inclusion of one
variable is considered at each step.

stepwise selection when, for a given pre-specified direction, exclusions
and inclusions are alternatively considered.
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(No) Stepwise algorithms based on the AIC

provides functions that automate stepwise searches for
submodels, in which the criterion to exclude/include a variable at each
step is based on the Akaike Information Criterion (AIC).

The AIC is a general indicator of the goodness-of-fit of models based
in the Likelihood function. In the context of a Linear Regression with k

predictors, it is defined as:

Akaike Information Criterion in a Linear Model

AIC = n · ln
(

SQREk

n

)

+2(k +1) .

AIC values of different Linear Models can be compared, as long as
they are fitted with the same dataset and have the same response
variable Y .
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(No) Interpretation of the AIC

AIC = n · ln
(

SQREk

n

)

+2(k +1) .

The first term measures the goodness-of-fit of the model to the
dataset. The smaller, the better.

The second term measures model complexity, through the
number of predictors. The smaller, the better.

A model for the response variable Y is considered better than another
if its AIC is lower (this favours models with smaller SQRE , but also with
fewer predictors).

The AIC can be used to select between a model and any of its
submodels. Submodels always have larger values of SQRE , but
smaller values of k . Whether the AIC value is smaller depends on the
trade-off.
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(No) Stepwise algorithms based no the AIC (cont.)

In a backward elimination algorithm, based on the AIC criterion:

the full model is fitted and its AIC is computed.

all possible submodels with one predictor less are fitted and their
AICs computed.

If none of the submodel AICs is smaller than the AIC of the current
model, the algorithm stops and the running model is the final one.
If dropping some variables reduces the AIC, we exclude the
predictor for which the AIC drops the most and return to the
previous point.
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(No) Stepwise search algorithms in

The command step runs a stepwise selection algorithm based on the
AIC. Consider again the brix dataset example:

> step(brix.lm, dir="bakward")

Start: AIC=-51.58

Brix ~ Diametro + Altura + Peso + pH + Auar

Df Sum of Sq RSS AIC

<none> 0.14925 -51.576

- Peso 1 0.039279 0.18853 -50.306

- pH 1 0.043581 0.19284 -49.990

- Altura 1 0.055631 0.20489 -49.141

- Diametro 1 0.114874 0.26413 -45.585

- Auar 1 0.115132 0.26439 -45.572

In this case, no predictor is excluded: the AIC of the initial (full) model is smaller than

that of any submodel resulting from dropping a single predictor. The final model is the

initial model.
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(No) A final word on search algorithms

Stepwise selection algorithms do not guarantee the selection of the
best submodel with a given number of predictors. They only identify, in
a computationally “cheap” way, submodels that are “good”.

They should be used with common sense and the resulting submodels
considered taking other aspects into account (for example, the cost or
difficulty in collecting the data, or the role of each predictor in
theoretical terms for the problem at hand).
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Model validation and other diagnostics
A Linear Regression analysis is not complete without a study of the
residuals and other diagnostic tools.

The Linear Model assumes εi ⌢ N (0 , σ2) , ∀ i = 1, ...,n. We cannot
directly check these assumptions: random errors are unobservable.

Distribution of Residuals, given the Model
Given the linear model, the residuals have the following distribution:

Ei ⌢ N

(

0 , σ2 (1−hii)
)

∀ i = 1, ...,n ,

with hii the i-th diagonal element of the matrix H = X(XtX)−1Xt of
orthogonal projections on the subspace C (X).

This result can be proved by considering the vector of residuals,
~E = ~Y−~̂

Y = ~Y−H~Y = (In −H)~Y.
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Properties of Residuals given the linear model

Theorem (Distribution of Residuals with the Linear Model)
Given the Linear Model, we have:

~E ⌢ Nn

(

~0 , σ2(In −H)
)

sendo ~E = (In −H)~Y .

Since with the Linear Model ~Y ⌢ N (X~βββ ,σ2In), the vector of residuals ~E = (In −H)~Y ,
has a generalized Multinormal distribution (slide 130).

The expected vector of ~E results from the properties of slide 125:

E [~E] = E [(In −H)~Y] = (In −H)E [~Y] = (In −H)X~βββ = ~0,
since X~βββ ∈ C (X), remaining invariant when projected: HX~βββ = X~βββ .

From the properties of slide 126 and since H is symmetric (Ht =H) and
idempotent (HH=H), we have:
V [~E] = V [(In −H)~Y] = (In −H)V [~Y](In −H)t = σ2 · (In −H).
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Properties of Residuals in the Linear Model (cont.)

Note: Although in the Linear Model random errors are independent, residuals
are not independent random variables: their covariances are not (in general)
zero:

cov(Ei ,Ej ) = −σ2 ·hij , se i 6= j ,

where hij is the element on row i, column j of matrix H.

If ~E ⌢ Nn

(

~0 , σ2(In −H)
)

, then individual residuals have distribution:

Ei ⌢ N

(

0 , σ2(1−hii)
)

,

where hii is the i-th diagonal element of H and

Ei
√

σ2(1−hii)
⌢ N (0 , 1) .
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Two types of residuals

Since Ei√
σ2(1−hii )

⌢ N (0 , 1), standardized residuals are defined:

Usual residuals : Ei = Yi − Ŷi ;

Standardized residuals : Ri = Ei√
QMRE ·(1−hii )

.

For large samples, Ri are approximately N (0,1).

The R command rstandard calculates standardized residuals (Ri ).

In linear regressions, the validity of model assumptions is checked using
residual plots. Normality tests are not carried out because residuals are not
(in general) independent.
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Model checking: (1) scatterplots of residuals vs. Ŷi
A necessary scatterplot: (usual) Residuals vs. fitted values of Y .
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Residuals should be in a horizontal band around zero.

without any apparent pattern: given the Linear Model,
cor(Ei , Ŷi) = 0.
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Patterns suggesting problems

In scatterplots of Ei vs. Ŷi patterns may appear:

Curvature: Suggests violation of the assumed linearity between y

and the predictors.

Funnel-shaped pattern: Suggests violation of the variance
homogeneity assumption.

One or more points strongly deviated from the trend: Indicates the
presence of outliers.
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A funnel-shaped plot, also sugges-
ting some curvature (videiras data-
set, Exercise 18, Area vs. NP).
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Model checking: (2) Plots to assess Normality
As was seen on slide 204, for large samples the standardized residuals
Ri =

Ei√
QMRE ·(1−hii )

, are approximately N (0,1).

The assumption of Normal random errors may be validated with:

a qq-plot comparing the emprical quantiles of the n standardized
residuals, with the corresponding theoretical quantiles of a N (0,1).

A qq-plot validates the Normality assumption if it is approximately collinear.
This qq-plot suggests some deviation from Normality:
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Model checking: (3) Plots to assess independence

Non-independence between random errors may result from:

correlation along time;

spatial correlation.

It may be useful to inspect plots of residuals vs. order of observation or
the spatial distribution of residuals, to check for patterns suggesting
lack of independence. If so, alternative time-series or spatial models
may be needed.

Model checking: (4) Plots of residuals vs. predictors

Non-linearity in plots of residuals vs. each individual predictor may
suggest the need for transformation of those predictors.
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Model checking with

The command plot, when applied to an lm object produces up to six plots of
residuals and other diagnostics. The first three are residual plots. For the iris
example:

> plot(iris.lm, whih=1:3, ph=16)

0.0 0.5 1.0 1.5 2.0 2.5

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6

Fitted values

R
e

s
id

u
a

ls

Residuals vs Fitted

115

135

142

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Normal Q−Q

115

135

142

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Scale−Location

115

135
142

The third plot (argument whih=3) is of
√

|Ri | vs. Ŷi .
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Other diagnostics

Other diagnostic tools seek to identify observations that deserve
further scrutiny.

Outliers is a concept withour a rigorous definition. It refers to
observations that are far apart from the underlying linear trend
between Y and the predictors.

Outliers are often associated with large (in absolute value) residuals.
In particular, and since standardized residuals are approximately
distributes as N (0,1) for large sample size n, observations for which
|Ri |> 3 may be classified as outliers.

But beware: observations very far from the underlying trend may have
such an impact on the model fit that they no longer have
large-magnitude residuals.
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Leverage points

The leverage of the i-th observation is defined as the i-th diagonal element of
matrix H: hii = H(i ,i).

Since ~̂
Y=H~Y, we have ŷi =

n

∑
j=1

hijyj (each fitted value is a linear combination

of the observed values). The leverage hii is the weight associated with yi

when defining the corresponding fitted value, ŷi . It should not be excessive.

Leverage points are observations with large hii . They tend to “attract” the
fitted hypersurface.

Since V [Ei ] = σ2 (1−hii ), if hii is large, the variance of the residual Ei is small
and the residual will be close to its mean (zero). In other words, the fitted
hypersurface tends to be close to that point.
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Leverage (cont.)

For any observation we have:

1
n

≤ hii ≤ 1 .

The mean value of the leverages in a linear regression is the ratio between
the number of model parameters and the number of observation:

h =
p+1

n
,

Thus, the more observations, the smaller the mean leverage.

Observations with a high leverage may, or may not, be outliers.
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Leverage (cont.)

Leverage in a Simple Linear Regression
In a simple linear regression, the leverage is given by the formula:

hii =
1
n
+

(xi − x)2

(n−1) ·s2
x

.

Thus, in a simple linear regression, the leverage of observation i depends on
the distance of the predictor value xi from the mean x : the larger (xi −x)2, the
larger the leverage hii . The largest leverage must belong to one of the two
most extreme observations in x .

In a Multiple Linear Regression, large leverages also tend to be associated
with the points whose predictor values are furthest from the vector of mean
predictor values.
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Influential observations
Influential observations are observations that, if withdrawn from the dataset,
produce noticeable changes in the fitted parameters bj and fitted values ŷi .

The most frequent measure of influence is Cook’s distance, defined as:

Di =

n

∑
j=1

(ŷj − ŷ
[−i]j

)2

(p+1) ·QMRE
,

where ŷ
[−i]i

is the fitted value of observation i, that would result from fitting
the βjs without observation i. An equivalent expression is:

Di = R2
i ·

(
hii

1−hii

)

· 1
p+1

The larger Di , the greater the influence of the i-th observation.
A common rule is to consider Di > 0.5 as defining an influential observation.
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Diagnostic tools in
Command hatvalues computes leverages (hii ) and ooks.distane the Dis.

Brix dataset (Exercise 9)
> brix.diagn <- bind(hatvalues(brix.lm), ooks.distane(brix.lm))

> olnames(brix.diagn) <- ("h_ii", "Di")

> brix.diagn

h_ii Di

1 0.6231274 0.6209707369

2 0.3576171 0.0969006496

3 0.4750339 0.0380279990

4 0.2881782 0.0186723249

5 0.3751686 0.0351359851

6 0.2985676 0.0354362871

7 0.5260699 0.0793008032

8 0.4955231 0.0304136309

9 0.2809899 0.2009993314

10 0.2268779 0.0002254622

11 0.2757540 0.0108143657

12 0.4771373 0.0092558438

13 0.6609377 1.5222084206

14 0.6390174 1.0769004225

Some very large values result from a small dataset (n=14) for a heavy model (p=5).

The mean leverage is h= p+1
n =0.4286.
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Warning

Outliers, influential observations and leverage points, although
possibly related, are not the same concept.

For example, an observation with a large standardized residual and hii

large, must also have a large Cook’s distance, and therefore be
influential. But if R2

i is large and hii small (or vice versa), ot may, or
may not, be influential, depending on their relative values.

These diagnostics are useful essentially to identify observations that
deserve greater attention.
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A Simple Linear Regression example
Animals data (Exercise 6)
Considering only a subset of the species, we obtain the following plot of log
brain weight vs. log body weight:

> library(MASS)

> animaissub <- Animals[-(6,19,25,26,27),℄

> plot(log(brain) ~ log(body) , data=animaissub, ph=16)
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A Simple Linear Regression example (cont.)

Here are the resulting standardized residuals, Cook distances and
leverages:

R_i D_i h_ii

Mountain beaver -0.547 0.018 0.109

Cow -0.201 0.001 0.068

Grey wolf 0.057 0.000 0.044

Goat 0.168 0.001 0.045

Guinea pig -0.754 0.039 0.119

Asian elephant 1.006 0.069 0.120

Donkey 0.276 0.002 0.052

Horse 0.121 0.001 0.071

Potar monkey 0.711 0.015 0.057

Cat -0.006 0.000 0.081

Giraffe 0.145 0.001 0.071

Gorilla 0.195 0.001 0.053

Human 1.850 0.078 0.044

Afrian elephant 0.688 0.046 0.163

Trieratops -3.610 1.431 0.180 <� D_i very large; h_ii not so muh

Rhesus monkey 1.306 0.058 0.064

Kangaroo -0.578 0.008 0.044

Mouse -1.172 0.355 0.341 <� largest h_ii; D_i not so muh

Rabbit -0.519 0.013 0.089

Sheep 0.163 0.001 0.044

Jaguar -0.243 0.001 0.046

Chimpanzee 0.992 0.022 0.043

Pig -0.471 0.006 0.052
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Diagnostic plots in

The command plot, when applied to an lm object produces, besides the
plots considered in slide 209, also the following plots with other diagnostics:

Argument whih=4 produces a barplot of the Cook distance of each
observation.

Argument whih=5 produces a scatterplot of the standardized residuals (Ris)
on the vertical axis against leverages hii on the horizontal axis, drawing
isolines for some Cook distances (by default, 0.5 and 1), to highlight
influential observations.

Argument whih=6 produces a scatterplot of Cook’s distances (vertical axis)
vs. values of hii

1−hii
, with isolines for standardized residuals Ri (resulting from

the formula on slide 214).
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An example of diagnostic plots

Here are these diagnostic plots for the Animals dataset (Ex. 6):

> plot(Animals.lm, whih=4:6)
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The large Cook distances reflect the dinossaurs’ deviation from the general underlying

trend for other species. The fact that there are three discordant observations

somewhat reduces the value of those distances.
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The adjusted R2

The usual Coefficient of Determination is defined as:

R2 =
SQR

SQT
= 1− SQRE

SQT

The adjusted R2, with QMT = SQT
n−1 = s2

y , is:

R2
mod = 1− QMRE

QMT
= 1− SQRE

SQT
· n−1

n−(p+1) = 1− (1−R2) · n−1
n−(p+1) .

For any linear model (with predictors), we have: R2
mod < R2.

If n ≫ p+1 (many more observations than parameters), R2 ≈ R2
mod .

If n is little larger than p, R2
mod ≪ R2 (except when R2 ≈ 1).

QMRE
QMT

= σ̂2

s2
y

measures the total variability of Y that remains unexplained when the

predictors are introduced. Hence, R2
mod is a measure of the gain in explaining

variance s2
y associated with the model.
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the adjusted R2 (cont.)

The adjusted R2
mod penalizes complex models that are fitted with few

observations. Exercise 9: brix data (n=14 and p+1=6).

> summary(brix.lm)

[...℄

Multiple R-squared: 0.8483, Adjusted R-squared: 0.7534

The adjusted R2 of a submodel may be larger than that of a model.

Example: Exercise 19

((No) also illustrates the use of R2
mod as a selection criterion with the leaps

function):

> library(leaps)

> leaps(y=milho$y , x=milho[,-10℄, method="adjr2", nbest=1)

[...℄

$adjr2 <�- the largest adjusted R2 is for the submodel with k=4 preditors

[1℄ 0.5493014 0.6337329 0.6544835 0.6807418 0.6798986 0.6779395 0.6745412

[8℄ 0.6633467 0.6488148
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(No) Some variable transformations

Sometimes, it is possible to overcome violations of the assumptions
regarding the Normality or variance homogeneity of the random errors
by transforming variables. For example,

If var(εi) ∝ E [Yi ] then Y −→
√

Y

If var(εi) ∝ (E [Yi ])
2 then Y −→ lnY

If var(εi) ∝ (E [Yi ])
4 then Y −→ 1/Y

are standard proposals to stabilize variances.

The above examples are specific cases of the Box-Cox family of
transformations:

Y −→
{

Y λ−1
λ , λ 6= 0

ln(Y ) , λ = 0
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(No) Warning about transformations

But the transformation of variables, especially when it affects the
response variable, must be done with caution.

A transformation of variables also changes the underlying trend
relation between the original variables;

A transformation that “corrects” one problem (e.g., variance
heterogeneity) may create another (e.g., non-normality);

There is the danger that using transformations that solve problems
in a concrete sample may may not work in general.
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(No) Linearizing transformations

Different is the issue of transformations that seek to linearize a non-linear
relation between a response variable and the predictors. Such linearizing
transformations may also be useful with multiple linear regressions.

E.g., the non-linear relation between Y , x1 and x2,

Y = β0x
β1
1 x

β2
2

becomes, by taking logarithms, a linear relation between ln(Y ), ln(x1) and
ln(x2) (with β ∗

0 = ln(β0)):

ln(Y ) = β ∗
0 +β1 ln(x1)+β2 ln(x2) .

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 225 / 360



(No) Warnings about linearising transformations

The estimates that minimise the sum of squared residuals in the
linearised relations are not the same as the optimal solutions to the
problem of minimising the sum of squared residuals in the original
non-linear relation.

The transformations discussed did not involve the random errors.

The assumptions of additive, Normal, independent random errors with
constant variance and zero mean must be valid in the linear relations
between the transformed variables.
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Final warnings

1. Problems associated with (near) multi-collinearity of the predictors,
that is, when the columns of the model matrix X are (almost) linearly
dependent:

there may be numerical problems when calculating (XtX)−1, thus
in fitting the model and estimating the parameters;

some β̂is may have very large variances, resulting in very
imprecise or unstable inference.

Multi-collinearity reflects redundancy of information in the predictors. It
can be overcome by excluding from the dataset one or more predictors
that are responsible for the (near) linear dependence of the predictors.
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Final warnings (cont.)

2. Do not confuse the existence of a linear relation between the
predictors X1, X2, ..., Xp and the response variable Y , with a cause
and effect relation.

There may exist a cause-and-effect relation. But it may also be the
case that there:

a joint variation, but not of a causal nature (as for example, with
many morphometric datasets). Sometimes, predictors and
response variable are all reflecting common underlying causes.

A spurious relation, with a numerical coincidence.

A causal relation can inly be asserted based on some theory of the
phenomenon under consideration, not on the statistically established
linear relation.
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Analysis of Variance (ANOVA)

Linear Regressions model a numerical (quantitative) response
variable, using one or more predictors, that are also numerical.

But a numerical response variable may be modelled with qualitative
(categorical) variables, that is, one or more factors.

The Analysis of Variance (ANOVA) is a statistical methodology to deal
with this type of situations.

ANOVAs were developed in the 1930s, in the Rothamstead Agricultural
Experimental Station (England), by R.A. Fisher.
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Two examples: iris by species

setosa versicolor virginica
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Petal widths seem to differ between the iris species.
Sepal lengths differ less.
Can the observed differences be attributed to real differences in the mean
population values of each species?
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A ANOVA as a specific instanece of the Linear Model

Although the Analysis of Variance arose as a separate method, both the
Analysis of Variance and Linear Regressions are specific instances of the
Linear Model.

Introducing ANOVA thorugh its similarities with Linear Regression enables us
to make use of much of the theory studied so far.

Terminology:

Response variable Y : a numerical (quantitative) variable, that we wish to
model.

Factor : a categorical (qualitative) predictor;

Factor levels : the different categories (“values”) of a factor, that is, different
experimental situations where observations of Y are collected.
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One-way ANOVA
In a one-way ANOVA, the (numerical) response variable is modelled using a
single categorical predictor (factor).

We assume we have n independent observations of the response variable Y ,
with ni (i = 1, ...,k ) corresponding to factor level i. Thus,

n1 + n2 + · · · + nk = n .

One-way balanced designs
When there is an equal number of observations from each factor level,

n1 = n2 = n3 = · · · = nk ( = nc) ,

we speak of a balanced design.

For different reasons, balanced designs are advisable.
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Double indexation of Y

In regressions we indexed each of the n observations of Y with a single
subscript, ranging from 1 to n.

In this new context, it is preferable to use two indices to denote each
observation of Y :

one (i) denotes the factor level to which the observation corresponds;

the other (j) allows the identification of each observation within a given
factor level.

Thus, the j-th observation of Y , in the i-th factor level, is represented by Yij ,
(with i =1, ...,k and j =1, ...,ni ) .
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A model for Yij

we assume that the values of Y may differ because:

they correspond to different factor levels; or

due to random (unexplained) variability.

The poorer nature of our predictor implies a simpler model equation
than in regressions.

In general, we assume that the expected (mean) value of Y may differ
in the k experimental situations (factor levels) in which it is observed.

A first formulation of the model equation is:

Yij = µi + εij com E [εij ] = 0 .

Here, µi represents the expected value of the observations Yij ,
collected in factor level i .
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A model for Yij (cont.)

In order to fit ANOVA in the theory of Linear Models already studied, it
is convenient to re-write the equation with a common additive constant:

E [Yij ] = µi = µ +αi .

The parameter µ will be common to all observations, while the
parameters αi are specific to each factor level (i).

Each αi is called the i-th level effect.

We assume that Yij randomly fluctuates around its mean value:

Yij = µ +αi + εij ,

with E [εij ] = 0.
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The 1-way ANOVA Model as a Linear Model
The general equation

Yij = µ +αi + εij ,

means that:

the n1 observations from level i = 1 are modelled as Y1j = µ +α1 + ε1j ;

the n2 observations from level i = 2 are Y2j = µ +α2 + ε2j ;

and so on...

In order to fit this set of equations within the context of the linear model, the
general equation can be written as:

Yij = µ +α1III 1ij
+α2III 2ij

+ ...+αkIII kij
+ εij ,

where the dummy (indicator) variables for each factor level are defined as:

IIImij
=

{
1 se i = m ,
0 se i 6= m .
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The equation in vector notation

The model equation for a one-way ANOVA can be written in vector/matrix
format, as in the linear regression model. Consider:

~Y the n-dimensional vector qith all observations of the response
variable. Assume that the n1 first correspond to factor level 1,
the following n2 to level 2, and so on.

~1n the vector of n ones, already considered in regression.

~III i the vector of the indicator (dummy) variable for factor level i.
For each observation, this variable takes the value 1 if the
observation is from factor level i, and value 0 otherwise
(i = 1, ...,k ). In an ANOVA, the indicator variables play the role
of the predictors.

~εεε the vector of n random errors.
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The vectors of the indicator variables

For example, if we have n = 9 observations, with:

n1 = 3 observations from the first factor level;

n2 = 4 from the second level; and

n3 = 2 observations from the third level;

vectors ~III 2 and ~III 3 will be:

~III 2 =

















0
0
0
1
1
1
1
0
0

















, ~III 3 =

















0
0
0
0
0
0
0
1
1
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The model equation in vector notation
In matrix/vector notations, the basic equation describing the n observations of
Y may be written as in the Linear Model:

~Y = µ~1n +α1
~III 1 +α2

~III 2 +α3
~III 3 +~εεε

⇔ ~Y = X~βββ + ~εεε .

The columns of matrix X are the vector of n ones and the indicator variables.
The vector of parameters ~βββ contains µ and the level effects αi .

In the example with n1 = 3, n2 = 4 and n3 = 2 observations:
















Y11
Y12
Y13
Y21
Y22
Y23
Y24
Y31
Y32

















=

















1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

















·







µ
α1
α2
α3






+

















ε11
ε12
ε13
ε21
ε22
ε23
ε24
ε31
ε32
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The problem of over-parametrization
There is a “technical” problem: the columns of such a matrix X are linearly
dependent, so that matrix XtX is not invertible. There are too many
parameters in the model. Possible solutions are:

1 drop the parameter µ from the model.

◮ this corresponds to dropping the column of ones from matrix X;
◮ each αi becomes the factor level mean µi ;
◮ this solution cannot be generalized to more complex situations;
◮ it is harder to fit into the Linear Model theory that we considered.

2 impose restrictions upon the parameters: e.g., ∑k
i=1 αi = 0.

◮ this is the classical solution, frequent in ANOVA literature;
◮ it is harder to fit into the Linear Model theory.

3 impose the restriction α1 = 0: we will use this solution.

◮ it drops the first indicator variable from the model (and from X);
◮ the Linear Model theory can be directly used, and the solution can

be extended to more factors.

Each solution has implications in terms of the interpretation of parameters.

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 240 / 360



The basic equation with our example

Assuming α1 = 0, we re-write the model equation as:
















Y11
Y12
Y13
Y21
Y22
Y23
Y24
Y31
Y32

















=

















1 0 0
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1





















µ
α2
α3



+

















ε11
ε12
ε13
ε21
ε22
ε23
ε24
ε31
ε32

















Now µ = µ1 is the mean value of the observations from level i = 1:
E [Y1j ] = µ1 , ∀ j = 1, ...,n1

E [Y2j ] = µ2 = µ1 +α2 , ∀ j = 1, ...,n2

E [Y3j ] = µ3 = µ1 +α3 , ∀ j = 1, ...,n3
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The level effects αi

In the one-way ANOVA model equation (slide 235), each αi (i > 1) represents
the variation that transforms the mean of level 1 into the mean of level i:

α1 = 0

α2 = µ2 − µ1

α3 = µ3 − µ1

...
...

...

αk = µk − µ1

The equality of all population level means µi is equivalent to having all level
effects equal to zero: αi = 0 , ∀ i.

This is the Null Hypothesis in testing the existence of factor level effects.
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The one-way ANOVA model for inference
Adding the remaining assumptions of the Linear Model:

One-way (1 factor) ANOVA model, with k levels
There are n observations, Yij , ni of which correspond to factor level i

(i = 1, ...,k ). Assume:

1 Yij = µ1 +αi + εij , ∀ i=1,...,k , ∀ j=1,...,ni (with α1 = 0).

2 εij ⌢ N (0 , σ2) , ∀ i, j

3 {εij}i ,j independent random variables.

The model has k unknown parameters: the mean of Y in the first factor level,
µ1 and the effects αi (i > 1) for each of the k−1 remaining factor levels. In
other words, the vector of parameters is:

~βββ = (µ1 , α2 , α3 , · · · ,αk )
t .
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The one-way ANOVA model - vector notation

Equivalently, in vector notation,

One-way ANOVA model - vector notation

1 ~Y = µ1
~1n +α2

~III 2 +α3
~III 3 + ...+αk

~III k +~εεε = X~βββ +~εεε, with

◮ ~Y the random vector of the n observations of the response variable;
◮ ~1n the vector of n ones;
◮ ~III 2, ~III 3, ..., ~III k the indicator variables for the stated levels;
◮ X =

[

~1n | ~III 2 | ~III 3 | · · · | ~III k

]

the model matrix; and

◮
~βββ = (µ1,α2,α3, · · · ,αk )

t .

2 ~εεε ⌢ Nn(~0 , σ2 In), with In the n×n identity matrix.

It is a Linear Model, like the Multiple Linear Regression model, that only
differs in the nature of the predictors, which here are the indicator variables
for factor levels 2 to k .
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The test for factor effects

The hypothesis that no factor levels affect the mean of the response variable
is the hypothesis

α2 = α3 = ... = αk = 0

⇔ µ1 = µ2 = µ3 = · · · = µk

Given the analogy with Linear Regression models, this hypothesis
corresponds to stating that the coefficients of all the “predictor variables” (in
this ANOVA, the dummy variables ~III i ) are zero.

Thus, this hypothesis can be tested using the model’s goodness-of-fit F test
(slide 177).

In this context there are specific formulas.
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Degrees of freedom

In a one-way ANOVA, the number of predictors in the model (indicator
variables for levels j >1) is p=k−1 and the number of model parameters is
p+1=k .

We denote SQF (from Factor), instead of SQR, the Sum of Squares
associated with the model fit.

The degrees of freedom associated with each Sum of Squares are:

SQxx d.f.

SQF k −1

SQRE n− k

The Mean Squares (QMF and QMRE) are the ratios of the Sums of Squares
divided by their corresponding degrees of freedom.
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The F test for factor effects in a one-way ANOVA

F test for factor effects
Given the one-way ANOVA Model, we have:

Hypotheses: H0 : αi = 0 ∀ i=2,...,k vs. H1 : ∃i=2,..,k t.q. αi 6= 0.
[NO FACTOR EFFECTS] vs. [FACTOR EFFECTS]

Test statistic: F = QMF
QMRE

⌢ F[k−1,n−k ] se H0.

Significance level: α

Critical Region (Rejection Region): One-sided, right-tailed

Rej. H0 if Fcalc > fα[k−1 ,n−k ]

0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
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0
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x

d
f(

x
, 

4
, 

1
6

)
Sums of Squares and Mean Squares have specific formulas in this context.
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Matrix X in a one-way ANOVA

Since the ANOVA model is a specific instance of the Linear Model, the
formula for the least-squares estimators of the parameters is:

~̂
βββ = (XtX)−1Xt~Y ,

and the vector of fitted values ~̂
Y results from orthogonally projecting ~Y onto

the subespace C (X) of the columns of matrix X : ~̂
Y = H~Y.

But model matrix X has a special nature: since its k columns are the vectors
~1n, ~III 2, ~III 3, ... , ~III k , the elements of matrix X in the ANOVA are all 0 or 1.

As a result, both the projection matrix H and the vector ~̂Y, have a specific
nature.
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The fitted values Ŷij

In a one-way ANOVA, any vector in the column-space C (X) has equal values
for all observations in the same factor level:

a1
~1n +a2

~III 2 +a3
~III 3 + ...+ak

~III k =

























a1
...
a1

a1 +a2
...

a1 +a2
a1 +a3

...
a1 +a3
(...)

a1 +ak

...
a1 +ak

























Vector ~̂Y belongs to C (X), and so has this nature.
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The fitted values Ŷij

Specifically, in vector ~̂Y = H~Y, all values Ŷij for factor level i are given by the
sample mean of the ni observations Yij for that level:

Ŷij = Y i · =
1
ni

ni

∑
j=1

Yij ,

Note that to minimise the Residual Sum of Squares,

SQRE =
k

∑
i=1

ni

∑
j=1

(Yij − Ŷij )
2 ,

and since all fitted values Ŷij are the same for all observations in a common factor

level i , we minimise the sum for each level by taking: Ŷij = Y i .
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The fitted parameters

The population parameters are µ1 and αi = µi −µ1.

These population parameters are estimated by the corresponding
sample quantities:

Estimated parameters in a one-way ANOVA

µ̂1 = Y 1·
α̂2 = µ̂2 − µ̂1 = Y 2·−Y 1·
α̂3 = µ̂3 − µ̂1 = Y 3·−Y 1·

...
...

...

α̂k = µ̂k − µ̂1 = Y k ·−Y 1·
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Residuals, SQRE and QMRE
We saw (slide 250) that Ŷij = µ̂i = Y i ·, so that the residual of observation Yij is
given by:

Eij = Yij − Ŷij = Yij −Y i · ,

Hence, the Sum of Squared Residuals is given by:

SQRE =
k

∑
i=1

ni

∑
j=1

E2
ij =

k

∑
i=1

ni

∑
j=1

(
Yij −Y i ·

)2
=

k

∑
i=1

(ni−1)S2
i ,

where S2
i = 1

ni−1

ni

∑
j=1

(Yij −Y i ·)2 is the sample variance of the ni observations

of Y in the i-th factor level. SQRE measures variability within the k levels.

The Residual Mean Square is a weighted mean of the level variances S2
i ,

with weights ni−1 (n−k =∑
i
(ni−1)):

QMRE =
SQRE

n− k
=

1
n− k

k

∑
i=1

(ni−1)S2
i .
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Formulas for balanced designs

In the case of a balanced design, i.e., n1 = n2 = ...= nk (= nc) and n = nc ·k ,
and so:

SQRE = (nc−1)
k

∑
i=1

S2
i

QMRE =
SQRE

n− k
= nc−1

n−k

k

∑
i=1

S2
i = ✘✘nc−1

k✘✘✘(nc−1)

k

∑
i=1

S2
i =

1
k

k

∑
i=1

S2
i ,

Thus, in balanced designs, the Residual Mean Square QMRE is the (simple)
mean of the k level variances, s2

i .
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The Factor Sum of Squares

Let Y ·· =
1
n

k

∑
i=1

ni

∑
j=1

Yij be the overall mean of all n observations.

The Factor Sum of Squares, SQF , is given by:

SQF =
k

∑
i=1

ni

∑
j=1

(

Ŷij −Y ··
)2

=
k

∑
i=1

ni

∑
j=1

(
Y i ·−Y ··

)2

⇔ SQF =
k

∑
i=1

ni

(
Y i ·−Y ··

)2

SQF measures the variability among the sample means for each level.
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Formulas for balanced designs

In the case of a balanced design,

SQF = nc

k

∑
i=1

(Y i ·−Y ··)
2 = nc(k −1) ·S2

Y i..
,

where S2
Y i..

= 1
k−1

k

∑
i=1

(Y i ·−Y ··)2 indicates the sample variance of the k

level means in the sample.

QMF =
SQF

k −1
= nc ·S2

Y i..
.

Thus, in balanced designs, the Factor Mean Square, QMF , is
proportional to the variance of the k level means of variable Y .
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The relation between Sums of Squares
The fundamental relation between the three Sums of Squares (even with
unbalanced designs) has a special meaning:

SQT = SQF + SQRE
k

∑
i=1

ni

∑
j=1

(Yij −Y ··)2 =
k

∑
i=1

ni (Y i ·−Y ··)2 +
k

∑
i=1

(ni−1)S2
i .

where:

SQT = (n−1)s2
y is the overall variability of the n observations of Y ;

SQF measures the variability between different factor levels;

SQRE measures the variability within factor levels - and which cannot
therefore be explained by the factor.

This is the historical origin of the name “the Analysis of Variance”: the
variance of Y is broken up (“analised”) into terms that are associated with
different causes. In a one-way model, the causes are either the factor effects,
or other (residual) causes that the one-factor model cannot explain.
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The summary table for one-way ANOVA

The information can be collected in an ANOVA summary table.

Source d.f. SQ QM fcalc

Factor k −1 SQF =
k

∑
i=1

ni · (y i ·− y ··)
2 QMF = SQF

k−1
QMF

QMRE

Residuals n− k SQRE =
k

∑
i=1

(ni −1)s2
i QMRE = SQRE

n−k

Total n−1 SQT = (n−1)s2
y – –
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One-way ANOVAs in

To carry out a one-way ANOVA in , we must organize the data in a
data.frame with two columns:

1 one with the (numerical) values of the response variable;

2 another with the factor (specifying the factor level of each observation).

The formula used in R to specify the one-way ANOVA is similar to that used in
a linear regression, indicating the factor name as the predictor.

For example, to carry out an ANOVA of petal widths over species, with the
n = 150 iris dataset, the formula is:

Petal.Width ∼ Speies

since the iris data frame has a column called Speies which was defined as
a factor.
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One-way ANOVAs in (cont.)

Although it is possible to use the command lm to request an ANOVA
(ANOVAs being specific cases of the Linear Model), another command
organizes the information in the more traditional way for ANOVAs: the
command aov.

One-way ANOVA (iris data, slide 230)
> aov(Petal.Width ~ Speies, data=iris)

Call: aov(formula = Petal.Width ~ Speies, data = iris)

Terms:

Speies Residuals

Sum of Squares 80.41333 6.15660

Deg. of Freedom 2 147

Residual standard error: 0.20465

The output is different from that obtained with the well-known command lm.
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One-way ANOVAs in (cont.)

The command summary, when applied to a fitted ANOVA, produces the
complete ANOVA summary table.

One-way ANOVA (iris, slide 230)
> iris.aov <- aov(Petal.Width ~ Speies , data=iris)

> summary(iris.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Speies 2 80.413 40.207 960.01 < 2.2e-16 ***

Residuals 147 6.157 0.042

In this case, the F test clearly rejects the hypothesis that the additive level
effects, αi , are all zero. Thus, we reject the hypothesis that the mean petal
widths are the same for all species.

Conclusion: the factor (species) affects the response variable (petal width).
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The estimated parameters, in

To extract the parameter estimates µ1, α2, α3, ..., αk , the command
oef can be applied to a fitted ANOVA model.

One-way ANOVA (iris, slide 230)
> oef(iris.aov)

(Interept) Speiesversiolor Speiesvirginia

0.246 1.080 1.780

These are the estimated parameter values:

µ̂1 = 0.246: sample mean of the setosa petal widths;

α̂2 = 1.080: additive term which, when added to the setosa sample
mean, gives the versicolor petal width sample mean;

α̂3 = 1.780: additive term which, if added to the setosa sample mean,
gives the virginica petal width sample mean.
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Estimated parameters in (cont.)

The level means of the response variable, can be obtained with the
command model.tables and the argument type=�means�:

One-way ANOVA (iris, slide 230)
> model.tables(iris.aov , type="means")

Tables of means

Grand mean

1.199333

Speies

Speies

setosa versiolor virginia

0.246 1.326 2.026

orders the factor level by alphabetical order.
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ANOVA as a Linear Model in

It is also possible to use the command lm, which is useful for inference
on the model parameters:

One-way ANOVA (iris, slide 230)
> summary(lm(Petal.Width ~ Speies , data=iris))

Call: lm(formula = Petal.Width ~ Speies, data = iris)

(...)

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) 0.24600 0.02894 8.50 1.96e-14 ***

Speiesversiolor 1.08000 0.04093 26.39 < 2e-16 ***

Speiesvirginia 1.78000 0.04093 43.49 < 2e-16 ***

�-

Residual standard error: 0.2047 on 147 degrees of freedom

Multiple R-squared: 0.9289, Adjusted R-squared: 0.9279

F-statisti: 960 on 2 and 147 DF, p-value: < 2.2e-16
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Further exploration H1

Rejecting the Null Hypothesis

α2=α3= ...=αk =0 ⇔ µ1=µ2=µ3= · · ·=µk

leaves open the issue of precisely which pairs of level means should be
considered significantly different.

To determine for which pairs of levels i, j we should conclude that µi 6= µj ,
other tests are needed. Multiple comparison tests are advisable, so as to
control the overall significance level of all

(
k
2

)
comparisons of pairs of means.

Among these, we highlight Tukey’s test and Scheffé’s test.

These are not covered in this course.
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Model checking in a one-way ANOVA

The validity of the model assumptions can be checked using similar
approaches to those discussed in Linear Regression, with residual
plots and other diagnostics to identify observations of particular
impact. But there are some specificities.

In a one-way ANOVA plots of eij vs. ŷij , k columns of residuals appear,
because the fitted values ŷij = y i . are the same for all observations
from a given factor level.

This pattern is not a violation of the model assumptions.

All observations from a common factor level will have the same
leverage, equal to hii =

1
ni

. Especially for balanced designs, leverages
will be of little use in the context of ANOVAs.
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Residual plots in one-way ANOVAs (cont.)

A residual plot in one-way ANOVA
> plot(aov(Sepal.Width ∼ Speies, data=iris), whih=1)

2.8 2.9 3.0 3.1 3.2 3.3 3.4

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

Fitted values

R
e
s
id

u
a
ls

aov(Sepal.Width ~ Species)

Residuals vs Fitted

42

16

118

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 266 / 360



Violation of model assumptions in ANOVA

Violations of the model assumptions are not all equally serious. A few general
comments:

The ANOVA F test3 is relatively robust to deviations from Normality.

Violations of the assumption of variance homogeneity are, in general,
less severe for balanced designs, but may be serious for strongly
unbalanced designs.

The lack of independence between random errors is the most serious
violation of model assumptions and should avoided, which is often
possible with a suitable experimental design.

3And Tukey’s multiple comparisons.
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A warning
In the classical formulation of the one-way ANOVA model, with equation

Yij = µ +αi + εij , ∀ i, j

instead of imposing the condition α1=0, the alternative
k

∑
i=1

αi =0 is used.

This alternative restriction:

Changes the interpretation of the parameters: (µ is now an overall mean
of Y and αi the deviation of level mean µi in relation to µ);

The parameter estimators change.

The result of the F test for factor effects does not change.

Our choice of restriction, α1 = 0, besides being extensive to models with
more factors, enables us to make direct use of the results studied for multiple
linear regressions.
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Designs and Experimental units

When designing experiments to be analysed with ANOVAs or linear
regressions, the observations of the response variable correspond to n

different experimental units (individuals, plots of land, sites, etc.).
General principles in the selection of these experimental units are:

Randomization
Randomization, that is, the random selection of experimental units and their
association to a given factor level, when controllable. This is important to:

work with Probability Theory; and

avoid bias (even unwillingly).

Repetitions
The repetition of independent observations is needed to estimate the
variability associated with the estimation (standard errors) and minimise the
impact of outliers.
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Repetitions and pseudo-repetitions

Repetitions and pseudo-repetitions
A distinction must be made between repetitions and pseudo-repetitions.
For example, in a study of tomato plants, there is a difference between:

selecting two fruits from the same plant; or

selecting two fruits from different plants.

The genotypes, phenotypes and environmental conditions of fruits from the
same plant are identical or very similar. These are pseudo-repetitions (with
correlated measurements), not independent repetitions.

Pseudo-repetitions may be useful: replacing each group of
pseudo-repetitions by a single mean observation may decrease the variability
among different (independent) observations, making inference more precise.
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Heterogeneity of experimental units

Variability in measurements on experimental units that is not attributable to
the predictors is considered random variation and contemplated in the
random errors. Thus, uncontrolled heterogeneity of the experimental units will
increase the value of SQRE and QMRE .

Increasing QMRE means that in a test for factor effects, the computed value
of the F statistic decreases, drawing it away from the critical region. Hence,

in an ANOVA
uncontrolled heterogeneity of experimental units contributes to hide the
presence of possible factor effects.

in a Linear Regression
uncontrolled heterogeneity of experimental units contributes to worsen the
quality of the model fit, decreasing its R2.
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Controlling heterogeneity

Except for laboratory conditions, it is not possible to make experimental units
fully homogeneous: the natural variability of plants, animals, soils,
geographical conditions, cells, etc. means that uncontrolled variability of
experimental units always exists.

Even if it were possible to have (nearly) homogeneous experimental units,
there would be an undesirable drawback: results would only be valid for the
type of experimental units used in the experiment.

When an important factor of variability of the experimental units is known to
exist, the best way of controlling its effects is to contemplate the existence of
that factor of variability in the design and model, so as to filter out its effects.
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An example

We seek to analyse the yield of 5 different varieties of wheat.
Yields are also affected by soil types.

It is not always possible to have homogeneous soils in an experiment.
Even if it were possible, it may not be desirable, because the validity of
results would be restricted to that single type of soil.

Assume that we have four fields with different soil types. Each field
may be split up into five plots of size viable for wheat.

Instead of associating the 5 varieties with the 20 plots totally at
random, it is preferable to force each field to have one plot with each
variety. Randomization will only be used within each field.
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An example (cont.)

The situation described on the previous slide:

Terreno 1 Var.1 Var.3 Var.4 Var.5 Var.2

Terreno 2 Var.4 Var.3 Var.5 Var.1 Var.2

Terreno 3 Var.2 Var.4 Var.1 Var.3 Var.5

Terreno 4 Var.5 Var.2 Var.4 Var.1 Var.3

There has been a restricton to total randomization: within each field
there is randomization in the association of varieties to plots, but each
field is forced to have one plot with each variety.
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Two-way (two-factor) factorial designs

The design discussed above is a specific case of a two-way factorial design,
where one factor is wheat variety and a second factor is soil type (field).

A factorial design is an experimental design in which observations are made
for all possible combinations of levels from each factor.

Thus, designs with more than one factor may result from:

the intention of actually studying possible effects of more than one factor
on the response variable;

an attempt to control experimental variability.

Historically, this second situation has given rise to the name blocks, and in
the first situation we just speak of factors. But they are analogous situations.
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Two-way ANOVA model (without interaction)

We consider two different ANOVA models for a 2-way factorial design.

Consider:

A response variable Y , on which n observations are collected.

A Factor A, with a levels.

A Factor B, with b levels.

A first model assumes the existence of two different kinds of effects on
the values of Y : the effects associated with the levels of each factor.
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Representation of a two-way factorial design

Factor B
Levels B1 B2 B3 . . . Bb

A1 × × × × × × × × × . . . × × ×
A2 × × × × × × × × × . . . × × ×

Factor A A3 × × × × × × × × × . . . × × ×
...

...
...

...
. . .

...
Aa × × × × × × × × × . . . × × ×

Warning: This representation does not correspond to any spatial
organization of the experiment.

Cell: combines a level of one factor with a level of another factor. It
corresponds to a given experimental situation.

In this design, there are ab experimental situations (cells), each with nij

observations.
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Two-way ANOVA model (without interaction)

Notation: Each observation of the response variable is now identified by three
indices, Yi jk , where:

i indicates the Factor A level i (i = 1,2, ...,a).

j indicates the Factor B level j (j = 1,2, ...,b).

k indicates the k -the repetition in cell (i, j) (k = 1,2, ...,nij ).

The number of observations in cell (i, j) is represented by nij . We have:

a

∑
i=1

b

∑
j=1

nij = n .

If the number of observations is the same in every cell (nij = nc , ∀ i, j), we
speak of a balanced design.
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A model equation for Y

A first model assumes that the expected value for each observation is given
by:

E [Yijk ] = µij = µ +αi +βj , ∀ i, j,k .

The parameter µ is common to all observations.

Each parameter αi represents the increase associated with different levels of
Factor A, and is called the effect of factor A level i.

Each parameter βj represents the increase associated with different levels of
Factor B, and is called the effect of factor B level j.

The variability of Yijk around its mean value is given by an additive random
error, εijk , with mean zero:

Yijk = µ +αi +βj + εijk .
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The model equation in vector notation

The model equation in a two-way ANOVA (without interaction effects)
can also be written using vector notation.

Denote:
~Y the random n-dimensional vector with all observations of

the response variable.
~1n the vector of n ones.

~III Ai
the indicator variable for level i of Factor A.

~III Bj
the indicator variable for level j of Factor B.

~εεε the random vector with the n random errors.
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A first equation in vector notation

If we assume effects for all levels of both factores, the model equation will be:

~Y = µ~1n + α1
~III A1

+ α2
~III A2

+ ... + αa
~III Aa

+ β1
~III B1

+ β2
~III B2

+ ... + βb
~III Bb

+~εεε

The model matrix X defined by this model would have linearly dependent
columns for two reasons:

the sum of Factor A indicator variables is the column of ones,~1n;

the sum of Factor B indicator varibles is the column of ones,~1n.
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A first model matrix X

X =
















































1 1 0 ... 0 1 0 ... 0
1 1 0 ... 0 1 0 ... 0
1 1 0 ... 0 0 1 ... 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 1 0 ... 0 0 0 ... 1
1 1 0 ... 0 0 0 ... 1

−− −− −− −− −− −− −− −− −−
1 0 1 ... 0 1 0 ... 0
1 0 1 ... 0 1 0 ... 0
1 0 1 ... 0 1 0 ... 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
1 0 1 ... 0 0 0 ... 1
1 0 1 ... 0 0 0 ... 1

−− −− −− −− −− −− −− −− −−
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

−− −− −− −− −− −− −− −− −−
1 0 0 ... 1 1 0 ... 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 0 0 ... 1 0 0 ... 1
1 0 0 ... 1 0 0 ... 1
















































↑ ↑ ↑ ↑ ↑ ↑ ↑
~1n

~III
A1

~III
A2

... ~III
Aa

~III
B1

~III
B2

... ~III
Bb

Dropping the column~1n does not overcome linear dependence.
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Restrictions on the model equation

Henceforth, we assume that the terms associated with the first level from
each factor are dropped from the equation, that is:

α1 = 0 e β1 = 0 ,

This corresponds to excluding columns ~III A1
and ~III B1

from matrix X.

The two-way model equation in an ANOVA without interaction effects, is:

~Y = µ~1n + α2
~III

A2
+ ... + αa

~III
Aa

+ β2
~III

B2
+ ... + βb

~III
Bb

+~εεε

The parameter µ is now the expected value of Y for observations from cell
(i =1, j =1), and will be denoted as µ11:

Y11k = µ + ε11k ⇒ E [Y11k ] = µ = µ11 .
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Model matrix in two-way ANOVA (no interaction)

X =
















































1 0 ... 0 0 ... 0
1 0 ... 0 0 ... 0
1 0 ... 0 1 ... 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

1 0 ... 0 0 ... 1
1 0 ... 0 0 ... 1

−− −− −− −− −− −− −−
1 1 ... 0 0 ... 0
1 1 ... 0 0 ... 0
1 1 ... 0 0 ... 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.
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1 1 ... 0 0 ... 1

−− −− −− −− −− −− −−
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

−− −− −− −− −− −− −−
1 0 ... 1 0 ... 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
1 0 ... 1 0 ... 1
1 0 ... 1 0 ... 1
















































↑ ↑ ↑ ↑ ↑
~1n

~III
A2

... ~III
Aa

~III
B2

... ~III
Bb
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The two-way ANOVA model, without interaction

We make the usual assumptions necessary for inference,

Two-way ANOVA model, without interaction effects
Consider n observations, Yijk , of which nij correspond to cell (i, j) (i = 1, ...,a;
j = 1, ...,b). Assume:

1 Yijk = µ11 +αi +βj + εijk , ∀ i=1,...,a; j=1,...,b; k=1,...,nij (α1 = 0 ; β1 = 0).

2 εijk ⌢ N (0 , σ2), ∀ i, j,k

3 {εijk}i ,j ,k independent random variables.

The model has a+b−1 unknown parameters:

parameter µ11;

the a−1 increases αi (i > 1); and

the b−1 increases βj (j > 1).
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Testing for effects

The Null Hypothesis of a goodness-of-fit test is that all effects, whether
for factor A or factor B, are simultaneously zero. This does not
distinguish the effects of each factor.

It is more useful to separately test for the existence of effects for each
factor:

Test I: H0 : αi = 0 , ∀i = 2, ...,a ;

Test II: H0 : βj = 0 , ∀j = 2, ...,b.
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Testing for Factor B effects

The model (vector) equation in a two-way ANOVA, without interaction (slide
285) is:

~Y = µ~1n + α2
~III

A2
+ ... + αa

~III
Aa

+ β2
~III

B2
+ ... + βb

~III
Bb

+~εεε

Being a Linear Model, we can test the hypotheses:

H0 : βj = 0 , ∀j = 2, ...,b vs. H1 : ∃ j for which βj 6= 0 .

We use a partial F test comparing the full model with a+b−1 parameters:

(Modelo MA+B) Yijk = µ11 +αi +βj + εijk ,

and the submodel, with a parameters and model equation:

(Modelo MA) Yijk = µ11 +αi + εijk .

The latter is a one-way ANOVA model (with factor A).
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The test for Factor B effects

We can:

build the matrices X for the model (MA+B) and submodel (MA).

Calculate the projection matrices H = X(XtX)−1 Xt for each model.

Obtain the fitted vectors ~̂Y = H~Y and residual vectors ~E = (I−H)~Y
for each model.

Obtain the Residual Sums of Squares, SQREA+B and SQREA.
Carry out the partial F test, with test statistic:

(Factor B Effects) F =

=SQB
︷ ︸︸ ︷

SQREA −SQREA+B
b−1

SQREA+B

n−(a+b−1)

=
QMB

QMRE

defining QMB = SQB
b−1 =

SQREA−SQREA+B

b−1
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F for factor B effects

Given the two-way ANOVA model, without interaction effects:

F Test for factor B effects

Hypotheses: H0 : βj = 0 ∀ j=2,...,b vs. H1 : ∃j=2,..,b t.q. βj 6= 0.

[B DOES NOT AFFECT Y ] vs. [B AFFECTS Y ]

Test statistic: F = QMB
QMRE

⌢ F(b−1 ,n−(a+b−1)) se H0.

Significance level: α

Critical (Rejection) Region: One-sided, right tail

Reject H0 if
Fcalc > fα(b−1,n−(a+b−1))
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Test statistic for Factor A effects

In a similar way, we have:

SQA = SQFA, the Factor Sum of Squares in model MA;

QMA = SQA
a−1 , the Factor Mean Square in model MA;

SQREA+B and QMRE =
SQREA+B

n−(a+b−1) in model MA+B.

The statistic

F =
QMA

QMRE
=

SQA
a−1

SQREA+B

n−(a+b−1)

has an F[a−1,n−(a+b−1)] distribution, when αi = 0, for all i=2,...,a.
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F test for factor A effects

Given the two-way ANOVA model, without interaction effects:

F Test for factor A effects

Hypotheses: H0 : αi = 0 ∀ i=2,...,a vs. H1 : ∃ i=2,..,a t.q.αi 6= 0.
[A DOES NOT AFFECT Y ] vs. [A AFFECTS Y ]

Test Statistic: F = QMA
QMRE ⌢ F[a−1,n−(a+b−1)] se H0.

Significance level: α

Critical (Rejection) Region: One-sided, right-tail

Reject H0 if
Fcalc > fα[a−1,n−(a+b−1)]
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The new decomposition of SQT

Considering the above-defined Sums of Squares, we have:

SQB = SQREA−SQREA+B

SQA = SQFA = SQT −SQREA

Adding these SQs to SQREA+B, we get:

SQREA+B +SQA+SQB = SQT

which is a new decomposition of SQT , into three terms, one for each
factor effects and one for residual variability.
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Warning: Changing the order of factors

Exchanging the role of factors A and B defines Sums of Squares differently.
Denoting by MB the one-way ANOVA model, for factor B, we have:

SQB = SQFB = SQT −SQREB

SQA = SQREB −SQREA+B .

It is still true that SQT can be decomposed as

SQT = SQA+SQB+SQREA+B .

Similar tests to those of slides 291 and 289 can be built.

But the two alternative definitions of SQA and SQB only give the same results
for balanced designs. Only then will the order of the factors be arbitrary.
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SQA and SQB in balanced designs

In a balanced design, SQA and SQB are both Factor Sums of Squares of
one-way ANOVA models (for factor A or B, slide 290).

Thus, in the formula for SQA=SQFA, (slide 254), we have Ŷijk = Y i .. where
Y i ... indicates the mean of Y for factor A level i. Letting Y ... be the overall
mean of all n observations of Y , we have:

SQFA =
a

∑
i=1

b

∑
j=1

nc

∑
k=1

(Ŷijk −Y ···)2 = b nc ·
a

∑
i=1

(Y i ··−Y ···)2 = SQA .

In the same way, SQB=SQFB is given by the fitted values of Model MB , with
Factor B only, where Ŷijk = Y .j .. Thus:

SQFB =
a

∑
i=1

b

∑
j=1

nc

∑
k=1

(Ŷijk −Y ···)
2 = anc ·

b

∑
j=1

(Y ·j ·−Y ···)
2 = SQB .
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The 2-way ANOVA summary table
(without interaction; balanced design)

Source d.f. SQ QM fcalc

Factor A a−1 SQA = b nc ·
a

∑
i=1

(y i ··−y ···)
2 QMA = SQA

a−1
QMA

QMRE

Factor B b−1 SQB = anc ·
b

∑
j=1

(
y ·j ·−y ···

)2
QMB = SQB

b−1
QMB

QMRE

Residuals n−(a+b−1) SQRE=
a

∑
i=1

b

∑
j=1

nc

∑
k=1

(yijk−ŷijk )
2 QMRE= SQRE

n−(a+b−1)

Total n−1 SQT = (n−1)s2
y – –
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Two-way ANOVA, without interaction in

To carry out a two-way ANOVA (without interaction) in , the data
should be stored in a data.frame with three columns:

1 one for the (numerical) values of the response variable;
2 another for factor A (specifying the factor level for each

observation);
3 the third for factor B (speciftying its factor levels).

The formula used in to specify a two-way ANOVA without
interaction, is similar to that used in the two predictor Linear
Regression, with the name of both factors separated by the symbol +:

y ∼ fA + fB
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An example
immer barley data (package MASS)
The yield of five varieties (manchuria, svansota,velvet, trebi and peatland)
was registered in six locations a. In each location one plot was associated (at
random) with each variety.

> summary(aov(Y1 ~ Var + Lo, data=immer))

Df Sum Sq Mean Sq F value Pr(>F)

Var 4 2756.6 689.2 4.2309 0.01214 *

Lo 5 17829.8 3566.0 21.8923 1.751e-07 ***

Residuals 20 3257.7 162.9

Effects are slightly significant for varieties and strongly significant for
locations. What about a one-way model ignoring locations?

> summary(aov(Y1 ~ Var, data=immer))

Df Sum Sq Mean Sq F value Pr(>F)

Var 4 2756.6 689.2 0.817 0.5264

Residuals 25 21087.6 843.5

aDados em Immer, Hayes & LeRoy Powers, Statistical adaptation of barley varietal adaptation, Journal of the

American Society for Agronomy, 26, 403-419, 1934.
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Interpreting the parameter µ

Interpreting the meaning of the model parameters depends on the convention
used to overcome the issue of multicollinearity in the columns of matrix X.

How can we interpet the parameters if we use the convention α1 = β1 = 0?

An observation of Y in cell (1,1), associated with crossing the first level of
each factor, is of the form:

Y11k = µ11 + α1
︸︷︷︸

=0

+ β1
︸︷︷︸

=0

+ε11k =⇒ E [Y11k ] = µ11

Parameter µ11 corresponds to the expected value of the response variable Y

in that cell (whose indicator variables were excluded from the model matrix).
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Interpreting the parameters αi

An observation of Y in cell (i,1), with i > 1 (combining a factor A level
different from the first, with the first level of Factor B) is of the form:

Yi1k = µ11 + αi + β1
︸︷︷︸

=0

+ εi1k =⇒ µi1 = E [Yi1k ] = µ11 + αi

Parameter αi = µi1 − µ11 is the increase in the expected value of the
response variabel Y associated with observations from level i > 1 of Factor A
(compared to µ11), when j=1. It is called the effect of factor A level i.
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Interpreting the parameters αi

Table with cell population means (means for each experimental situation):

Factor B
Levels B1 B2 B3 . . . Bb

A1 µ11 µ12 µ13 . . . µ1b

A2 µ21 = µ11 +α2 µ22 µ23 . . . µ2b

Factor A A3 µ31 = µ11 +α3 µ32 µ33 . . . µ3b

...
...

...
...

. . .
...

Aa µa1 = µ11+αa µa2 µa3 . . . µab

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 300 / 360



Interpreting the parameters βj

An observation of Y from cell (1, j), with j > 1 (combining the first
Factor A level with a level of Factor B different from the first) is given by:

Y1jk = µ11 + α1
︸︷︷︸

=0

+ βj + ε1jk =⇒ µ1j = E [Y1jk ] = µ11 + βj

The parameter βj = µ1j −µ11 is the increase in the expected value of
the response variable Y , for observations from Factor B level j

(compared to µ11), when i =1. It is called the effect of factor B level j .

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 301 / 360



Interpreting the parameters βj

Table with the cell population means (means for each experimental situation):

Factor B
Levels B1 B2 B3 . . . Bb

A1 µ11 µ12=µ11+β2 µ13=µ11+β3 . . . µ1b =µ11+βb

A2 µ21 µ22 µ23 . . . µ2b

Factor A A3 µ31 µ32 µ33 . . . µ3b

...
...

...
...

. . .
...

Aa µa1 µa2 µa3 . . . µab
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Observations of Y in a general situation

But this model is too rigid: there are no parameters left, hence the expected
values in the remaining cells are already pre-determined.

For observations of Y in a generic cell (i, j), with i > 1 and j > 1, we have:

Yijk = µ11 + αi + βj + εijk =⇒ µij = E [Yijk ] = µ11 + αi + βj .

All the terms in these expressions for the expected values of Y have already
been used. There is no flexibility to describe the specific situation in cells with
i >1 and j >1.

A model without interaction effects is used above all when there is a single
observation in each cell, i.e., nij = 1, ∀ i, j.
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Formulas for balanced designs
Denote:

Y i ·· sample mean of the b nc observations for level i of factor A,

Y i ·· =
1

b nc

b

∑
j=1

nc

∑
k=1

Yijk

Y ·j · sample mean of the anc observations for level j of Factor B,

Y ·j · =
1

anc

a

∑
i=1

nc

∑
k=1

Yijk

Y ··· overall sample mean of all n = ab nc observations,

Y ··· = 1
n

a

∑
i=1

b

∑
j=1

nc

∑
k=1

Yijk .

If the design is balanced, that is, nij = nc , ∀ i, j , we have:

µ̂11 = Y 1··+Y ·1·−Y ···

α̂i = Y i ··−Y 1··

β̂j = Y ·j ·−Y ·1·
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Formulas for balanced designs (cont.)

Taking into account these formulas and the Model equation, the fitted
values for each observation depend only on the overall mean and on
the means of the observations in the corresponding level means for
each factor:

Ŷijk = µ̂11 + α̂i + β̂j = Y i ··+Y ·j ·−Y ··· , ∀ i , j ,k

Warning: Unlike what happens in a one-way ANOVA, the fitted values
Ŷijk are not the mean of the observations of Y in the same
experimental situation (cell (i , j)).
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Models with interaction effects

When there are repetitions in the cells, the most natural way to model a
two-factor design is to envisage the existence of a third kind of effects:
interaction effects.

The idea is to include in the model equation for Yijk a term (αβ )ij allowing
each cell to have a specific effect associated with the combination of levels i

of Factor A and j of Factor B:

Yijk = µ +αi +βj +(αβ )ij + εijk .

The effects αi and βj are now called main effects for each Factor.
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The expected values of Yijk (model with interaction)

We impose the following restrictions on the parameters:

α1 = 0 ; β1 = 0 ; (αβ )1j = 0 , ∀ j ; (αβ )i1 = 0 , ∀ i.

Factor B
Levels B1 B2 B3 . . . Bb

A1 × × × × × × × × × . . . × × ×
A2 × × × × × × × × × . . . × × ×

Factor A A3 × × × × × × × × × . . . × × ×
...

...
...

...
. . .

...
Aa × × × × × × × × × . . . × × ×

Only observations not from row 1 and/or column 1 have interaction effect terms.
Only observations not associated with A1 have main effects αi .

Only observations not associated with B1 have main effects βj .
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The expected values of Yijk (model with interaction)
With the restrictions, we have:

For the first cell (i = j = 1): µ11 = E [Y11k ] = µ .

In the remaining cells (1, j) of the first level of Factor A:
µ1j = E [Y1jk ] = µ11 +βj .

In the remaining cells (i,1) of the first level of Factor B:
µi1 = E [Yi1k ] = µ11 +αi .

In the remaining generic cells (i, j), with i > 1 and j > 1,
µij = E [Yijk ] = µ11 +αi +βj +(αβ )ij .

This model has ab parameters:

one mean of the reference cell, µ11;

a−1 main effects for factor A, αi (i > 1);

b−1 main effects for factor B, βj (j > 1);

(a−1)(b−1) interaction effects, (αβ )ij (i > 1, j > 1).
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Cell indicator variables

The equation of the two-way ANOVA model, with interaction, is defined using
cell indicator variables when i > 1 and j > 1, ~III Ai :Bj

:

~Y = µ~1n + α2
~III A2

+ ... + αa
~III Aa

+ β2
~III B2

+ ... + βb
~III Bb

+

+ (αβ )22
~III A2:B2

+ (αβ )23
~III A2:B3

+ ... + (αβ )ab
~III Aa:Bb

+ ~εεε

The model matrix X now has ab columns:

one column of ones,~1n, associated with parameter µ11.

a−1 columns with level indicators for factor A, ~III Ai
, (i > 1), associated with

parameters αi .

b−1 columns with level indicators for factor B, ~III Bj
, (j > 1), associated with

parameters βj .

(a−1)(b−1) columns with cell indicators, ~III Ai :Bj
, (i , j > 1), associated with

interaction effects (αβ )ij .
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The three ANOVA tests

In this design, we wish to test the existence of each of three kinds of effects:

H0 : (αβ )ij = 0 , ∀ i = 2, ...,a , ∀j = 2, ...,b ;

H0 : αi = 0 , ∀i = 2, ...,a ; e

H0 : βj = 0 , ∀j = 2, ...,b .

The test statistics for each of these tests result from decomposing the Total
Sum of Squares into suitable terms.

As in previous models, ~̂Y = H~Y, with H the ’hat’ matrix that orthogonally
projects onto the space C (X) spanned by the columns of matrix X.

And also: SQRE = ‖~Y−~̂
Y‖2 =

a

∑
i=1

b

∑
j=1

nij

∑
k=1

(Yijk − Ŷijk)
2.
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The two-way ANOVA model, with interaction

Adding the assumptions necessary for inference,

Two-way ANOVA model, with interaction (Model MA∗B)
Assume n observations, Yijk , nij of which are associated with cell (i , j)
(i = 1, ...,a; j = 1, ...,b). We have:

1 Yijk = µ11 +αi +βj +(αβ )ij + εijk , ∀ i=1,...,a ; j=1,...,b ; k=1,...,nij

with α1 = 0 ; β1 = 0 ; (αβ )ij = 0 if i = 1 and/or j = 1.
2 εijk ⌢ N (0 , σ2)

3 {εijk}i ,j ,k independent random variables.

The model has ab parameters.
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Testing interaction effects

To test the existence of interaction effects,

H0 : (αβ )ij = 0 , ∀ i = 2, ...,a , ∀j = 2, ...,b ,

we carry out a partial F test comparing the model

(Model MA∗B) Yijk = µ11 +αi +βj +(αβ )ij + εijk ,

with the submodel (two-way, without interaction effects):

(Model MA+B) Yijk = µ11 +αi +βj + εijk ,

The Interaction Sum of Squares is defined as the difference:

SQAB = SQREA+B −SQREA∗B
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Testing the main effects for each Factor

To test for Factor B main effects, H0 : βj = 0 , ∀j = 2, ...,b , consider the
models

(Model MA+B) Yijk = µ11 +αi +βj + εijk

(Model MA) Yijk = µ11 +αi + εijk ,

and take:

SQB = SQREA −SQREA+B

SQA = SQFA = SQT −SQREA

Note: These two Sums of Squares are defined just as in the model without
interaction effects.

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 313 / 360



The decomposition of SQT

We defined:

SQAB = SQREA+B −SQREA∗B

SQB = SQREA−SQREA+B

SQA = SQFA = SQT −SQREA

Adding these Sums of Squares to SQREA∗B, we get:

SQREA∗B +SQAB+SQA+SQB = SQT

This decomposition of SQT generates the quantities upon which the
three test statisticas associated with Model MA∗B are based.
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The summary table
Based on the decomposition on slide 314 we can build the summary table for
the two-way ANOVA, with interaction.

Source d.f. SQ QM fcalc

Factor A a−1 SQA QMA = SQA
a−1

QMA
QMRE

Factor B b−1 SQB QMB = SQB
b−1

QMB
QMRE

Interaction (a−1)(b−1) SQAB QMAB = SQAB
(a−1)(b−1)

QMAB
QMRE

Residuals n−ab SQRE QMRE = SQRE
n−ab

Total n−1 SQT = (n−1)s2
y – –

The degrees of freedom for each kind of effect are the number of parameters
of that kind that remain after the restrictions are imposed.

The residuals degree of freedom are the number of observations (n) minus
the number of model parameters (ab).
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The F test for interaction effects

Assuming the two-way ANOVA Model, with interaction:

F Test for interaction effects

Hypotheses: H0 : (αβ )ij = 0 ∀ i, j vs. H1 : ∃i ,j s.t. (αβ )ij 6= 0.
[NO INTERACTION] vs. [INTERACTION]

Test statistics: F = QMAB
QMRE

⌢ F[ (a−1)(b−1) ,n−ab ] if H0.

Significance Level: α

Critical (Rejection) Region: One-sided, right tail

Reject H0 if
Fcalc > fα[ (a−1)(b−1) ,n−ab ]
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The F Test for factor A main effects

Assuming the two-way ANOVA Model with interaction effects, we have:

F Test for factor A main effects

Hypotheses: H0 : αi = 0 ∀ i=2,...,a vs. H1 : ∃i=2,..,a t.q. αi 6= 0.
[NO FACTOR A EFFECTS] vs. [FACTOR A EFFECTS]

Test statistic: F = QMA
QMRE

⌢ F[a−1 ,n−ab ] if H0.

Significance level: α

Critical (Rejection) Region: One-sided, right tail

Reject H0 if
Fcalc > fα[a−1 ,n−ab ]
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F Test for factor B main effects

Assuming the two-way ANOVA model with interaction effects, we have:

F Test for factor B main effects

Hypotheses: H0 : βj = 0 ∀ j=2,...,b vs. H1 : ∃j=2,..,b t.q. βj 6= 0.
[NO FACTOR B EFFECTS] vs. [FACTOR B EFFECTS]

Test statistic: F = QMB
QMRE ⌢ F[b−1 ,n−ab ] if H0.

Significance level: α

Critical (Rejection) Region: One-sided, right tail

Reject H0 if
Fcalc > fα[b−1 ,n−ab ]
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Two-way ANOVAs, with interaction, in

For a two-way ANOVA with interaction in , organize the data as for the
model without interaction: a three-column data frame,

1 one for the response variable;

2 one for factor A;

3 one for factor B.

The formula used in to specify a two-way ANOVA with interaction, uses
the symbol ∗:

y ∼ fA ∗ fB

where y is the response variable and fA and fB are the factor names.
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An example of a two-way model with interaction

Data: yields of Negra Mole grape variety
A study to select genotypes of the Negra Mole grape variety (factor lone)
with good yields (response variable rend) throughout the years (factor ano).

> NegraMole.aov <- aov(rend ~ ano*lone, data=NegraMole)

> summary(NegraMole.aov)

Df Sum Sq Mean Sq F value Pr(>F)

ano 4 203.61 50.90 77.460 < 2e-16 ***

lone 6 26.39 4.40 6.694 1.41e-06 ***

ano:lone 24 18.08 0.75 1.146 0.294

Residuals 245 161.00 0.66

There are clear ano and lone effects. Interaction effects are not significant.
In the selection of genotypes, this is good (predictable behaviour).
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Again the Negra Mole example

Yield data for Negra Mole variety
The overall, yearly, genotype and cell (year × genotype combination) means
can be obtained with the command model.tables.

> model.tables(NegraMole.aov, type="means")

Tables of means

Grand mean

2.2237 <�� overall mean yield

ano

LOU94 LOU95 LOU96 LOU97 LOU98

1.033 2.786 3.378 2.425 1.496 <�- 96 a good year, 94 and 98 bad

lone

NM0307 NM0507 NM0703 NM1006 NM2001 NM2015 NM2102

2.4410 1.7295 2.2294 1.8306 2.2362 2.5246 2.5747 <�- there are signifiant differenes

ano:lone

lone

ano NM0307 NM0507 NM0703 NM1006 NM2001 NM2015 NM2102

LOU94 1.465 0.710 0.675 0.814 1.409 0.949 1.209 <�- A bad year is bad for all genotypes

LOU95 2.994 2.290 2.783 2.310 2.557 3.619 2.947

LOU96 3.786 2.784 3.472 2.653 3.205 3.587 4.160 <�- A good year is good for all genotypes

LOU97 2.728 1.728 2.667 2.272 2.547 2.205 2.831 What happens in eah ell is fairly

LOU98 1.233 1.135 1.550 1.105 1.463 2.263 1.727 preditable, sine there is no interation
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(No) Visualization of interaction effects

The existence of interaction effects may be seen in plots where:

The horizontal axis is associated with levels of one factor (e.g., fA);

the vertical axis has mean values of the response variable Y in
each cell;

for each cell, a point is drawn, with coordinates given by the level
of the factor and the respective cell mean of the response variable;

line segments are used to unite the points corresponding to the
same level of the other factor (e.g., fB).
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(No) Interaction plots in

Interaction plot for Negra Mole
> attah(NegraMole)

> interation.plot(x.fator=ano, trae.fator=lone, response=rend)

> detah(NegraMole)
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The absence of significant interaction translates into “approximately parallel curves”.
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Data from Exercise ANOVA 7 (sapotis)

Response variable: tanine content in the pulp
Factor: Storage temperature (high/low)
Factor: Storage time (0/3/6/9 days)

Sapoti data (Exercise ANOVA 7)
> sapoti.aov <- aov(taninos ~ temperatura * tempo , data=sapoti)

> summary(sapoti.aov)

Df Sum Sq Mean Sq F value Pr(>F)

temperatura 1 206.0 206.0 238.6 5.72e-14 ***

tempo 3 288.0 96.0 111.2 3.27e-14 ***

temperatura:tempo 3 968.0 322.7 373.7 < 2e-16 ***

Residuals 24 20.7 0.9

All types of effects are clearly significant.

(No) With significant interaction, lines in an interaction plot will be far from parallel
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Exercise ANOVA 7 (cont.)

Tanine content in sapotis
The overall, per storage temperature, per storage time and cell means can be
obtained with the command model.tables.

> model.tables(sapoti.aov , type="means")

Tables of means

Grand mean

22.14375 <�� overall mean tanine ontent

temperatura

alta baixa

24.681 19.606 <�- mean tanine ontent for eah storage temp

tempo

0 3 6 9

25.862 23.825 20.987 17.900 <�- mean tanine ontent for eah storage time

temperatura:tempo

tempo

temperatura 0 3 6 9

alta 19.50 26.85 25.97 26.40 <�- usually larger, but not for zero storage

baixa 32.22 20.80 16.00 9.40 <�- usually smaller, but not for zero storage
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(No) Interaction plot

Sapoti Data (Exercise ANOVA 7)
> attah(sapoti)

> interation.plot(response=taninos,x.fator=tempo,trae.fator=temperatura)

> interation.plot(response=taninos,x.fator=temperatura,trae.fator=tempo)

> detah(sapoti)
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Th significance of interaction effects must always be assessed with the corresponding
F test.
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The study of interaction needs repetitions

In order to study interaction effects, it is necessary to have repetitions within
cells.

The degrees of freedom of SQRE in this model are n−ab. With a single
observation in each cell, we have n = ab, that is, as many parameters as
observations. In this case, it is not even possible to define the Residual Mean
Square, QMRE = SQRE

n−ab .

In a design without cell repetitions, only a model without interaction effects
can be fitted. With repetitions, a model with interaction effects is the natural
choice.
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Fitted values of Y in a model with interaction effects

Let

Y ij · be the sample mean of the nij observations in cell (i, j),

Y i ·· be the sample mean of the ∑j nij observations of level i of
Factor A,

Y ·j · be the sample mean of the ∑i nij observations of level j of
Factor B,

Y ··· be the overall sample mean of all n = ∑i ∑j nij observations.

The fitted values Ŷijk are the same for all observations in a given cell, and are
the cell sample mean:

Ŷijk = Y ij · .
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Parameter estimators

The estimators of the parameters in a two-way ANOVA model with
interaction are:

µ̂11 = Y 11·
α̂i = Y i1·−Y 11· (i > 1)

β̂j = Y 1j ·−Y 11· (j > 1)

(α̂β )ij = (Y ij ·+Y 11·)− (Y i1·+Y 1j ·) (i , j > 1).

Confidence Intervals or Hypothesis Tests for individual parameters or
linear combinations of the parameters can be carried out using the
general theory of Linear Models.
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Residual Sum of Squares

Since the fitted values for each observation are their cell means, Ŷijk = Y ij .,
we have:

SQRE =
a

∑
i=1

b

∑
j=1

nij

∑
k=1

(Yijk − Ŷijk)
2 =

a

∑
i=1

b

∑
j=1

nij

∑
k=1

(Yijk −Y ij .)
2

⇔ SQRE =
a

∑
i=1

b

∑
j=1

(nij −1)S2
ij ,

whereS2
ij is the sample variance of the observations in cell (i, j).

In a balanced design, we have n = ncab, and the Residual Mean Square is
the simple mean of the cell sample variances, S2

ij :

QMRE =
SQRE

n−ab
=

✘✘✘nc −1
ab✘✘✘✘(nc −1)

a

∑
i=1

b

∑
j=1

S2
ij =

1
ab

a

∑
i=1

b

∑
j=1

S2
ij .
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Other SQs for balanced designs

For balanced designs (with nc observations per cell), it is also possible
to obtain simple formulas for the Sums of Squares associated with the
main effects of each factor.

These formulas are equal to those for the same Sums of Squares in a
model without interaction effects:

SQA = bnc

a

∑
i=1

(Y i ..−Y ...)
2

SQB = anc

b

∑
j=1

(Y .j .−Y ...)
2
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A warning
In the classical formulation of the two-way ANOVA model with interaction
effects, with model equation Yijk = µ +αi +βj +(αβ )ij + εijk , instead of
imposing the constraints α1 = β1 = (αβ )i1 = (αβ )1j = 0 (∀ i, j), effects of all
kinds, for any value of i and j, are assumed and the following alternative
constraints are imposed:

∑i αi = 0;

∑j βj = 0;

∑i (αβ )ij = 0 , ∀ j;

∑j (αβ )ij = 0 , ∀ i.

These alternative constraints:

change the interpretation of the parameters;

change the parameter estimates;

do not change the result of the F tests for the existence of effects.
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(No) Final comments on ANOVA
1. Um delineamento factorial pode ser definido com qualquer número de
factores.

Num delineamento factorial a três factores (Factores A, B e C, com a, b e c
níveis) há abc situações experimentais, todas com observações.

Cada observação indexa-se com quatro índices: Yijkl indica a observação l

na célula (i, j,k). Na equação de base para Yijkl há sete tipos de efeitos:

três efeitos principais de cada factor, αi , βj e γk .

três efeitos de interacção dupla associados a cada combinação de
níveis de dois Factores diferentes: (αβ )ij , (αγ)ik e (β γ)jk .

um efeito de tripla interacção nas células onde se cruzam níveis dos
três factores: (αβ γ)ijk

Para evitar um excesso de parâmetros, Consideram-se nulos os efeitos em
que pelo menos um índice é igual a 1.
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(No) 1. O modelo factorial a três factores

A equação de base do modelo é agora da forma:

Yijkl = µ111 +αi +βj + γk +(αβ )ij +(αγ)ik +(β γ)jk +(αβ γ)ijk + εijkl .

Com as restrições, o modelo tem abc parâmetros.

A Soma de Quadrados Total é agora decomposta em oito parcelas:

SQT = SQA+SQB+SQC+SQAB+SQAC+SQBC+SQABC+SQRE .

As sete SQs associadas a efeitos são definidas pela diferença das Somas de
Quadrados Residuais de modelos onde se vão sucessivamente omitindo os
efeitos correspondentes.

Há sete testes: um para cada tipo de efeitos. As estatísticas dos sete testes
são todas do tipo F = QMx

QMRE , onde x designa o tipo de efeitos a ser testado.
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(No) 2. Nested designs
São delineamentos com dois (ou mais) factores, em que os níveis de um dos
factores variam consoante os níveis do outro factor.

Exemplo: dois factores, variedades e genótipos.
Um delineamento factorial é impossível.
Mas pode considerar-se uma estrutura hierárquica,
representada no dendrograma à direita.

FACTOR A

FACTOR B

A3

1 2 3 4

A1

321

(Variedade)

(Genótipo)

1 2 3 4 5

A2

A equação base do modelo inclui efeitos de nível do Factor A e efeitos de
nível do factor B, subordinado a A:

Yijk = µ +αi +βj(i)+ εijk .

Não faz sentido falar em efeitos do nível j do Factor B, sem especificar qual
o nível do Factor A a que nos referimos. Nem faz sentido falar em efeitos de
interacção: os níveis de cada factor não são, em geral, cruzados.

Haverá agora dois testes F : um para cada tipo de efeitos (αi e βj(i)). As
estatísticas de teste obtêm-se de forma análoga, a partir da decomposição
SQT = SQA+SQB(A)+SQRE .
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(No) 3. Outros tipos de delineamentos experimentais

Existem numerosos outros tipos de delineamentos mais complexos.

Alguns delineamentos visam reduzir o número de situações
experimentais que é necessário estudar.

Exemplo: quadrados latinos ou greco-romanos.

Outros delineamentos visam ultrapassar dificuldades práticas na
execução de uma experiência, como é o caso dos delineamentos em
parcelas divididas (split plots).
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(No) 4. Métodos não paramétricos de tipo ANOVA

Uma forma alternativa de estudar problemas análogos aos objectivos de
ANOVAs resulta da utilização de métodos não paramétricos:

Não exigem pressupostos tão restritivos como os métodos clássicos,
(e.g., a Normalidade ou homogeneidade de variâncias).

Em contrapartida têm menor capacidade de rejeitar as hipóteses nulas
caso elas sejam falsas (i.e., têm menor potência), quando os
pressupostos adicionais dos métodos clássicos são válidos.

Frequemente, substituem os valores observados da variável resposta
pelas ordens (ranks) dessas observações. As estatísticas de teste são
então funções dessas ordens.
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(No) 4. Métodos não paramétricos de tipo ANOVA
(cont.)
O teste de Kruskal-Wallis é uma alternativa não paramétrica à ANOVA a 1
Factor, em que:

A hipótese nula é que nos vários níveis do factor as observações
seguem a mesma distribuição.

A hipótese alternativa é que a distribuição dos vários níveis difere
apenas nas suas localizações (medianas).

Cada observação é substituída pela sua ordem;

A estatística de teste compara as ordens médias em cada nível do
factor com a ordem média global, havendo uma distribuição exacta e
uma distribuição assintótica para grandes amostras.

O teste de Kruskal-Wallis é equivalente a um teste ANOVA a um Factor sobre
as ordens das observações.
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Analysis of Covariance: an introduction

The Linear Regressions and Analyses of Variance studied so far are
particular cases of the Linear Model, which also encompasses the Analyses
of Covariance.

In all three contexts, we model a numerical response variable Y .

What sets the three situations apart is the nature of the predictors.

In a Linear Regression, the predictors are also numerical variables.

In an Analysis of Variance, predictors are factors.

In Analyses of Covariance, among the predictors we find both numerical
variables and factors.
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Comparing regression lines for different factor levels

The Analysis of Covariance will be discussed in a frequent specific context of
practical interest, associated with Linear Regressions.

We seek to compare regression lines relating a numerical variable Y and a
numerical predictor x , in different contexts defined by the levels of a given
factor.

This, we have:

a numerical response variable Y ;

a numerical predictor x ;

a factor predictor, that defines the different contexts for which we seek to
compare the linear relation between Y and x .
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An example

Predicting iris petal width considering species
Predicting petal width based on their length (left plot) produced a good model
when the three species were pooled. And separately?
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Predicting petal width based on sepal width (right plot) gives a bad model
when the three species are pooled. And separately?
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ANCOVA as a comparison tool

We will formulate the problem assuming:

an ANCOVA corresponding to a specific linear relation between Y and x

for each factor level;

different submodels correspond to assuming that some parameters are
the same in those lines for different factor levels.

Being Linear Models, the available theory allows us to choose between the
full model and any given submodel in this Analysis of Covariance.

We discuss the issue assuming (as in the example) that the factor has k = 3
levels. But the approach can be also extended to any number k ∈ N of levels.
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An Analysis of Covariance for the example
Assume a linear relation between response variable Y and predictor x ,
possibly different for each context defined by the factor (e.g., iris species):

Context 1: Y = β0 +β1 x + ε

Context 2: Y = β ∗
0 +β ∗

1 x + ε

Context 3: Y = β ∗∗
0 +β ∗∗

1 x + ε

Consider the first context as a reference level and write the parameters for
other contexts using those of the reference level:

β ∗
0 = β0 +α0:2 ; β ∗

1 = β1 +α1:2

β ∗∗
0 = β0 +α0:3 ; β ∗∗

1 = β1 +α1:3

With the parameters for each line written in this way, the hypothesis that the
three regression lines are the same is the hypothesis

α0:2 = α0:3 = α1:2 = α1:3 = 0 .
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The variables associated with the increases
Assume n observations, of which ni from each level (i = 1,2,3). As in a
one-way ANOVA, use double indexing to identify levels of origin: Yij and xij .

Define indicator variables ~III i for each level.

Define also vectors with the values of the predictor x for a given level i (i > 1)
and zero in other positions, which we represent as~x◦~III i .

In the earlier example with n1 = 3, n2 = 4 and n3 = 2 observations:

~III 2 =

















0
0
0
1
1
1
1
0
0

















, ~x◦~III 2 =

















0
0
0

x21
x22
x23
x23
0
0

















, ~III 3 =

















0
0
0
0
0
0
0
1
1

















, ~x◦~III 3 =

















0
0
0
0
0
0
0

x31
x32
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The equation for the ANCOVA model

We can now write the relation between vector ~Y of the n observations of the
response variable and the predictor X , as follows:

~Y = β0
~1n +β1~x+α0:2

~III 2 +α0:3
~III 3 +α1:2 (~x◦~III 2)+α1:3 (~x◦~III 3)+~εεε .

In the example, using vector/matrix notation ~Y = X~βββ +~εεε:
















Y11
Y12
Y13
Y21
Y22
Y23
Y24
Y31
Y32

















=

















1 x11 0 0 0 0
1 x12 0 0 0 0
1 x13 0 0 0 0
1 x21 1 0 x21 0
1 x22 1 0 x22 0
1 x23 1 0 x23 0
1 x24 1 0 x24 0
1 x31 0 1 0 x31
1 x32 0 1 0 x32



























β0
β1

α0:2
α0:3
α1:2
α1:3











+

















ε11
ε12
ε13
ε21
ε22
ε23
ε24
ε31
ε32
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The ANCOVA model equation

The model on slide 345 fits a separate line for the observations in each
context.

Yij =







β0 +β1 x1j + ε1j , se i = 1
(β0+α0:2)+ (β1+α1:2)x2j + ε2j , se i = 2
(β0+α0:3)+ (β1+α1:3)x3j + ε3j , se i = 3 .

(1)

If the parameters of type αi :j are all zero, the regression lines coincide, in all
three contexts.

With the usual assumptions for random errors, this ANCOVA model is a linear
model with 3×2 = 6 parameters (and predictor variables~x, ~III 2, ~III 3,~x◦~III 2,
~x◦~III 3).

In general, for k factor levels there are 2k parameters.
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Some interesting submodels

~Y = β0
~1n +β1~x+α0:2

~III 2 +α0:3
~III 3 +α1:2 (~x◦~III 2)+α1:3 (~x◦~III 3)+~εεε

The hypothesis of a single regression line in the 3 contexts is
α0:2 = α0:3 = α1:2 = α1:3 = 0.

The hypothesis of three parallel lines (i.e., equal slope), but possibly
different intercepts, is α1:2 =α1:3=0.

The hypothesis that the first and second lines have the same slope, is
α1:2 = 0.

The hypothesis that the second and third lines have the same slope, is
α1:2 = α1:3, ou seja, α1:2 −α1:3 = 0.

The hypothesis of three lines with the same intercept, but possibly
different slopes, is α0:2 = α0:3 = 0.

These (or similar) hypotheses may be tested using the F and t tests
discussed previously for linear models.
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Crossing factors and numerical variables in
In R, an ANCOVA model regressing y on x , allowing for different lines for each
level of factor f , is specified by the formula: y ∼ x ∗ f .

ANCOVA with the iris data
> modespeie.lm <- lm(Petal.Length ~ Sepal.Length * Speies, data=iris)

> summary(modespeie.lm)

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) 0.8031 0.5310 1.512 0.133

Sepal.Length 0.1316 0.1058 1.244 0.216

Speiesversiolor -0.6179 0.6837 -0.904 0.368

Speiesvirginia -0.1926 0.6578 -0.293 0.770

Sepal.Length:Speiesversiolor 0.5548 0.1281 4.330 2.78e-05 ***

Sepal.Length:Speiesvirginia 0.6184 0.1210 5.111 1.00e-06 ***

�-

Residual standard error: 0.2611 on 144 degrees of freedom

Multiple R-squared: 0.9789, Adjusted R-squared: 0.9781

F-statisti: 1333 on 5 and 144 DF, p-value: < 2.2e-16

The regression line for setosa (reference level) has a significantly different slope from
those for the other species.
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An example on . The 3 lines.

ANCOVA with iris (cont.)
The three lines fitted by the ANCOVA model:

For species setosa (reference):

PL = 0.8031+0.1316SL

For species versicolor :

PL = (0.8031−0.6179)+ (0.1316+0.5548)SL = 0.1851+0.6865SL

For species virginica:

PL = (0.8031−0.1926)+ (0.1316+0.6184)SL = 0.6105+0.7501SL

These are the same lines that result from a linear regression using only the
ni = 50 observations from each species.
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The 3 separate linear regression lines

ANCOVA with iris (cont.)
The three lines fitted by the ANCOVA model:

Species Setosa: PL = 0.8031+0.1316SL

Species Versicolor : PL = 0.1851+0.6865SL

Species Virginica: PL = 0.6105+0.7501SL

The three lines in separate linear regressions:

> oef(lm(Petal.Length ~ Sepal.Length , data=iris[1:50,℄))

(Interept) Sepal.Length

0.8030518 0.1316317

> oef(lm(Petal.Length ~ Sepal.Length , data=iris[51:100,℄))

(Interept) Sepal.Length

0.1851155 0.6864698

> oef(lm(Petal.Length ~ Sepal.Length , data=iris[101:150,℄))

(Interept) Sepal.Length

0.6104680 0.7500808
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A block matrix H in ANCOVA

This is the result of the special structure of the matrix of orthogonal
projections H, associated with the ANCOVA model on slide 345.

Let Hi be the ni ×ni orthogonal projection matrix onto subspace C (X[i])⊂ Rni

spanned only by the observations from level i of the factor.

The matrix H in the ANCOVA model is then a block-diagonal matrix
(assuming the rows of X are grouped by factor level):

H =








H1 0 . . . 0
0 H2 . . . 0
...

...
. . .

...
0 0 . . . Hk








The fitted values of vector ~̂Y = H~Y depend only on the matrix Hi for the
corresponding level i.
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An example in . A single line?

Is a single line for the three species admissible?
> modunio.lm <- lm(Petal.Length ~ Sepal.Length, data=iris)

> anova(modunio.lm, modespeie.lm)

Analysis of Variane Table

Model 1: Petal.Length ~ Sepal.Length

Model 2: Petal.Length ~ Sepal.Length * Speies

Res.Df RSS Df Sum of Sq F Pr(>F)

1 148 111.459

2 144 9.818 4 101.641 372.7 < 2.2e-16 ***

We reject the hypothesis of a single line, in favour of different lines.
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Another example in . Parallel lines?

In , a regression of y over x with parallel lines, but allowing for different
intercepts for each level of factor f , is specified by the formula: y ∼ x + f

Model for parallel lines, iris data
> modparalelas.lm <- lm(Petal.Length ~ Sepal.Length + Speies, data=iris)

> summary(modparalelas.lm)

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) -1.70234 0.23013 -7.397 1.01e-11 ***

Sepal.Length 0.63211 0.04527 13.962 < 2e-16 ***

Speiesversiolor 2.21014 0.07047 31.362 < 2e-16 ***

Speiesvirginia 3.09000 0.09123 33.870 < 2e-16 ***

�-

Residual standard error: 0.2826 on 146 degrees of freedom

Multiple R-squared: 0.9749, Adjusted R-squared: 0.9744

F-statisti: 1890 on 3 and 146 DF, p-value: < 2.2e-16
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An example in : 3 parallel lines

Parallel lines with iris data
The three lines fitted by the parallel lines model:

For species setosa (reference):

PL = −1.70234+0.63211SL

For species versicolor :

PL = (−1.70234+2.21014)+0.63211SL = 0.50780+0.63211SL

For species virginica:

PL = (−1.70234+3.09000)+0.63211SL = 1.38766+0.63211SL

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 354 / 360



An example in . Parallel lines? (cont.)

Is it admissible to assume that the three lines are parallel?

Let us perform a partial F test, comparing the submodel with parallel lines
and the model assuming different lines.

Partial F test studying the parallel lines model
> anova(modparalelas.lm, modespeie.lm)

Analysis of Variane Table

Model 1: Petal.Length ~ Sepal.Length + Speies

Model 2: Petal.Length ~ Sepal.Length * Speies

Res.Df RSS Df Sum of Sq F Pr(>F)

1 146 11.6571

2 144 9.8179 2 1.8393 13.489 4.272e-06 ***

We reject the hypothesis of parallel lines.
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A warning about the assumptions

The previous tests are valid for the assumptions of Linear Models:

εij ⌢ N (0,σ2), ∀i, j;

independent random errors.

These are almost the same assumptions made in separate fits of each line,
using only the ni observations from each context.

But there are stronger assumptions: independence and variance
homogeneity of random errors must be valid for the pooled data from all 3
contexts.
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A warning
Mixing subpopulations may create illusions

Here are the scatterplots and values of R2 of Petal.Width vs.

Petal.Length for: a single line, ANCOVA and separate fits, for the three iris
species (setosa, versicolor and virginica).
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The R2 of an ANCOVA model
It is possible to relate the Coefficients of Determination of the ANCOVA
model, R2, and of the k single-level models, R2

[i]. We have:

R2 =

k

∑
i=1

R2
[i] SQTi + SQF

k

∑
i=1

SQTi + SQF

.

where SQRi and SQTi are for observations from level i, and SQF is the
Factor Sum of Squares in the one-way ANOVA of all observations, on the
factor indicating the k contexts being compared (without the numerical
predictor).

if SQF ≈ 0 (i.e., the Factor has no significant effects on Y ), R2 is
aprpoximately a weighted mean of the R2

[i] (with weights SQTi ). In this

case, R2 ≈ 1 only if most R2
[i] ≈ 1.

for very large SQF (i.e., significant effects of the Factor on Y ), the
differences in the means of Y for each group dominate the expression.
SQF ≫ ∑k

i=1 SQTi ⇒ R2 ≈ 1, regardless of the R2
[i].
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Again the example on slide 357

The values of each Sum of Squares, and of the R2, for each model
mentioned on slide 357, are:

SQT SQR SQRE QMRE R2

setosa 0.54420 0.05985029 0.4843497 0.01009062 0.1099785

versiolor 1.91620 1.18583401 0.7303660 0.01521596 0.6188467

virginia 3.69620 0.38349444 3.3127056 0.06901470 0.1037537

Anova 86.56993 82.04251207 4.5274213 0.03144043 0.9477022

Resultsone-way ANOVA: Petal.Width ~ Speies

SQF=80.41333 SQRE=6.15660

The high value of the ANCOVA R2 essentially results from the large SQF .

Warning: the single regression line model for pooled data does not appear in
this comparison.
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Generalizing

Extending these results to any k -level factor is immediate.

The basic idea used to compare regression lines in k different contexts can
be generalized to study any multiple linear regression in k different contexts.

For each predictor, we allow the possibility of having additive effects for any
coefficient (when compared to the coefficient of the first context). These
additive effects may be different for each context.

J. Cadima (DCEB-Mathematics/ISA) Modelos Matemáticos e Aplicações 2021-22 360 / 360


	Linear Model
	Linear Model - descriptive considerations
	Non-linear relations and linearizing transformations

	Multiple Linear Regression – the descriptive context
	Linear Model - inferential context
	Analysis of Variance
	Analysis of Covariance

