INSTITUTO SUPERIOR DE AGRONOMIA

Test of Applied Operations Research - 30 May 2018

Number:
Name:

1. (7val.) As the leader of a wildlife exploration venture, you would like to explore exactly four out of eight possible sites in order to maximize the annual profit. The sites are labeled as $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}$ and s_{8}, and the expected associated annual profits (in $10^{4} €$) are given in the table below.

Site	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}
Profit $\left(10^{4} €\right)$	3	4	6	4	2.5	7	2	4.5

a) Formulate this problem in integer linear programming.
b) Find an optimal solution of the problem and calculate the corresponding profit.
c) Formulate constraints for the following conditions:
i) Sites s_{3} and s_{6} can not be explored simultaneously.
ii) If site s_{2} is explored, then site s_{5} must also be explored.
iii) If site s_{3} and s_{4} are both explored, then site s_{7} must also be explored.
$i v)$ If site s_{3} and s_{6} are both explored, then site s_{8} can not be explored.
2. (3val.) Consider the mixed integer linear programming model
$\operatorname{Min} Z=-2 x+3 y_{1}+2 y_{2}+3 y_{3}$

$$
\text { s.t. } \quad \begin{aligned}
x+y_{1}+y_{2}+y_{3} & \geq \\
10 x+5 y_{1}+3 y_{2}+4 y_{3} & \leq 10 \\
x &
\end{aligned}
$$

and an incomplete branch-and-bound for the model, where node 1 represents its linear relaxation ($L B_{i}$ is the objective function value of the optimal solution obtained at node i, displayed in the table below).

a) Compute $L B_{2}$.
b) Which nodes can be pruned?
c) Between which values does the objective function value of an optimal solution of the model lie?

