INSTITUTO SUPERIOR DE AGRONOMIA

Test of Applied Operations Research - 30 May 2018

Number	
TAUHDOL.	

1. (7val.) As the leader of a wildlife exploration venture, you would like to explore exactly four out of eight possible sites in order to maximize the annual profit. The sites are labeled as s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , s_7 and s_8 , and the expected associated annual profits (in $10^4 \in$) are given in the table below.

Site	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8
Profit $(10^4 \in)$	3	4	6	4	2.5	7	2	4.5

- a) Formulate this problem in integer linear programming.
- b) Find an optimal solution of the problem and calculate the corresponding profit.
- c) Formulate constraints for the following conditions:

Name:

- i) Sites s_3 and s_6 can not be explored simultaneously.
- ii) If site s_2 is explored, then site s_5 must also be explored.
- iii) If site s_3 and s_4 are both explored, then site s_7 must also be explored.
- iv) If site s_3 and s_6 are both explored, then site s_8 can not be explored.
- 2. (3val.) Consider the mixed integer linear programming model

and an incomplete branch-and-bound for the model, where node 1 represents its linear relaxation (LB_i) is the objective function value of the optimal solution obtained at node *i*, displayed in the table below).

	(1)	$LB_1: 2.5$						
	$u_0 = 0$	$u_0 - 1$		Node #	x	y_1	y_2	y_3
	$g_3 = 0$	$g_3 - 1$		1	0.5	0	1	0.5
			~	2	0.4	0.6	1	0
LB_2 : (2	()	$B) LB_3 : 3.28$	3	0.43	0	0.57	1
$y_1 = 0$	$y_1 = 1$	$y_2 = 0$	$y_2 = 1$	4	-	-	-	-
			$\langle \rangle$	5	0.29	1	0.71	0
C	<u>ک</u>	Ő	\sim	6	0.2	0.8	0	1
4	9	\bigcirc	\mathbf{O}	7	0.3	0	1	1
Infeasible	$LB_5: 3.86$	$LB_{6}: 5.0$	$LB_7: 4.4$					

- a) Compute LB_2 .
- b) Which nodes can be pruned?
- c) Between which values does the objective function value of an optimal solution of the model lie?