INSTITUTO SUPERIOR DE AGRONOMIA

Test of Applied Operations Research - 30 May 2018

Integer Programming - SOLUTION

1. (7val.) As the leader of a wildlife exploration venture, you would like to explore exactly four out of eight possible sites in order to maximize the annual profit. The sites are labeled as $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}$ and s_{8}, and the expected associated annual profits (in $10^{4} €$) are given in the table below.

Site	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}
Profit $\left(10^{4} €\right)$	3	4	6	4	2.5	7	2	4.5

a) Formulate this problem in integer linear programming.

$$
\begin{equation*}
\max Z=3 x_{1}+4 x_{2}+6 x_{3}+4 x_{4}+2.5 x_{5}+7 x_{6}+2 x_{7}+4.5 x_{8} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}=4 \tag{2}\\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \in\{0,1\}, \tag{3}
\end{align*}
$$

where
$i=1, \ldots, 8, x_{i}= \begin{cases}1 & \text { if site } s_{i} \text { is explored } \\ 0 & \text { otherwise } .\end{cases}$
b) Find an optimal solution of the problem and calculate the corresponding profit. Exploring sites 6, 3, 8 and 2, with the annual profit of $21.5 \times 10^{4} €$.
c) Formulate constraints for the following conditions:
i) Sites s_{3} and s_{6} can not be explored simultaneously. $x_{3}+x_{6} \leq 1$.
ii) If site s_{2} is explored, then site s_{5} must also be explored. $x_{2} \leq x_{5}$.
iii) If site s_{3} and s_{4} are both explored, then site s_{7} must also be explored. $x_{3}+x_{4}-1 \leq s_{7}$.
iv) If site s_{3} and s_{6} are both explored, then site s_{8} can not be explored.
$x_{8} \leq 2-\left(x_{3}+x_{6}\right)$.
2. (3val.) Consider the mixed integer linear programming model

$$
\left.\begin{array}{crl}
\text { Min } Z=-2 x+3 y_{1}+2 y_{2}+3 y_{3} & \\
\text { s.t. } & x+y_{1}+y_{2}+y_{3} & \geq 2 \\
& 10 x+5 y_{1}+3 y_{2}+4 y_{3} & \leq 10 \\
& \geq 0 \\
& x & y_{1}, \quad y_{3}
\end{array}\right) \in\{0,1\} .
$$

and an incomplete branch-and-bound for the model, where node 1 represents its linear relaxation ($L B_{i}$ is the objective function value of the optimal solution obtained at node i, displayed in the table below).

a) Compute $L B_{2}$
$L B_{2}=-2(0.4)+3(0.6)+2(1)+3(0)=3.0$.
b) Which nodes can be pruned?

Node 4 because it is infeasible; node 7 because gives a feasible solution of the mixed integer linear programming model; node 6 because the corresponding solution is already worse than the feasible solution known $\left(L B_{6}>4.4\right)$. Node 5 cannot be pruned because it is possible to obtain further from this node a feasible solution better than the best feasible solution known ($L B_{5}<4.4$).
c) Between which values does the objective function value of an optimal solution of the model lie?
Between 3.86 (the unexplored node) and 4.4 (the best solution found so far).

