Name:

1. (10val.) A furniture company manufactures tables, chairs, desks and bookcases. Table 1 displays, for one unit of each product, the amounts of resources (softwood, hardwood and labor) consumed and the revenue obtained.

	Softwood (feet/unit)	Hardwood (feet/unit)	Labor (hours/unit)	Revenue (euros/unit)
Table	5	2	3	62
Chair	1	3	2	42
Desk	9	4	5	103
Bookcase	12	1	10	139

Table 1:

The company has available 1500 feet of softwood and 1000 feet of hardwood. The factory employs 10 people, each of which works 8 hours per day. The firm plans its production for a 10-day period. Softwood costs $2 €$ per foot, hardwood $5 €$ per foot and labor $10 €$ per hour.
The following LP model translates the problem that the company would like to solve.

$$
\begin{align*}
& \operatorname{Max} \quad Z=12 x_{1}+5 x_{2}+15 x_{3}+10 x_{4} \tag{1}\\
& \text { s.t. } \quad 5 x_{1}+x_{2}+9 x_{3}+12 x_{4} \leq 1500 \tag{2}\\
& 2 x_{1}+3 x_{2}+4 x_{3}+x_{4} \leq 1000 \tag{3}\\
& 3 x_{1}+2 x_{2}+5 x_{3}+10 x_{4} \leq 800 \tag{4}\\
& x_{1} \quad \geq 40 \tag{5}\\
& x_{2} \quad \geq 130 \tag{6}\\
& x_{3} \quad \geq 30 \tag{7}\\
& x_{4} \leq 10 \tag{8}\\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \in \mathbb{N}_{0} . \tag{9}
\end{align*}
$$

a) What can be the meaning of the decision variables x_{1}, x_{2}, x_{3} and x_{4}, the objective function (1) and constraints (2) to (8)?
b) Table 2 displays the answer report provided by the Excel Solver concerning constraints (4), (5), (6) and (7). Complete the gray boxes in Table 2 and find the optimal solution.

Name	Cell value	Status	Slack
(4)		Binding	0
(5)		Not Binding	90
(6)		Binding	0
(7)		Binding	0

Table 2:
2. (5val.) Consider the following LP problem (P1):

$$
\begin{gathered}
\min z=4 x_{1}+4 x_{2}+x_{3} \\
\left\{\begin{array}{c}
x_{1}+x_{2}+x_{3} \leq 2 \\
2 x_{1}+x_{2} \\
2 x_{1}+x_{2}+3 x_{3} \geq 3 \\
x_{1}, \\
x_{2}, \\
\geq
\end{array}\right] \\
\hline
\end{gathered}
$$

Use the Big M method to obtain a starting basic feasible solution for (P1). Identify the first tableau for the simplex method and the corresponding basic feasible solution.
3. (5val.) Consider the following LP problem (P2):

$$
\begin{gathered}
\min z=5 x_{1}+3 x_{2}+8 x_{3} \\
\left\{\begin{array}{cccc}
x_{1}- & x_{2}+ & 4 x_{3}= & 5 \\
2 x_{1}+ & 5 x_{2}+ & 7 x_{3} \geq & 6 \\
x_{1} \in R, & x_{2} \leq 0, & x_{3} \geq & 0 .
\end{array}\right.
\end{gathered}
$$

a) Write the dual problem of (P2).
b) The primal optimal solution for (P2) is $x_{1}=-11, x_{2}=0$ and $x_{3}=4$. Use complementary slackness conditions to obtain the dual optimal solution.

