INSTITUTO SUPERIOR DE AGRONOMIA

Exam of Applied Operations Research - Module 2 - 12 June 2016/17

Number: Name:

1. (10val.) A furniture company manufactures tables, chairs, desks and bookcases. Table 1 displays, for one unit of each product, the amounts of resources (softwood, hardwood and labor) consumed and the revenue obtained.

	Softwood	Hardwood	Labor	Revenue
	$({ m feet}/{ m unit})$	$({ m feet}/{ m unit})$	$(\mathrm{hours}/\mathrm{unit})$	$(\mathrm{euros}/\mathrm{unit})$
Table	5	2	3	62
Chair	1	3	2	42
\mathbf{Desk}	9	4	5	103
Bookcase	12	1	10	139

Table 1:

The company has available 1500 feet of softwood and 1000 feet of hardwood. The factory employs 10 people, each of which works 8 hours per day. The firm plans its production for a 10-day period. Softwood costs $2 \in$ per foot, hardwood $5 \in$ per foot and labor $10 \in$ per hour.

The following LP model translates the problem that the company would like to solve.

Max	$Z = 12x_1 + 5$	$5x_2 + $	$15x_3 +$	$-10x_4$		(1)
s.t.	$5x_1 + x_2$	$x_2 + $	$9x_3 +$	$-12x_4$	≤ 1500	(2)
	$2x_1 + 3$	$3x_2 +$	$4x_3 +$	x_4	≤ 1000	(3)
	$3x_1 + 2$	$2x_2 +$	$5x_3 +$	$-10x_4$	≤ 800	(4)
	x_1				≥ 40	(5)
	:	x_2			≥ 130	(6)
			x_3		≥ 30	(7)
				x_4	≤ 10	(8)
	x_1, \ldots	$x_2,$	x_3 ,	x_4	$\in \mathbb{N}_0.$	(9)

- a) What can be the meaning of the decision variables x_1 , x_2 , x_3 and x_4 , the objective function (1) and constraints (2) to (8)?
- b) Table 2 displays the answer report provided by the Excel Solver concerning constraints (4), (5), (6) and (7). Complete the gray boxes in Table 2 and find the optimal solution.

Name	Cell value	Status	Slack
(4)		Binding	0
(5)		Not Binding	90
(6)		Binding	0
(7)		Binding	0

Τŧ	abl	е	2:

2. (5val.) Consider the following LP problem (P1):

$$\min z = 4x_1 + 4x_2 + x_3$$

$$\begin{cases}
x_1 + x_2 + x_3 \leq 2 \\
2x_1 + x_2 \leq 3 \\
2x_1 + x_2 + 3x_3 \geq 3 \\
x_1, x_2, x_3 \geq 0.
\end{cases}$$

Use the Big M method to obtain a starting basic feasible solution for (P1). Identify the first tableau for the simplex method and the corresponding basic feasible solution.

3. (5val.) Consider the following LP problem (P2):

$$\min z = 5x_1 + 3x_2 + 8x_3$$

$$\begin{cases} x_1 - x_2 + 4x_3 = 5\\ 2x_1 + 5x_2 + 7x_3 \ge 6\\ x_1 \in R, x_2 \le 0, x_3 \ge 0. \end{cases}$$

- a) Write the dual problem of (P2).
- b) The primal optimal solution for (P2) is $x_1 = -11$, $x_2 = 0$ and $x_3 = 4$. Use complementary slackness conditions to obtain the dual optimal solution.