INSTITUTO SUPERIOR DE AGRONOMIA
 Modelos Matemáticos e Aplicações (2020-21)
 Test - Generalised Linear Models and Mixed Linear Models

May 31, 2021
Duration: 2h30

I [9 points]

A study seeks to estimate the number of berries in bunches of grapes (a count variable BE) based on three other variables: the bunch weight (variable Bw, in g) and two variables that can be observed in 2-dimensional images taken by robots that go into vineyards, namely, the number of berries that are visible in an image (count variable BEv) and the area of each bunch on its image (variable Ba, in cm^{2}). The dataset used to fit the model had observations on 75 bunches of each of 5 varieties, for a total of 375 observations, but since the goal was a model that could be applied to any variety, the observations were considered in their entirety.

Here are some summary indicators:

```
> summary(Todos[,c("BE","BEv","Ba","Bw")])
\begin{tabular}{|c|c|c|c|}
\hline BE & BEv & Ba & Bw \\
\hline Min. : 8.0 & Min. : 8.0 & Min. : 10.60 & Min. : 10.6 \\
\hline 1st Qu.: 61.0 & 1st Qu.:34.0 & 1st Qu.: 54.52 & 1st Qu.: 86.0 \\
\hline Median : 85.0 & Median : 44.0 & Median : 74.12 & Median :133.6 \\
\hline Mean : 87.7 & Mean : 44.7 & Mean : 74.44 & Mean :137.2 \\
\hline 3rd Qu.:113.5 & 3rd Qu.:55.0 & 3rd Qu.: 90.67 & 3rd Qu.:174.8 \\
\hline Max. \(: 218.0\) & Max. \(: 83.0\) & Max. \(: 154.62\) & Max. 351.0 \\
\hline
\end{tabular}
```

1. Given the nature of the random component BE , what probability distribution (among those considered in class) do you consider most appropriate? Justify your answer.
2. Regardless of your reply to the previous question, two Generalised Linear Models with a Poisson response variable were fitted, that differed in their link function. Here are the results:
```
> summary(Todos.glm1)
Call: glm(formula = BE ~ BEv + Bw + Ba,
    family = poisson(link = log), data = Todos)
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.3338620 0.0201937 165.094 <2e-16
BEv 0.0166706 0.0007675 21.721 <2e-16
Bw 0.0029365 0.0001973 14.881 <2e-16
Ba -0.0011815 0.0005132 -2.302 0.0213
--- Null deviance: 5970.14 on 374 degrees of freedom
Residual deviance: 676.76 on 371 degrees of freedom
AIC: 3012.5
\begin{tabular}{lrrrr} 
Bw & 0.0029365 & 0.0001973 & 14.881 & \(<2 e-16\)
\end{tabular}
```

```
> summary(Todos.glm2)
Call: glm(formula = BE ~ BEv + Bw + Ba,
    family = poisson(link = identity), data = Todos)
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.07425 1.14234 -3.567 0.000362
BEv 1.38669 0.07167 19.348 < 2e-16
Bw 0.34403 0.02071 16.613 < 2e-16
Ba -0.23393 0.05079 -4.606 4.1e-06
    Null deviance: 5970.14 on 374 degrees of freedom
Residual deviance: 267.95 on 371 degrees of freedom
AIC: 2603.7
```

(a) Describe in detail the model that was fitted on the left (model Todos.glm1).
(b) Below is the scatterplot of berries per bunch (horizontal axis) and corresponding values fitted by the model Todos.glm1 (model on the left), together with the $y=x$ line. Comment.

(c) Indicate the mean number of berries that the model on the right (model Todos.glm2) would associate to a bunch that weighted 20 g and whose image had an area of $15 \mathrm{~cm}^{2}$ and 10 visible berries. Comment this value, also taking into account that the corresponding value fitted by the other model is 34.521 .
(d) Which of these two models would you choose, based on the available information? Justify your answer.
(e) Consider a modification to the model Todos.glm2 (on the right): assume that the distribution of the random component is Normal. Comment that model. How would it be possible to compare its results with those of model Todos.glm2?
3. The above models include a predictor whose measurement requires a manual weighting of the bunches (Br). Seeking a model whose systematic component only involves measurements that can be made on images that are automatically collected, a Poisson model was fitted, with an identity link function, but only two predictors: BEv and Ba. The resulting residual deviance was 547.3. Perform a Likelihood Ratio Test to determine whether this new model's goodness-of-fit is significantly worse than that of the corresponding three-predictor model. Comment.

II [11 points]

1. With the objective of studying the genetic variability of yield ($\mathrm{kg} / \mathrm{plant}$) between clones of the olive variety Cobrançosa in the first years of plantation, 125 clones were evaluated regarding this trait in a trial with a randomized complete block experimental design (5 blocks). In each block there is only one observation per clone. Assume that both block and clone are random effects factors.
(a) Describe in detail the adequate model for the study described above.
(b) In matrix notation, describe the assumptions of the model defined in a).
(c) In R , with the function Imer from the package 1 me 4 , the following commands were executed:
```
> library(lme4)
> library(lmerTest)
> dadoslmer1<-lmer(rend~1+(1|clone)+(1|bloco), data=dados)
> summary(dadoslmer1)
Linear mixed model fit by REML.
t-tests use Satterthwaite's method [lmerModLmerTest]
Formula: rend ~ 1 + (1 | clone) + (1 | bloco)
    Data: dados
REML criterion at convergence: 698.7
Random effects:
    Groups Name Variance Std.Dev.
    clone (Intercept) 0.04020 0.2005
    bloco (Intercept) 0.01124 0.1060
    Residual 0.14741 0.3839
Number of obs: 625, groups: clone, 125; bloco, 5
Fixed effects:
            Estimate Std. Error df t value Pr (>|t|)
(Intercept) 0.55415 0.05296 5.09465 10.46 0.000123 ***
> logLik(dadoslmer1)
'log Lik.' -349.342
> dadoslmer2<-lmer(rend~1+(1|clone), data=dados)
> logLik(dadoslmer2)
'log Lik.' -362.997
> dadoslmer3<-lmer(rend1+(1|bloco), data=dados)
> logLik(dadoslmer3)
'log Lik.' -370.7699
> ranef(dadoslmer1)
$clone
```

	(Interce
CB1011	-0.08316478
CB1013	0.004873
CB1021	-0.06770321
CB1023	-0.145472
CB1024	0.239105
CB1031	0.013412
\ldots	
\$bloco	
(Intercept)	
B1	-0.15542972
B2	0.06774529
B3	0.10288132
B4	0.01713723
B5	-0.03233413

i. Test the variance components associated to the model defined above. Describe in detail only one of the hypothesis tests performed.
ii. According to Akaike's Information Criterion (AIC), what is the best model among the three models fitted?
(d) According to the full fitted model, what is the predicted yield for genotype CB1011 in block B1?
2. One researcher argues that, given the small number of levels of the block factor, it would be defensible to admit it as a fixed effects factor. Fitting this model in R, with the lmer function from the lme 4 package, the following results were obtained:

```
> dadoslmer4<-lmer(rend~}bloco+(1|clone), data=dados
> summary(dadoslmer4)
Linear mixed model fit by REML.
t-tests use Satterthwaite's method [lmerModLmerTest]
Formula: rend ~ bloco + (1 | clone)
    Data: dados
REML criterion at convergence: 703.3
Random effects:
\begin{tabular}{llll} 
Groups & Name & Variance & Std.Dev. \\
clone & (Intercept) & 0.0402 & 0.2005
\end{tabular}
Number of obs: 625, groups: clone, 125
Fixed effects:
                            Estimate Std. Error df t value Pr(>|t|)
(Intercept) \(0.382410 .03874523 .79227 \quad 9.871<2 e-16\) *
blocoB2 \(0.24660 \quad 0.04857496 .00000 \quad 5.0785 .41 \mathrm{e}-07\) ***
blocoB3 0.28542 0.04857 496.00000 5.877 7.67e-09 ***
blocoB4 \(0.19068 \quad 0.04857496 .00000 \quad 3.926\) 9.85e-05 ***
blocoB5 \(0.13602 \quad 0.04857496 .00000 \quad 2.801 \quad 0.0053\) **
```

(a) Define the covariance between observations made in the same block for the model that admits the block as a fixed effects factor and for the model that admits the block as a random effects factor. Interpret the results obtained.
(b) Knowing that $\bar{y} . .=0.554 \mathrm{~kg} /$ plant and that $\bar{y}_{C B 12}=0.969 \mathrm{~kg} /$ plant, what is the Empirical Best Linear Unbiased Predictor (EBLUP) of yield of clone CB12? Explain its meaning.
(c) Is the yield obtained in block 2 significantly different from the yield obtained in block 1? Justify your answer.

