Relatório do trabalho para avaliação -- 2018/2019

UC...

Data: ...

Turma: ... ; Grupo: ...

Docente: ...

Nomes dos elementos do grupo: ...

Parte 1: elaboração de uma base de dados geográficos, em QGIS, para suporte à gestão de combustíveis das redes secundárias de gestão de combustíveis na Tapada da Ajuda

1) Criação da tabela simples pedida

 Envolvencia(codigo,descricao,distMetros) os domínios dos atributos são: codigo[texto;3], descricao[texto;30]; distMetros[inteiro]

2) Criar dados geográficos

- OcSolo(<u>fid</u>, codigo, descricao), tabela associada a um cdg do tipo polígono os domínios dos atributos são: codigo[texto;3], descricao[texto;30]
- Arvoredo(<u>fid</u>, tipo), tabela associada a um cdg do tipo ponto os domínios dos atributos são: tipo[texto;10]
- RedeViaria(<u>fid</u>, largura), tabela associada a um cdg do tipo linha os domínios dos atributos são: largura[inteiro]

Figura 1: ilustração dos cdg criados para alínea 2 com respetiva legenda

3) Adicionar tabelas simples necessárias para calcular os custos de intervenção

As tabelas são as seguintes:

- TiposIntervencao(fid, codigo, intervencao)
 Os domínios do atributos são: codigo[texto;3], intervencao[texto; 20]
- custosIntervencao(codigo,intervencao,custo_m2)
 Os domínios do atributos são: codigo[inteiro;1], intervencao[texto;20], custo[real;10;
 2]

(Q TiposIntervencao :: Features Tot — 🛛 🛛 🗙					
1	/ 🛛 🖯 🕄	<mark>8</mark>		*		
	codigo	Intervencao				
1	AGR	sem intervencao				
2	JAR	sem intervencao				
3	PBE	intensiva				
4	AFP	moderada				
5	APP	simples				
T Show All Features,						

🔇 custosIntervencao :: Features Total: 4, – 🗆 🗙							
/ 🛒 📑 🈂 🖷 🗇 🛰 🖄 🖆 🗧 🐂 🌄 🌄 💌 🔹							
	codigo	intervencao	custo_m2				
1	4	sem intervencao	0				
2	1	intensiva	0.25				
3	2	simples	0.05				
4	3	moderada	0.15				
Show All Features							

Figura 2. Ilustração das tabelas criadas para a alínea 3

4) Determinar as faixas secundárias de gestão de combustível no interior da Tapada da Ajuda.

Parte 1, 4) diagramas: envolventes de AAR, AGP e EDI (incluíndo os próprios)

Parte 1, 4) diagramas: envolventes de rede viária (incluíndo as próprias estradas); e RDV (rede viária)

Parte 1, 4) diagramas: agregar ARRbuffer + AGPbuffer + EDIbuffer + RDVbuffer

Parte 1, 4) diagramas: "edificado": AGP + EDI + RDV (estradas)

Parte 1, 4) diagramas: faixas= buffer4classes - "edificado"

Parte 1, 4) Conclusão: determinar o critério de intervenção nas faixas

Observação: o cdg designado por "FaixasIntervencao" no relatório corresponde ao cdg designado por "Faixas" no enunciado.

Figura 3. Ilustração das layers intermédias para a alínea 4)

Figura 4: Ilustração dos cdg "ClassesIntervenção" e "FaixasIntervenção" (resultado final da alínea 4)

5) Cálculo de custos por parcela e custo total

O resultado dos cálculos realizados é de 53222 euros de custos de intervenção no conjunto da Tapada da Ajuda

Figura 5: ilustração do resultado final da Parte 1 do trabalho.

Parte 2: Estimar o custo do controlo da vegetação em áreas florestais

O trabalho tem duas secções. A parte II-A consiste em processar e avaliar a precisão altimétrica do MDE SRTM1 para a região de estudo. A parte II-B usa os declives derivados desse MDE para o concelho de Cadaval, áreas de tecido urbano e as áreas florestais para fazer a estimativa do custo do controlo da vegetação para esse concelho.

1) Determinar srtm-10-alinhado1 em PPSM

2) Determinar dif10m1 e calcular média e desvio-padrão em PPSM

Observação: o segundo input de "sobreposição matricial" vem do diagrama acima e é o cdg "srtm10m_alinhado".

O resultado para a PPSM é média das diferenças igual a 1.17 m e o desvio padrão das diferenças é de 5.25 m.

3) Criar carta para dif10m1 em PPSM

Parte 2, 1)

média das diferenças=1.17 m desvio padrão das diferenças = 5.25 m

4) Construir srtm10cadaval

5) Derivar de srtm10cadaval um MDE de declives

Na figura seguinte, ilustra-se o resultado das alíneas 4 e 5 para o Concelho do Cadaval.

Figura 6: ilustração do modelo digital de elevações e dos declives derivados em percentagem para o Concelho do Cadaval

6) Criar Custos100m2 que representa os custos de controlo da vegetação espontânea

7) Determinar FlorestaControlar e sua área

O resultado é discutido na alínea seguinte.

8) Determinar custo do controlo de vegetação em FlorestaControlar

custoEuros100m2Cadaval # epsg:3763	"zonal statistics"	
[3.83,11.5]	calcular estísticas por polígono	resultado
	soma	
FlorestaControlar $^{\bigcirc}$		
epsg:3763		O valor deve ser 132473
		euros

O valor obtido (132474 euros) está contido no intervalo 125000-140000 euros indicado no enunciado. A tabela de atributos do cdg "FlorestaControlar" indica que a área total de intervenção é de 182.9 ha, pois cada pixel corresponde a 100 m2, e por isso 18289 pixels corresponde a uma área total de 182.9 ha (ver alínea 7).

A distribuição geográfica dos custos (que dependem do declive) e as áreas a ser intervencionadas estão ilustrados na seguinte figura.

Figura 7: Carta de custos derivados dos declives (ver alínea 6) e áreas de intervenção no Concelho de Cadaval.