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Practical Machine Learning

Masters in Green Data Science, ISA/ULisboa, 2022-2023

Instructor: Manuel Campagnolo mlc@isa.ulisboa.pt

Assignment due March 24th, 2023

Estimated time to complete the assignment: 2-3 hours.

https://colab.research.google.com/github/isa-ulisboa/greends-pml/blob/main/assignments/assignment_due_march_24.ipynb
https://colab.research.google.com/github/isa-ulisboa/greends-pml/blob/main/assignments/assignment_due_march_24.ipynb


The script below implements the perceptron model for the Titanic
tabular data set as discussed in class.

The two parts of the assignment are:

1. Try changing hyperparameters like the batch size, number of
epochs, learning rate, or pre-processing of the numerical data, to
try to get the least possible error rate over the validation set. For
instance, one possible result with the percepton model is the
following, with some set of meta-parameters:

2. Adapt the script below to implement a multiple layer feed-forward
neural network, as described at the end of
ML_overview_with_examples.ipynb. In order to do this easily, use
and adapt if needed the functions defined in the last part of the
notebook
Lesson5_edited_for_colab_linear_model_and_neural_net_from_scratch.ipynb
It is recommend to use a GPU if there are several hidden layers or
the number of epochs is large.

Then, do as in part 1 of the assigment and try changing the architecture
of the network as well as the other hyperparameters to obtain a model
that performs well over the validation data set. You can describe the
architecture by the number of neurons in each hiden layer (from the first
to the last).

You should write a short report (one single pdf  file for both parts),
where you indicate, for part 1 and part 2, the hyperparameters and the
confusion matrix (by row: true negatives, false positives, false negatives,
true positives) as in the following example. You only need to report
three or four results for each part, enough to illustrate some pattern that
indicate how you can improve your results. Sort the rows in each table
by overall performance.

You can add some short comments for each part.

https://github.com/isa-ulisboa/greends-pml/blob/18b0c302111391e0ce9dd2a7d39ff3b2a4c17d71/assignments/ML_overview_with_examples.ipynb
https://github.com/isa-ulisboa/greends-pml/blob/18b0c302111391e0ce9dd2a7d39ff3b2a4c17d71/assignments/ML_overview_with_examples.ipynb
https://github.com/isa-ulisboa/greends-pml/blob/18b0c302111391e0ce9dd2a7d39ff3b2a4c17d71/assignments/Lesson5_edited_for_colab_linear_model_and_neural_net_from_scratch.ipynb
https://github.com/isa-ulisboa/greends-pml/blob/18b0c302111391e0ce9dd2a7d39ff3b2a4c17d71/assignments/Lesson5_edited_for_colab_linear_model_and_neural_net_from_scratch.ipynb


If you wish, you can use a data set other than the Titanic data set. In that
case, please add a brief description of the variables and labels.

If you can, please print a hard copy of your report and bring it to the
class. If you're not able to print, then you may send the report by email
(subject: assignment PML).

(This is an example of a report: you should choose your own meta-
parameters)

Name: _______________________

Date: ______________________________

PART 1 (perceptron)

Batch
size

Learning
rate

Epochs Pre-processing
TN, FP,
FN, TP

Error_rate

20 0.1 20
Added 1s +
standardized

102, 3, 66,
8

0.3855

10 0.1 20
Added 1s +
standardized

105, 0, 70,
4

...

...

Comments: ____

PART 2 (feed-forward NN)

NN
architecture

Batch
size

Learning
rate

Epochs
Pre-

processing
TN, FP,
FN, TP

Error_rate

10,5,10 20 0.1 300 standardized 88,17,21,53 0.212

10,10 20 0.1 20 standardized
102, 3, 66,
8

...

...

Comments: ____

Code to adapt and execute (please do not include the code in your
report)



In [ ]: import os

from pathlib import Path

import matplotlib.pyplot as plt

import torch

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

torch.manual_seed(42)

B=20 # batch size

lr = 0.1 # learning rate

iter=20 # number epochs

############################################ Reading Titanic numerical data, i.e.,

var_names=['Age', 'SibSp', 'Parch', 'LogFare', 'Sex_male', 'Sex_female'

path=Path('/content/drive/MyDrive/AAA/Lesson_5/titanic_data') # adapt to your path

X,y=torch.load(path/'titanic_tensor_data_set.ts') # these values are not yet norma

y=y[:,None] # to turn it into a column vector

##################################### Create train and validation sets

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=

############################################## Ordinary least squares solution wit

# variables to keep to avoid linear dependencies

var_keep=['Age', 'SibSp', 'Parch', 'LogFare', 'Sex_male',  'Pclass_1'

keep=np.isin(var_names,var_keep) # boolean list

# 

from sklearn.linear_model import LinearRegression

reg = LinearRegression().fit(X_train[:,keep], y_train)

print('coefficients MLR:',reg.intercept_,reg.coef_)

y_pred=reg.predict(X_valid[:,keep])

disp = ConfusionMatrixDisplay(confusion_matrix(y_valid,(y_pred>0.5

disp.plot()

plt.show()

####################################################### Gradient Descent

# if you want to standardize X and include an additional additive coefficient to t

if False: 

  means = X.mean(dim=1, keepdim=True)

  stds = X.std(dim=1, keepdim=True)

  X=normalized_data = (X - means) / stds

# add column

  ones=torch.ones(X.shape[0]).reshape(X.shape[0],1)

  X=torch.cat((ones,X),1)

  X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=

# initial weights

def init_coeffs(n_coeff): return (torch.rand(n_coeff,1)-0.5).requires_grad_() 

# defining the function for prediction: the output is a vector of size=nrows(X)

def calc_preds(coeffs,X): return  torch.sigmoid(X@coeffs) # using matrix multiplic

# Computing MSE loss for one batch of exemples: the output is a scalar

def calc_loss_from_labels(y_pred, y): return torch.mean((y_pred - y) ** 



calc_loss_from_labels(y_pred, y):  torch.mean((y_pred - y) ** 

# update coeffs

def update_coeffs(coeffs, lr):

    coeffs.sub_(coeffs.grad * lr)

# zerofy gradients (because they add up)

    coeffs.grad.zero_()

# compute initial weights as a column matrix

n_coeff = X_train.shape[1] # number of columns of X, or X_train, or X_valid

coeffs = init_coeffs(n_coeff)

# create lists to store losses for each epoch

training_losses=[]; validation_losses=[]

# epochs

for i in range(iter):

# calculating loss as in the beginning of an epoch and storing it

    y_pred = calc_preds(coeffs,X_train)

    training_losses.append(calc_loss_from_labels(y_pred, y_train).tolist())

    y_pred = calc_preds(coeffs,X_valid)

    validation_losses.append(calc_loss_from_labels(y_pred, y_valid).tolist())

# mini-batch gradient descent: weight are updated after each batch

for idx_start in np.arange(0,X_train.shape[0],B):

# create batch

        batch_X=X_train[idx_start:(idx_start+B),:]

        batch_y=y_train[idx_start:(idx_start+B):]

# making a prediction in forward pass

        y_pred = calc_preds(coeffs,batch_X)

# calculating the loss between predicted and actual values

        loss = calc_loss_from_labels(y_pred, batch_y)

# compute gradient

        loss.backward()

with torch.no_grad():

# update coeffs

            update_coeffs(coeffs, lr)

# predictions and confusion matrix

print('coefficients GD:',torch.flatten(coeffs.requires_grad_(False

y_pred=calc_preds(coeffs,X_valid)

disp = ConfusionMatrixDisplay(confusion_matrix(y_valid,(y_pred>0.5

disp.plot()

plt.show()

# plot losses along epochs

plt.plot(training_losses, '-g',  validation_losses, '-r')

plt.gca().legend(('train','validation'))

plt.ylim(0, 1)

plt.xlabel('epoch')

plt.ylabel('loss (MSE)')

#plt.title("Train (green) and validation (red) losses")

plt.show()




