
Mathematical Models and Applications
Multivariate Analysis

Pedro Cristiano Silva

Instituto Superior de Agronomia

2022-23

1 / 177

Outline

LINEAR ALGEBRA

PRINCIPAL COMPONENT ANALYSIS

CLUSTER ANALYSIS

LINEAR DISCRIMINANT ANALYSIS

2 / 177

Notations

Non bold letters (upper or lower case) represent scalar
quantities: x , y , A,. . .

Lower case bold letters represent vectors x, y, �x, �y,. . .

Upper case bold letters represent matrices A, B, X, Y,. . .

3 / 177

LINEAR ALGEBRA

4 / 177

Eigenvalues and eigenvectors

Definition

Ap×p = [aij] a square matrix of order p. A vector v ∈ R
p, v �= �0, is

called an eigenvector of A if there is λ ∈ R such that Av = λv.
λ is called the corresponding eigenvalue.

Example

A =


 3 0 2

0 −1 1
2 0 0


 , v =


 10

1
5




We have

Av =


 3 0 2

0 −1 1
2 0 0




 10

1
5


 =


 40

4
20


 = 4


 10

1
5


 = 4v

Hence v is an eigenvector of A associated to the eigenvalue λ = 4.

5 / 177

Eigenvalues and eigenvectors (cont.)

The spectrum of A, denoted σ(A), is the collection of the p
eigenvalues of A (including repetitions), i.e., the collection of p
roots (real and complex) of its characteristical polynomial,
pA(x) = det(A− xIp) (which has degree p)

The eigenspace associated with an eigenvalue λ, denoted E (λ), is
the linear space spanned by the eigenvectors associated with λ

The trace of A, denoted tr(A), is the sum of all diagonal elements of
A and equals the sum of all eigenvalues of A (including repetitions):

tr(A) = a11 + a22 + · · ·+ app =
∑

λ∈σ(A)

λ

The determinant of A (not defined here) equals the product of all
eigenvalues of A (including repetitions):

detA =
∏

λ∈σ(A)

λ

A is invertible ⇔ det(A) �= 0 ⇔ 0 is not an eigenvalue of A

6 / 177

Example revisited

Returning to the example of slide 6 we have the the following:

σ(A) : −1, −1, 4

tr(A) = 3 + (−1) + 0 = 2 corresponds to the sum of its diagonal
elements which is also equal to sum of its eigenvalues (counting
with repetitions): (−1) + (−1) + 4 = 2

det(A) = (−1)× (−1)× 4 = 4 �= 0 which is equal to the product of
its eigenvalues (counting with repetitions)

E (−1) = 〈(1, 1, 0)〉 has dim=1

E (4) = 〈(0, 1, 5)〉 has dim=1

Since dimE (−1) + dimE (4) = 2 < 3 = p, A is not diagonalizable, i.e.,
there isn’t an invertible matrix P and a diagonal matrix Λ such that
A = PΛP−1

Exercise

Verify that (1, 1, 0) is an eigenvector of A associated to the eigenvalue
λ = −1

7 / 177

Eigenvalues and eigenvectors - R

R

A=matrix(c(3,0,2,0,-1,1,2,0,0),ncol=3,byrow=TRUE)

A

EV<-eigen(A) # eigenvalues and eigenvectors of A

det(A) # determinant of A

tr<-sum(diag(A)) # trace of A

tr

8 / 177

Orthonormal sets

Definition

Given v1, . . . , vq ∈ R
p with q ≤ p we say that {v1, . . . , vq} is an

orthonormal set if

‖vi‖ = 1,∀i and vi ⊥ vj (i �= j)

If q = p, {v1, . . . , vq} is called an orthonormal basis of Rp

Denoting by Vp×q = [V1 · · · Vq] the matrix whose columns are
the q vectors, v1, . . . , vq , we have the following:

{v1, . . . , vq} is an orthonormal set iff VTV = Iq
{v1, . . . , vp} is an orthonormal basis iff VTV = VVT = Ip iff
V−1 = VT

In this later case we can write for all u ∈ R,

u = (uT v1)v1︸ ︷︷ ︸
projv1 (u)

+ · · ·+ (uT vp)vp︸ ︷︷ ︸
projvp (u)

(1)

9 / 177

Orthonormal basis

Denote θi , i = 1, . . . , p, the angle between u and vi

If ‖u‖ = 1, we have applying (1) of slide 9

u = cos(θ1)v1 + · · ·+ cos(θp)vp

with cos2(θ1) + · · ·+ cos2(θp) = 1.

The case p = 2:

v1

v1

θ1

θ2

cos(θ1)v1

cos(θ2)v2 u = cos(θ1)v1 + cos(θ2)v2

10 / 177

Interlude: matrix multiplications

If Am×n =

[
a1 a2 · · · an
| | |

]
with aj ∈ R

n, j = 1, . . . , n, and

Bn×p =




−bT
1 −

−bT
2 −
...

−bn−


 then AB =

∑n
j=1 ajb

T
j

Example

[
1 3
2 4

] [
1 2
3 −1

]
=

[
1
2

] [
1 2

]
+

[
3
4

] [
3 −1

]

=

[
10 −1
14 0

]

Note that if b = (β1, . . . , βn) one gets, Ab = A




β1

β2

...
βn


 =

∑n
j=1 βjaj

11 / 177

Eigenvalue decomposition of a symmetric matrix

Theorem

Let A be a symmetric matrix (AT = A) of order p. Then we can find
matrices Vp×p and ∆p×p , such that

A = VΛVT (2)

where:

V = [v1 v2 · · · vp] verify VTV = VVT = Ip : matrix of (unit and
pairwise orthogonal) eigenvectors of A

Λ = diag(λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ · · · ≥ λp : diagonal matrix
containing the corresponding eigenvalues of A (Avi = λivi)

Using the decomposition of a matrix product in terms of sums of columns
and rows products described in slide 11, we can rewrite (2) as,

A = λ1v1vT1 + λ2v2vT2 + · · ·+ λpvpvTp ,

which is called the spectral decomposition of A
12 / 177

Singular value decomposition of an arbitrary matrix

Theorem

Let A be matrix of type N × p and rank r . Then we can find matrices
UN×r , ∆r×r and Vp×r , such that

A = U∆VT (3)

where:

U = [u1 · · · ur] verify UTU = Ir : matrix of (unit and pairwise
orthogonal) left singular vectors of A

V = [v1 · · · vr] verify VTV = Ir : matrix of (unit and pairwise
orthogonal) right singular vectors of A

∆ = diag(δ1, . . . , δr) with δ1 ≥ · · · ≥ δr > 0: diagonal matrix of the
nonzero singular values of A (Avi = δiui and ATui = δivi)

Using the results of slide 11 we can rewrite (3) as,

A = δ1u1v
T
1 + δ2u2v

T
2 + · · ·+ δrurv

T
r ,

which is called the singular value decomposition of A
13 / 177

Summary statistics - univariate case

Given x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ R
N vectors of N observed measurements of

two variables/features, we define:

(sample) mean of x:

x̄ =
1

N

N∑
i=1

xi

(sample) variance of x:

s2x =
1

N − 1

N∑
i=1

(xi − x̄)2

(sample) covariance between x and y:

s2xy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) =
1

N − 1
(x∗)T y∗,

where x∗ = (x1 − x̄ , . . . , xN − x̄) and y∗ = (y1 − ȳ , . . . , yN − ȳ) are the
corresponding centered vectors

(sample) linear correlation coefficient between x and y:

r2xy =
s2xy

sx sy

14 / 177

Variable’s cloud and individual’s cloud

XN×p = [xij] a data matrix with xij ∈ R

Each column of X represents an observed variable, i.e., the
measurements of some variable/feature across N individuals:

XN×p = [x1 · · · xp] with xj = (x1j , . . . , xNj) ∈ R
N , j = 1, . . . , p

We obtain in this way a cloud of p points in R
N - variable’s cloud

Each row of X represents the observations of p variables/features of
a single individual:

XT
p×N = [x1 · · · xN] with xi = (xi1, . . . , xip) ∈ R

p, i = 1, . . . ,N

We obtain in this way a cloud of N points in R
p - individuals’s cloud

15 / 177

Summary statistics - multivariate case

The (sample) mean of X, i.e., the cloud’s center of gravity, is

xG =
1

N

N∑
i=1

xi ∈ R
p,

that is, xG = (x̄1, . . . , x̄p) with x̄j =
1
N

∑N
i=1 xij

The (sample) covariance matrix of X is

S = [s2jk] =
1

N − 1

N∑
i=1

(xi − xG)(xi − xG)T ,

where the (sample) covariance between variables j and k is equal to

s2jk =
1

N − 1

N∑
i=1

(xij − x̄j)(xik − x̄k)

The total variation of X is

tr(S) = s211 + · · ·+ s2kk =
1

N − 1

p∑
j=1

N∑
i=1

(xij − x̄j)
2 =

1

N − 1

N∑
i=1

‖xi − xG‖2

16 / 177

Centered data matrix and covariance

For each j = 1, . . . , p, the centered vector of the N observations of
variable j is

x∗j = (x1j − x̄j , . . . , xNj − x̄j) ∈ R
N ,

The (sample) covariance s2jk can then be written, using the centered

variables x∗j and x∗k , as a simple inner product (in R
N) divided by N − 1,

s2jk = cov(xj , xk) =
1

N − 1
(x∗j)

Tx∗k (4)

Likewise, defining the centered data matrix as

X∗ = [x∗1 · · · x∗p],

i.e.,
(X∗)T = [(x1 − xG) · · · (xN − xG)],

the covariance matrix S = [s2jk] of X can be written as

S = 1
N−1(X

∗)TX∗

17 / 177

Standardized data matrix and correlation

For each j = 1, . . . , p, the vector of the N observations of standardized variable j is

zj =

(
x1j − x̄j

sj
, . . . ,

xNj − x̄j

sj

)
=

(
x∗1j
sj

, . . . ,
x∗Nj
sj

)
∈ R

N

and we obtain the corresponding standardized data matrix,

Z = [z1 · · · zp]

The (sample) linear correlation coefficient between variables j and k is

rjk =
s2jk

sj sk
=

1

N − 1

N∑
i=1

(
xij − x̄j

sj

)(
xik − x̄k

sk

)
=

1

N − 1
zTj zk

Hence the (sample) correlation matrix R = [rij] of X equals the covariance
matrix of the standardized data matrix, i.e.,

R = 1
N−1

ZTZ

The total variation of Z is

tr(R) = r11 + · · ·+ rpp = p

18 / 177

Principal component analysis - statistical motivation

Principal component analysis (PCA) is a statistical multvariate
method that aims to reduce the dimensionality of a dataset X while
preserving its information, i.e., the variability between individuals, as
much as possible

This goal is achieved by defining a set of uncorrelated variables,
called principal components, that are linear combinations of the
original (or standardized) variables, in such a way that the first few
principal components explains a large proportion of the total
variability of the data set

The dimension reduction is (particularly) effective when the original
variables are (highly) correlated

PCA is probably the most widely used multivariate statistical
method

19 / 177

Example: iris flower data set

The well known iris flower data set consists of 4
measurements, sepal and petal lengths and widths,
SL,SW,PL,PW (in cm), containing 50 iris flowers of each one
of the following three species, setosa, versicolor and virginica

Hence the iris flower dataset defines a cloud of 150 points in
R
4. We can try to have a geometrical grasp of the shape of

this 4-dimensional cloud by projecting it on a two dimensional
space (plane), using all possible combinations of two variables

20 / 177

Example: iris flower data set

pairs(iris[-5],asp=TRUE,pch=16,col=c(rep("red",50),

rep("green",50),rep("blue",50)))

Sepal.Length

1.5

2.0

2.5

3.0

3.5

4.0

4.5

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4 5

Sepal.Width

Petal.Length

1 2 3 4 5 6 7

0 1 2 3

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

1

2

3

4

5

6

7

Petal.Width

21 / 177

Best 2-dimensional representation using PCA

Another approach is to define new synthetic uncorrelated
variables that are linear combinations of the original iris
flowers measurements, the so-called principal components
(PC), in such a way each PC explains, as much as possible, of
the total dataset variability

The projection of the cloud of iris flowers on the plane
associated with the first two PCs, called principal factorial
plane (PFP), explains 98.1% and thus provides an excellent
2-dimensional portray of the original cloud of iris flowers

This is actually the best representation among all
2-dimensional representations of the iris flower dataset, in the
sense that it is the 2-dimensional representation that retains
the largest amount of the dataset variability

22 / 177

Best two-dimensional representation of the iris flowers

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0

1

2

3

PC1

P
C
2

23 / 177

Eigenvalues of the covariance matrix

Let XN×p be a data matrix and S = 1
N−1(X

∗)TX∗ the corresponding
covariance matrix. Then:

S is symmetric (ST = S)

xTSx is a semi-definite positive quadratic form, that is,

xTSx ≥ 0, ∀x ∈ R
p

the eigenvalues λ1, . . . , λp of S are nonnegative real numbers and
we may assume that

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

If moreover all variables are globally non-correlated then all
eigenvalues of S are strictly positive real numbers. In this case S is
invertible, xTSx is a definite positive quadratic form, which
amounts to say that

xTSx > 0, ∀x ∈ R
p , x �= �0

24 / 177

Linear combinations

Let XN×p = [x1 · · · xp] be a data matrix of p observed variables

A linear combination of the p observed variables x1, . . . , xp is a new
variable of the form

y = α1x1 + · · ·+ αpxp = [x1 · · · xp]




α1

...
αp


 = Xa,

where

a = (α1, . . . , αp) =




α1

...
αp


 ∈ R

p ,

is the vector of coefficients (loadings) (see slide 11)

25 / 177

Covariance between linear combinations

Given a, b ∈ R
p, the (sample) covariance between the linear

combinations Xa and Xb is

cov(Xa,Xb) = aTSb (5)

Actually, using (4) of slide 17 we have,

cov(Xa,Xb) =
1

N − 1
[(Xa)∗]T (Xb)∗ exercise

=
1

N − 1
(X∗a)TX∗b

=
1

N − 1
aT (X∗)TX∗b = aT

1

N − 1
(X∗)TX∗b

= aTSb

In particular, var(Xa) = aTSa

Exercise

Prove that centering a linear combination of variables x1, . . . , xp is
equivalent to the linear combination of the centered variables x∗1 , . . . , x

∗
p

with the same coefficients, that is,

(Xa)∗ = (α1x1 + · · ·+ αpxp)
∗ = α1 x

∗
1 + · · ·+ αp x

∗
p = X∗a,

where X = [x1 · · · xp], X∗ = [x∗1 · · · x∗p] and a = (α1, . . . , αp) ∈ R
p

26 / 177

First principal component - formulation

To define the first principal component we seek a linear combination of
the p observed variables x1, . . . , xp that maximizes the variance, that is,
we want to solve the following problem:

determine a ∈ R
p such that var(Xa) = aTSa is maximum

Without further restrictions on vector a the problem is ill-posed since if
we multiply the vector of coefficients a by a scalar λ we obtain

var(X(λa)) = λaTSλa = λ2aTSa = λ2var(X(λa)),

which shows that the variance of a linear combination can be arbitrarily
large. To overcome this issue we reformulate the problem as follows:

determine a ∈ R
p with ‖a‖ = 1 : var(Xa) = aTSa is maximum (6)

The previous problem can be equivalently formulated as the problem of
maximizing the so-called Rayleigh-Ritz ratio (cf. slides Prof. Cadima)

determine a ∈ R
p \ {�0} : aTSa

aTa is maximum (7)

27 / 177

First principal component (cont.)

The covariance matrix S admits a spectral decomposition (see slide 12)
of the form,

S = λ1v1v
T
1 + λ2v2v

T
2 + · · ·+ λpvpv

T
p (8)

where v1, . . . , vp ∈ R
p are unit and pairwise orthogonal eigenvectors of S

associated to (sorted) real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

By the results of slide 10, we have for all a ∈ Rp , ‖a‖ = 1,

a = cos(θ1)v1 + · · ·+ cos(θp)vp, (9)

with
cos2(θ1) + · · ·+ cos2(θp) = 1, (10)

where θi denotes the angle between the vectors a and vi , , i = 1, . . . , p

28 / 177

First principal component (cont.)

Applying (8), (9) and (10) from the previous slide, along with relations
λ1 ≥ · · · ≥ λp ≥ 0, ‖vi‖2 = vT v = 1 for all i and vTi vj = 0, i �= j , we obtain by
straightforward computations (since all products envolving vi and vj , j �= i , cancel
out),

aTSa = λ1 cos
2 θ1 + · · ·+ λp cos

2 θp

≤ λ1 cos
2 θ1 + · · ·+ λ1 cos

2 θp

= λ1(cos
2 θ1 + · · ·+ cos2 θp) = λ1

Thus var(Xa) = aTSa ≤ λ1 (the largest eigenvalue of S). Taking a = v1, we get

aTSa = vT1 Sv1 = λ1 cos
2 θ1︸ ︷︷ ︸
1

+λ2 cos
2 θ2︸ ︷︷ ︸
0

+ · · ·+ λ1 cos
2 θp︸ ︷︷ ︸
0

= λ1

The maximum variance of a linear combination Xa of the p observed variables
x1, . . . , xp , with unit vector of coefficients a, is attained along the direction of a unit
eigenvector v1 of S associated with the largest eigenvalue λ1. Hence the first principal
component is

PC1 : y1 = Xv1 with maximum variance λ1

The larger the value of λ1, the more the cloud of points is elongated along the PC1

29 / 177

Second principal component

To define the second principal component PC2, we seek a linear
combination of the p original observed variables, that maximizes the
variance and is uncorrelated with PC1:

determine a ∈ R
p with

{ ‖a‖ = 1
a ⊥ v1

: var(Xa) = aTSa is maximum

Since a ⊥ v1 ⇔ cos θ1 = 0, we seek a = cos(θ2)v2 + · · ·+ cos(θp)vp,
with cos2(θ2) + · · ·+ cos2(θp) = 1 and we obtain similarly,

aTSa = λ2 cos
2 θ2 + · · ·+ λp cos

2 θp

≤ λ2(cos
2 θ2 + · · ·+ cos2 θp) = λ2

Taking a = v2 (a unit eigenvector of S associated with the second largest
eigenvalue λ2 and orthogonal to v1), one gets

aTSa = λ2

The second PC is thus defined by a unit eigenvector v2 of S, associated
with the second largest eigenvalue λ2 and orthogonal to the vector v1

PC2 : y2 = Xv2 with maximum variance equal to λ2
30 / 177

Principal components

In general, to define the j-th principal component PCj , j = 2, . . . , p, we seek a linear
combination of the p original observed variables, that maximizes the variance and is
uncorrelated with PC1, . . . ,PCj−1:

determine a ∈ R
p with




‖a‖ = 1
a ⊥ v1

.

..
a ⊥ vj−1

∣∣∣∣∣∣∣∣∣
var(Xa) = aTSa is maximum (11)

We construct in this way a collection of p principal components

y1 = Xv1, y2 = Xv2, . . . , yp = Xvp

with maximum variances,
λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0,

where v1, . . . , vp are unit and pairwise orthogonal eigenvectors of S, respectively
associated to λ1, . . . , λp , i.e., for all j , k = 1, . . . , p, k �= j we have

‖vj‖ = 1, vj ⊥ vk , Svj = λjvj

31 / 177

Vector of loadings

The vector vj defining the j-th principal component yj = Xvj , contains
the coefficients, also called loadings, of the j-th principal component
w.r.t. the original observed variables x1, . . . , xp. In other words, writing
the vector of loadings as vj = (α1, . . . , αp) we obtain,

yj = α1x1 + · · ·+ αpxp

If the p eigenvalues of the covariance matrix S are pairwise distinct,
i.e., λ1 > · · · > λp ≥ 0, the vector of loadings defining each PC is
unique up to sign: if yj = Xvj is a solution of (11) of slide 31, then
y′j = X(−vj) is also a solution of (11) - this is the most common
situation

If there are repeated eigenvalues of S the PCs associated with
repeated eigenvalues are not uniquely determined. Actually, the
vectors of loadings defining these PCs can arise from any
orthonormal base of the eigenspace associated with the repeated
eigenvalue and therefore can be defined in infinitely many distinct
ways

32 / 177

Scores matrix

Recall that,

XN×p = [xij] is the original data matrix of the p observed variables across N
individuals

XT = [x1 · · · xN], with xi = (xi1, . . . , xip) the i -th row of X, i.e., the
coordinates of i -individual in the cloud of N points of Rp

xG = (x̄1, . . . , x̄p) is the center of gravity (also called barycenter) of the cloud of
individuals

X∗ = [x∗ij] is the centered data matrix, where x∗ij = xij − x̄j

xi − xG = (x∗i1, . . . , x
∗
ip) the i -th row of X∗, i.e., the vector of the coordinates of

individual i in the centered cloud of N points

V = [v1 · · · vp] is matrix of loadings

The matrix Y∗ = [y∗
ij] = X∗V is called scores matrix: the rows of Y∗ correspond to

the vectors of coordinates, also called (factor) scores, of the N individuals w.r.t the
new coordinate axes defined by the vectors of loadings of the PCs

The column j of Y∗, y∗j , contains the values of the (centered) cloud of N individuals
w.r.t the new sinthetic variable yj that defined the PCj

33 / 177

Scores of individual i when p = 2

xG

PC1

PC2

v1

v2

y ∗
i1

y ∗
i2

xi

[y ∗
i1 y ∗

i2] =
[
projv1(x

i − xG) projv2(x
i − xG)

]
= (xi − xG)[v1 v2]

34 / 177

Covariance of the scores matrix

The covariance matrix of the (centred) scores matrix Y∗, is

cov(Y∗) = cov(X∗V) =
1

N − 1
(X∗V)T (X∗V)

= VT 1

N − 1
(X∗)TX∗V = VTSV = Λ = diag(λ1, . . . , λp)

The total variation of Y∗, i.e., the dataset total variability is

p∑
j=1

var(y∗j) =
p∑

j=1

λj = tr(Λ) = tr(S) =

p∑
j=1

var(xj)

The quality of the reduction obtained by keeping the first k PCs
(1 ≤ k ≤ p) is assessed by the proportion of variability explained by
the first k PCs:

λ1 + · · ·+ λk

λ1 + · · ·+ λp

35 / 177

Covariance and correlation

The covariance between the observed variable xj and the PC yk is

cov(xj , yk) =
1

N − 1
[(Xej)

∗]T (Xvk)∗ =
1

N − 1
(X∗ej)T (X∗vk)

= eTj
1

N − 1
(X∗)TX∗vk = eTj Svk = eTj λkvk

= λke
T
j vk = λkvjk

where vjk = eTj vk is j-th component of vk , i.e., (j , k)-entry of the
loadings matrix V

The correlation between xj and yk is

cor(xj , yk) =
cov(xj , yk)√

xj
√
yk

=
λkvjk
sj
√
λk

=

√
λkvjk
sj

The contribution of individual i to the construction of PCk is the
part of the variance of PCk that is explained by i :

ctri ,k =
(y∗

i ,k)
2∑N

j=1(y
∗
j,k)

2

36 / 177

Example: iris flower dataset revisited

R

X=iris[-5] # non standardized

head(X)

iris.acp<-prcomp(X) # performs PCA on the covariance

matrix

summary(iris.acp)

iris.acp$sdev # std accounted by the PCs

sum(iris.acp$sdev[1]ˆ2) # total variance

iris.acp$rot # matrix of loadings

iris.acp$x # matrix of scores

plot(iris.acp$x[,1:2],asp=TRUE,pch=16,col=c(rep("red",50),

rep("green",50),rep("blue",50))) #

37 / 177

Importance of the PC components

The R command summary(iris.acp) gives, for each j , the standard
deviation

√
λj associated with PCj , the proportion of the total variance

explained by PCj ,
λj∑
k λk

, and the cumulative variance explained by the

first j PCs:

PC1 PC2 PC3 PC4
Standard deviation 2.0563 0.49262 0.2797 0.15439
Proportion of Variance 0.9246 0.05307 0.0171 0.00521
Cumulative Proportion 0.9246 0.97769 0.9948 1.00000

Thus we have that:

The cloud of points projected on the line associated with the first
PC explains about 92% of the dataset’s total variability

The cloud of points projected on the plane associated with the first
two PCs (principal factorial plane - PFP) explains about 98% of the
total variability of the dataset,

and so on. . .

38 / 177

More on the R command prcomp

iris.acp$sdev give, for each j , the standard deviation
√
λj associated

with PCj : 2.0562689 0.4926162 0.2796596 0.1543862

sum(iris.acp$sdev[1]ˆ2) gives the dataset total variance: 4.572957

iris.acp$rotation returns the matrix of loadings, where column j
contains the coefficients of the PCj , yj , written as linear combination of
the original observed variables x1, . . . , x4:

PC1 PC2 PC3 PC4
Sepal.Length 0.3614 -0.6566 0.5820 0.3155
Sepal.Width -0.0845 -0.7302 -0.5979 -0.3197
Petal.Length 0.8567 0.1734 -0.0762 -0.4798
Petal.Width 0.3583 0.0755 -0.5458 0.7537

The first PC (for instance), is a linear combination of the observed measurements as:

y1 = 0.3614 Sepal.Length − 0.0845 Sepal.Width + 0.8567 Petal.Length + 0.3583 Petal.Widt

≈ 0.3614 Sepal.Length + 0.8567 Petal.Length + 0.3583Petal.Width

which represents a kind of overall measurement of the iris flowers that explains a large
amount (≥ 90%) of the total variability of the iris dataset

39 / 177

More on the R command prcomp - loadings

The columns of the loading matrix are unit eigenvectors of S and
pairwise orthogonal

R

V<-iris.acp$rotation

S <- cov(S)

round(t(V)%*% V,10) # gives the identity matrix

v1 <- V[,1]

lambda1 <- iris.acp$sdev[1]ˆ2

S %*% v1

lambda1%*% v1

40 / 177

More on the R command prcomp - scores

iris.acp$x returns the matrix of factor scores, where each row i
contains coordinates of the individual i w.r.t. the PCs, i.e., w.r.t. the
new synthetic variables y1, . . . , y4:

PC1 PC2 PC3 PC4
-2.68413 -0.31940 0.02791 0.00226
-2.71414 0.17700 0.21046 0.09903
-2.88899 0.14495 -0.01790 0.01997
-2.74534 0.31830 -0.03156 -0.07558

...
...

...
...

41 / 177

More on the R command prcomp - scores

R

N <- 150 X.G <- colMeans(X) # iris’s cloud center of gravity

Xc <- scale(X,scale=FALSE) # centred iris data matrix

Yc <- Xc %*% V # scores matrix

head(Yc) ; head(iris.acp$x) # should be equal!

sum(iris.acp$x[,1]ˆ2)/(N-1) ; iris.acp$sdev[1]ˆ2

contributions of each individual to the 1st PC

Yc[,1]*Yc[,1]/sum(Yc[,1]*Yc[,1])

vspace.5ex

individuals with contribution above the average

Yc[,1]*Yc[,1]/sum(Yc[,1]*Yc[,1]>1/150

quality of the representation of individual i in each PC

Yc[1,]*Yc[1,]/sum(Yc[1,]*Yc[1,])

quality of the representation of individual i in the PFP

(Yc[1,1]*Yc[1,1]+Yc[1,2]*Yc[1,2])/sum(Yc[1,]*Yc[1,])

cos2<-matrix(0,ncol=4,nrow=150)

for (i in 1:150) { cos2[i,]<-Yc[i,]*Yc[i,]/sum(Yc[i,]*Yc[i,]) }
sort(rowSums(cos2[,1:2]))

order(rowSums(cos2[,1:2]))

plot(iris.acp$x[,1:2],pch=16,col=c(rep("red",50),

rep("green",50),rep("blue",50)),asp=TRUE)

points(iris.acp$x[rowSums(cos2[,1:2])<.7,1:2],pch=1)
42 / 177

Representation of the iris flower dataset in the PFP

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0

1

2

3

PC1

P
C
2

43 / 177

Drawbacks of the PCA on the covariance matrix

The first PCs tend to be dominated by the variable(s) with the
largest variance(s)

The PCs are invariant under orthogonal transformations of the
variables (e.g. rotations), but not under differentiated change of
scalars in each variable. As a consequence the PCA is highly
dependent on the units of measurements - this is a major drawback

Another important drawback when there are distinct units of
measurements is how to a interpret a PC when that is a linear
combination of variables expressed in totally different units of
measurements, say, for instance temperature and weight?

When the variables have different units of measurements or very different
variances it is advisable or even mandatory to standardize (i.e., to center
and reduce the variables to unit variance) prior to perform the PCA. This
amounts to compute the eigenvectors of the correlation matrix of X

44 / 177

PCA on the correlation matrix

Let XN×p = [xij] be the usual data matrix and ZN×p = [zij], be the

corresponding data matrix of the standardized variables zij =
xij−x̄j
sj

The covariance matrix of the standardized data Z is

R = cov(Z) =
1

N − 1
ZTZ,

which corresponds to the correlation matrix of X

The PCs are now given by Yj = Zvj where v1, . . . , vp are unit and
pairwise orthogonal eigenvectors of R associated with eigenvalues
λ1 ≥ · · · ≥ λp

The total variance is now the number of variables:

p =

p∑
i=1

var(zj) = λ1 + · · ·+ λp

The correlation coefficient between zj and yk reduces to

cor(zj , yk) =
√
λkvkj

45 / 177

Interpretation of the results in space of variables

Each standardized variable zj and each PC yk , can be represented as vectors in RN .
This allows to reinterpret geometrically some of the previous statistics:

The variables zj , j = 1, . . . , p, lie in a hypersphere of radius
√
N − 1:

‖zj‖2 = zTj zj = (N − 1)var(zj) = N − 1

More generally, the length of centered variable is also proportional to its
standard deviation (exercise)
The length of each PC is proportional to its standard deviation:

‖yk‖2 = yTk yk = (Zvk)
T (Zvk)

= vTk ZTZvk = (N − 1)vTk Rvk

= (N − 1)λk = (N − 1)var(yk)

The correlation coefficient between zj and yk is the cosine of the angle θjk
between the variables zj and yk :

cor(zj , yk) =
cov(zj , yk)√

var(zj)
√

var(yk)
=

cov(zj ,yk)

N−1√
var(zj)

√
var(yk)

=
1

N − 1

zTj yk

‖zk‖√
N−1

√
λk√

N−1

=
zTj yk

‖zj‖ ‖yk‖
= cos(θjk)

The correlation coefficient between zj and zk is the cosine of the angle between
the vectors representing these variables (exercise)

46 / 177

How many PCs ?

No exact answer can be given. Some empirical rules are listed below:

To define a cutoff %: to consider a given cumulative percentage of
the total variation (usually between 70% and 90%) and to choose
the smallest number m of PC such that the % of explained variance
by the first m PCs exceeds the chosen %.

Scree plot: to look for a elbow point in the scree plot of the variance

Kaiser’s rule (for PCA on correlation matrix): to retain the PCs
with variance greater than the average value 1: the PCs with
variance inferior to 1 contain less information than the original
variables and are not worthing to retain. (for the PCA on the
covariance matrix, the cutoff value 1 should be replaced by the
average of the PCs variances)

Jolliffe’s variant of Kaiser’s rule (for PCA on correlation matrix): is
a more conservative rule that proposes a cutoff value of 0.7

Broken-stick model: a unit stick is randomly broken into p
segments. The expected length of the k-th largest segment is
�∗k = 1

p

∑p
j=k

1
j . This rule retains the PCs while the variance of each

PCk keeps above the length �k
47 / 177

PCA on the correlation matrix - summary

All variables have the same variance and therefore their importance
is equalized

The cloud of individuals tend to have a more rounded shape

The PCA tend to reflect existing correlation patterns among
variables

The first PC tends to be dominated by groups of variables that
highly correlated

The PCs can be interpreted since they are linear combinations of
dimensionless variables

The number of PCs that are necessary to explain a given proportion
of the total dataset variability is usually higher compared to the
PCA on the covariance matrix

48 / 177

A more geometrical approach to PCA using SVD

Applying the SVD to the centered data matrix X∗ we obtain

X∗ = U∆VT =
∑r

j=1 δjujvTj

where

∆r×r = diag(δ1, . . . , δr) is the diagonal matrix containing the
(positive) singular values of Z with δ1 ≥ δ2 ≥ · · · ≥ δr > 0

UN×r = [u1 · · · ur], with u1, . . . , ur ∈ R
N , is the matrix of left

singular vectors of Z

Vp×r = [v1 · · · vr], with v1, . . . , vr ∈ R
p, is the matrix of right

singular vectors of Z

UTU = VTV = Ir , that is, the left and right singular vectors, are
unit and pairwise orthogonal vectors vectors

For each k = 1, . . . , p we have a rank k linear approximation of X∗,

X(k) =
k∑

j=1

δjujv
T
j = U(k)∆(k)V(k)T

Here U(k) is the submatrix of U containing the first k columns, etc. . .
49 / 177

Best rank k-linear approximation

For instance, we have the following rank one and rank two linear approximations,

X(1) = δ1u1v
T
1 = U(1)∆(1)V(1)T

X(2) = δ1u1v
T
1 + δ2u1v

T
2 = U(2)∆(2)V(2)T

All rows of X(k) are linear combinations of vT1 , . . . , vTk . Moreover:

For each k, the cloud of N points defined by the rows of X(k) lie in a
k-dimension linear subspace W(k) of Rp (generated by the vectors v1 . . . , vk),
that is close to the cloud of centered points defined by the rows of X∗

Denoting by i the point defined by row i of X∗ and by i ′ the corresponding
k-approximated point in W(k), defined by row i of X(k), we have that i − i ′ is
a linear combination of vj , j > k, and thus orthogonal to the linear space W(k)

Denoting by di the distance between i and the origin (center of gravity), by di′
the distance between i ′ and the origin and setting ei = d(i , i ′), we have a
decomposition

d2
i = d2

i′ + e2i (12)

50 / 177

Best fitting k-dimensional linear space

XG = �0

di

R
p

1
2

j

p

W
k

i

i ′

ei

d2
i = d2

i ′ + e2i

di ′

51 / 177

Best k-dimensional fitting

The cloud of points X(k) gives the best rank k approximation of
X∗, corresponding to the best fitting k-dimensional linear space in
terms of least square distances, between the centered cloud of
points defined by X∗ and the cloud of the projected points in the
k-dimensional space, X(k). In other words it minimizes the sum of
square distances

∑
i e

2
i (Eckart-Young’s Theorem)

Using the decomposition (12) of the slide 49 we obtain,

var(X∗)︸ ︷︷ ︸
total var.

=
1

N − 1

∑
i

d2
i =

1

N − 1

∑
i ′

d2
i ′ +

1

N − 1

∑
i

e2i

= var(X(k))︸ ︷︷ ︸
explain. var.

+
1

N − 1

∑
i

e2i

︸ ︷︷ ︸
unexplain. var.

Therefore the optimal solution in the sense of the least square
distances, minimizes the variance that is left unexplained, i.e.,
maximizes the variance of the cloud of N points projected in a
k-dimensional space (explained variance) - main goal of PCA!

52 / 177

Equivalence between the EVD and SVD approaches

We shall assume all singular values positive (otherwise we have to work with a slight
different version of the SVD decomposition):

(X∗)TX∗ = (U∆VT)T (U∆VT) = V∆TUTU∆VT = V∆2VT ,

which is equivalent to say that,

S = V

(
1√

N − 1
∆

)2

VT (13)

Hence the PC loadings, i.e., the eigenvectors of S, are the right singular vectors of X∗
and the corresponding PC standard deviations, the singular values of X∗ divided by√
N − 1. The PC factor scores are given by

Y∗ = X∗V = U∆VTV = U∆,

and the left singular vectors verify

U = X∗V∆−1 = Y∗∆−1,

where Y∗∆−1 is a matrix of normalized scores (more precisely, with constant standard
deviations 1√

N−1
)

One can consider, alternatively, the SVD of 1√
N−1

(X∗)TX∗. In this case the PCs

variances λj are the squared singular values δ2j of 1√
N−1

(X∗)TX∗ (see the slides of

Prof. Cadima)

53 / 177

comparing PCA via EVD and via SVD in R

R

EVD APPROACH TO PCA

X<-iris[-5] # can be replaced by your own dataset or standardized

X.pca <- prcomp(X) # computes the PCA of X

loadings <- X.pca$rotation # eigenvectors of S=cov(X) (loadings)

sdev <- X.pca$sdev

standard deviations of the PCs (square roots of the eigenvalues of S)

scores <- X.pca$x # scores (coordinates of the individuals w.r.t PCs)

SVD APPROACH TO PCA

Xc <- scale(X,scale=FALSE) # Xc = centered X

X.svd<-svd(Xc) # computes the SVD of Xc

left.sing <- X.svd$u # left singular vectors of Xc

singvalues <- X.svd$d # singular values of Xc

right.sing <- X.svd$v # right singular vectors of Xc

EQUIVALENCE BETWEEN EVD AND SVD APPROACHES

sdev; singvalues/sqrt(N-1)

eigenvalues of S = square of sing values of Xc (divided by N-1)

head(loadings); head(right.sing) # loadings = right sing vectors

head(scores) ; head(left.sing%*%diag(singvalues))

scores = normalized left sing vectors

54 / 177

A very useful decomposition. . .

Any matrix CN×p of rank r can be decomposed as a

C = ABT =
r∑

i=1

aib
T
i ,

where A = [a1 · · · ar] and B = [b1 · · · br], with ai ∈ RN and bi ∈ Rp

In particular, any matrix C of rank one, i.e., with proportional rows and
proportional columns, can be decomposed as:

C = a bT =




a1
...
aN


 [

b1 · · · bp
]
, with

a =




a1
...
aN


 = (a1, . . . , aN) ∈ R

N , b =




b1
...
bp


 = (b1, . . . , bN) ∈ R

p

The decomposition is not unique. For instance,

C =

[
2 4 6
4 8 12

]
=

[
2
4

] [
1 2 3

]
=

[
1
2

] [
2 4 6

]
In the general case the decomposition can be obtained using the SVD. . . 55 / 177

Biplots

The biplots provide simultaneous representations of the individuals and
variables of a data matrix in a low dimension space (usually of dimension
two or three), using the SVD applied to the centered data matrix in order
to obtain a decomposition of the type described in the previous slide

Let X∗ be the matrix obtained by centering the p observed variables of a
data matrix XN×p (i.e., column centering the matrix). We will assume
X∗ has rank p. Applying the SVD we can write,

X∗ = U∆VT (14)

where,

UN×p verifies UTU = Ip is the matrix of left singular vectors of X∗

Vp×p verifies VTV = Ip is the matrix of right singular vectors of
X∗, i.e., the matrix of loadings of X

∆p×p = diag(δ1, . . . , δp) is a diagonal matrix containing the singular
values of X∗

56 / 177

Biplots (cont.)

Using the decomposition (14) of the previous slide we can decompose
X∗ = GHT in many different ways. We will refer here two of them:

G = U∆ and H = V - focuses on distances between individuals

G = U and H = V∆ - focuses on covariances/correlations between
variables

In the first case, G = U∆ contains the left singular vectors scaled by the
respective singular values which gives the factor scores (coordinates) of
the individuals. Actually, the right singular vectors of X∗ are eigenvectors
of the covariance matrix S, i.e, vectors of loadings of X and therefore the
scores matrix is given

Y∗ = X∗V = U∆VTV = U∆

The matrix H = V,corresponds to the matrix of right singular vectors,
i.e. to the matrix of the vectors of loadings

57 / 177

Biplots (cont.)

Consider now the second case, GN×p = U and Hp×p = V∆ and denote

GT = [g1 · · · gN],

where gj ∈ R
p is the j-th row of G. Similarly denote

HT = [h1 · · · hp],

where hk ∈ R
p is the k-th row of H The rows of G and H are called,

respectively, markers of individuals and variables. We have,

(N − 1)S = (X∗)TX∗ = (GHT)TGHT

= HGTGHT = HUTUHT = HHT

Hence
(hj)Thk = (N − 1)s2jk ,

that is, the inner product between the markers hj and hk is proportional
to the covariance between the observed variables xj and xk . In particular,
the length of each variable marker is proportional to the standard
deviation of the corresponding variable and we get, denoting θjk the angle
between the variable markers hj and hk ,

cos(θjk) = rjk
58 / 177

Euclidean and Mahalanobis distances

The usual squared (euclidean) distance between the individuals xi , x� ∈ Rp is

d2
i� = ‖xi − x�‖2 = (xi − x�)T (xi − x�)

The (squared) Mahalanobis distance accounts for the dataset variability and
generalizes the euclidean distance. Assuming the covariance matrix S invertible, the
Mahalanobis distance between the individuals xi , x� ∈ Rp is defined as

δ2i� = (xi − x�)TS−1(xi − x�)

The Mahalanobis distance between the individuals xi = Hgi and x� = Hg� is
proportional to the (squared) euclidean distance between the corresponding markers gi

and g�. Actually, from relation (13) of slide 53, we obtain

(N − 1)V∆−2VT = (N − 1) ((X∗)TX∗))−1 = S−1

and therefore

(N − 1)(gi − g�)T (gi − g�) = (N − 1)(gi − g�)T∆∆−2∆(gi − g�)

= (N − 1)(gi − g�)T∆(VTV)∆−2(VTV)∆(gi − g�)

= (gi − g�)T (V∆)TS−1(V∆)(gi − g�)

= (gi − g�)THTS−1H(gi − g�)

= (H(gi − g�))TS−1H(gi − g�)

= (xi − x�)TS−1(xi − x�) = δ2i�, (UFF!)

59 / 177

“Exact” interpretation of a biplot

Summarizing, we have the following “exact interpretations”:

The cosine of the angle between two variable markers is the
correlation coefficient between these variables

The length of a variable marker is proportional to the standard
deviation of the variable

The euclidean distance between individual markers is proportional to
the Mahalanobis distance between the corresponding individuals

The coordinate of the orthogonal projection of an individual marker
gi onto the line defined by a variable marker hj equals value of the
individual on that variable divided by the standard deviation of the
variable

The last property follows directly from relation X∗ = GHT , which implies
that x∗ij = (gi)Thj and therefore,

projhj (g
i) =

(gi)Thj

‖hj‖2 hj =
x∗ij

‖hj‖2h
j

Note that ‖projhj (gi)‖ =
|x∗ij |
‖hj‖

60 / 177

“Approximated interpretations” of a biplot

Let GT (m) = U(m)T and HT (m) = ∆(m)V(m)T , 1 ≤ m ≤ p be the submatrices
containing the first m rows of GT and HT , resp. Denote

(G(m))T = [g1m · · · gNm], (H(m))T = [h1m · · · hpm]

The rows of G(m) and H(m) give approximations to the markers of the individuals
and variables. We have:

The cosines of the angles between variable markers are approximately equal to
the correlation coefficients between these variables

The length of a variable marker is approximately proportional to the standard
deviation of the variable

The (euclidean) distances between individual markers are approximately
proportional to the Mahalanobis distance between these individuals

The coordinate of the orthogonal projection of an individual marker gi onto the
line defined by a variable marker hj is approximately equal to the value of the
individual on that variable divided by the standard deviation of the variable

The higher the proportion of the explained variance by the first m PCs, the better the
approximations in the previous points

61 / 177

Displaying a biplot using in R software

We can display the biplot of the iris flowers data set in two distinct ways, with the
biplot function:

R

Xc <- scale(iris[-5],scale=FALSE) #centred iris flower dataset

iris.svd <- svd(Xc) # compute the svd UDVT̂ of the centred iris dataset

U <- iris.svd$u

V <- iris.svd$v

Delta <- diag(iris.svd$d) # creates a diagonal matrix with diagonal with

the singular values

par(mfrow=c(2,2)) # 4 simultaneous windows

plot(iris.pca$x[,1:2],asp=TRUE,pch=16) # plot

biplot(U % * % Delta, V, asp=TRUE,cex=.5) # G=U Delta; H=V

biplot(U, V% * %Delta, asp=TRUE,cex=.5) # G=U; H=V Delta

biplot(iris.acp, asp=TRUE,cex=.5) # computes the second species

62 / 177

Iris flower biplots

The output obtained by the script of the previous sliede

63 / 177

Some notes on generalized euclidean distances

If S is a symmetric positive definite (hence invertible) matrix of order p, we define the
(squared) generalized euclidean distance between the vectors x, y ∈ R

p as

d2
S(x, y) = (x− y)TS−1(x − y)

If S = Ip , d2
S(x, y) = (x− y)T (x− y) = ‖x− y‖2 is the usual (squared)

Euclidean distance between x and y

If S = cov(X), d2
S(x, y) is the (squared) Mahalanobis distance between x and y

When the variables are uncorrelated, the covariance matrix S is a diagonal
matrix containing the variances of the p variables d2

S(x, y) equals (squared)
euclidean distance between the corresponding standardized variables

The Mahalanobis distance of between an individual and the cloud’s center of
gravity is ‘smaller’ along the directions of X of greater variability and generalizes
to the multivariate case the idea of how many standard deviations each observed
vector x is far away from the mean. This can be useful, for instance, to detect
outliers. . .

64 / 177

Mahalanobis distances for the iris flower data set

The variance-covariance matrices of the sepal and the petal widths are, respectively:[
0.6856935 −0.0424340
−0.0424340 0.1899794

]
,

[
3.116278 1.2956094
1.295609 0.5810063

]

The iris flowers at Mahalanobis distances from the mean less than or equal to 1 are
displayed in red and the iris flowers at mahalanobis distances greater than 1 and
smaller than or equal to 2 displayed in blue color

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Sepal.Length

S
ep

al
.W

id
th

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Petal.Length

P
et

al
.W

id
th

65 / 177

Contribution and square cosine

Recall that the contribution of individual i to a PCk is the part of the variance
of PCk that is due to individual i :

ctri,k =
(y∗

i,k)
2∑N

j=1(y
∗
j,k)

2

Individuals with contributions above the average are usually more important to
interpret the PC

A related notion is the square cosine of a PC k with an individual i , which gives
the contribution of the PC to the squared distance of the individual to the origin:

cos2i,k =
(y∗

i,k)
2∑p

j=1(y
∗
i,j)

2

Square cosines can be added together to assess the quality of representation of
an individual i by its projection on the space defined by several PCs. For
instance, the quality of representation of individual i in the PFP is given by,

cos2i,1 + cos2i,2 =
(y∗

i,1)
2 + (y∗

i,2)
2∑p

j=1(y
∗
i,j)

2

Only well represented individuals should be interpreted!

66 / 177

PCA interpretation - summary

Proportion of the variance explained by a PC

Correlation between a variable and a PC

Contribution of an individual to a PC

Squared cosine of a PC with an individual

Biplot

67 / 177

CLUSTER ANALYSIS

68 / 177

Definition of clustering

Given a collection of N objects, X = {x1, . . . , xN}, one seeks a
partition of X into K nonempty disjoint sets (the clusters),

X = C1 ∪ · · · ∪ CK
such that, given the notion of resemblance considered, it

maximizes the internal homogeneity or cluster cohesion, or
equivalently, it minimizes the intra-cluster variability - objects
belonging to the same cluster should share the similar features

it maximizes the external heterogeneity or cluster separation,
i.e., it maximizes the inter-cluster separability - objects
belonging to distinct clusters should be very dissimilar and
have clear distinguished features

69 / 177

Examples

clear clustering structure artificial clustering structure

weak internal cohesion

strong separationstrong separation

strong internal cohesion strong internal cohesion

weak separation

70 / 177

Clustering

Clustering always imposes some kind structure on the data,
even when no special structure or discontinuities are present!

For instance, many clustering techniques tend to form
globular clusters, e.g., with elliptical or spherical shapes

How to choose the best partition ?

71 / 177

Huge solution space...

The number of distinct partitions of N elements into K clusters
(1 ≤ K ≤ N) equals

ξ(N,K) =
1

K !

K∑
j=1

(
K

j

)
(−1)K−j jN ,

which is a huge number, known as Stirling number of second kind,
even for relatively small values of N and K , making impossible to
to find the best partition by exhaustive search.

For instance, the number of partitions of a set with 25 elements
into 8 clusters equals

ξ(25, 8) = 69022372111836858

For N large and K fixed, ξ(N,K) ≈ KN

K !

In the previous example, one gets ξ(25, 8) ≈ 825

8! = 9.369775e+17

72 / 177

Common steps in a cluster analysis

Variables/features selection

Which variables (continuous, categorical, ordinal, binary, . . .),
encode as much as possible the information concerning the
task, avoiding redundancy (i.e., highly correlated variables) ?
Standardize/normalize the variables to balance their
importance ?

Clustering model

Which combination of a clustering method with a
distance/dissimilarity is more appropriate?

Cluster validation

Internal: How many groups and how to assess the quality of
the clusters ?
External: How the clustering results compare with the
outcomes obtained using different clustering models or how
they compare with known information ?

Interpretation of the results

Are the outcomes interpretable in the context of the problem ?
Which variables/features (active/supplementary) are more
important to characterize the clusters ? 73 / 177

Cluster model

A cluster model is build upon two concepts:

the notion of distance/dissimilarity between individuals and clusters
should be adequate to the type of variables involved and to the type
of results sought

the clustering method should take into account the type of
structure/shape of the clusters sought (rounded shape/arbitrary
shape/. . .) and characteristics of the method itself (sensitivity to
outliers/noise/ldots), computational issues (scalability for large
datasets), etc. . .

When several cluster models are appropriate one should compare the
outputs of such models to seek for common patterns that emerge from
these clustering models - robust solutions

74 / 177

Example of numerical dataset - iris flower dataset

The well known iris flower dataset contains the sepal and petal lengths
and widths (in cm) of 150 iris flowers

How to measure the distance between each pair of iris flowers ?

Standardize (z-score normalization) or normalize (min-max scaling)
the variables in order that the differences between all variables
contribute equally ?

75 / 177

Example - a freshwater fish dataset in West Africa

In the biogeography it is common to use biological markers (e.g., river
fish species) to distinguish between sites (e.g., river basins)

Which type of variable/feature is more appropriate to encode this
type data ?

How to assess the similarity between river basins given the
distribution of fish species ?

How to assess the similarity between fish species given their
distribution by the sites ?

76 / 177

Example categorical dataset

The following two-way contingency table encodes the country of residence and

language spoken by 1000 inhabitants in 5 countries

English French Spanish German Italian Total

Canada 688 280 10 11 11 1000

USA 730 31 190 8 41 1000

England 798 74 38 31 59 1000

Italy 17 13 11 15 944 1000

Switzer. 15 222 20 648 95 1000

Total 2248 620 269 713 1150 5000

({\bf source}: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718710/)

How to assess the similarity between countries given the languages
spoken in these countries ?

How to assess the similarity between the spoken languages given
their distribution by the countries ?

77 / 177

Properties of a dissimilarity measure / distance

In order to tackle the previous questions we first need to establish
which properties a dissimilarity/distance notion should have.

A dissimilarity measure on a set X is a real function

d : X × X → R,

such that, for all x , y ∈ X , we have

d(x , y) ≥ 0

d(x , y) = 0 if and only if x = y

d(x , y) = d(y , x)

We call d a distance if moreover d verifies the triangle inequality

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z ∈ X ,

78 / 177

Three important distances

Consider x = (x1, . . . , xN) and y = (y1, . . . , yN) of R
n

The usual euclidean distance:

d(x , y) =

√√√√ N∑
i=1

|xi − yi |2

The Manhattan distance (also called city block or taxicab
distance):

d1(x , y) =
∑
i

|xi − yi |.

The so-called maximum distance (also called Chebyshev
distance):

dmax(x , y) = max
i

|xi − yi |

79 / 177

Relation among the 3 distances

x1 y1

x

y2

x2

y

d1(x , y)

dmax(x , y)

d(x ,
y)

For all x , y ∈ R
N we have d1(x , y) ≥ d(x , y) ≥ dmax(x , y)

For the taxi-cab and euclidean distances all differences |xi − yi |,
i = 1, . . . ,N , have approximately the same relative weight in the
computation of the overall distance

For the maximum distance only the variable(s) i yielding the largest
difference |xi − yi | accounts for the overall distance

80 / 177

The Canberra distance

If x, y are N-dimensional vectors with positive components, one can
define the so-called Canberra distance

d(x, y) =
N∑
i=1

|xi − yi |
xi + yi

This distance is a weighted version of the Manhattan distance that
is sensitive to differences between values xi and yi of small
amplitudes.

It is invariant under differentiated changes of scale in each variable
but not under variables centering. Only the relative proportion
between the differences of the coordinates and their sum are
importante.

81 / 177

When to standardize the data ?

Usually, the euclidean distance between original numerical
variables is employed if all variables are expressed in the same
units and similar scales of measurement. Otherwise, it is
usually better to standardize the data to give the same weight
to all variables.

It could also be interesting to explore if other types of
dissimilarities (for instance, the Canberra or Mahalanobis
distance), could be more appropriate. . .

82 / 177

Dissimilarity measures for binary data

Consider binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) and define

a: nr components where both variables take value 1 (positive agreement)

b: nr of components where x take value 1 and y value 0 (disagreement)

c : nr of components where x take value 0 and y value 1 (disagreement)

d : nr components where both variables take value 0 (negative agreement)

Simple matching (counts double-zeroes, is suitable if 0-1 represent
equally valued attributes like male-female):

S(x, y) =
a+ d

a+ b + c + d
=⇒ D(x, x) = 1−S(x, x) =

b + c

a+ b + c + d

Jaccard coefficient (does not count double zeroes. Suitable if 0-1
represent unequal valued attributes, like species presences-absences):

J(x,) =
a

a+ b + c
=⇒ D(x, y) = 1− J(x, y) =

b + c

a+ b + c

83 / 177

Example

Assume that we have two binary variables x and y representing presences (1) and
absences (0) of two species at 16 spots:

x = (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), y = (0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1)

We want to determine how similar are the two species with regard to their distribution
in the 16 spots. Computing the positive and negative agreements/disagreements, we
get a = 1, b = 3, c = 3 and d = 9 (a+ b + c + d = 16). Therefore we have.

Simple matching: a+d
a+b+c+d

= 10/16

Jaccard coefficient: a
a+b+c

= 1/7

The asymmetrical character of Jaccard’s coefficient seems to the be a more suitable
similarity to create homogeneous groups of species with respect to their distribution in
the spots

R

The R function dist with the method ‘‘binary’’ computes the

dissimilarity as d(x , y) = 1− S(x , y), where S is the Jaccard coefficient

d = dist(cbind(x,y),method=‘‘binary’’,diag=FALSE,upper=FALSE,p=2)

Several other dissimilarity measures well suited for binary data in the

framework of ecology and community composition data are available via

the function dist.ldc from the adespatial package

84 / 177

χ2-distance for nominal data

Let X = [xij] be a contingency table, where xij is the observed frequency in
category Ai of a nominal variable A and category Bj of a nominal variable B
(assuming nonzero row and column sums). Let I and J be the number of
categories of A and B and N =

∑
i,j xij the total number of observations.

Dividing each row i by the corresponding row total, xi· =
∑

j xij , we obtain the

so-called ith row-profile,
(

xi1
xi·

, . . . , xiJ
xi·

)
, which corresponds to the conditional

distribution of variable B assuming category ai of A.
The set of the I row-profiles defines a cloud of I points in R

J and the centroid

of this cloud, 1
I

∑
i

(
xi1
xi·

, . . . , xiJ
xi·

)
∈ R

J , is called is the mean row-profile.

If variables A and B are independent, i.e., xij =
xi·x·j
N

∀i , j , ith row-profile verifies(xi1
xi·

, . . . ,
xiJ

xi·

)
=
(x·1
N

, . . . ,
x·J
N

)
= (f·1, . . . , f·J),

where f·j =
∑

i fij are the column marginals of the relative frequencies fij =
xij
N
.

In particular, all row-profiles are equal to the mean row-profile. If A and B are
not independent, the row-profiles spread away from the mean row-profile.
The squared χ2-distance between the ith and �th row-profiles is defined as,

d2
χ2 (i , �) =

J∑
j=1

1

f·j

(xij
xi·

− x�j

x�·

)2
=

J∑
j=1

1

f·j

(fij
fi·

− f�j

f�·

)2
(the weights in the inverse proportion of the column marginal frequencies f·j
increase the importance of the small differences between rare categories).

85 / 177

Example

Consider again the two-way contingency table containing the distribution
by country of residence of the primary language spoken of 5000
inhabitants (see slide 13)

English French Spanish German Italian Total

Canada 688 280 10 11 11 1000

USA 730 31 190 8 41 1000

England 798 74 38 31 59 1000

Italy 17 13 11 15 944 1000

Switz. 15 222 20 648 95 1000

Total 2248 620 269 713 1150 5000

(source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718710/)

86 / 177

χ2-distance between the row-profiles

The corresponding 5 row-profiles and mean row-profile are given below

English French Spanish German Italian| Totals

Canada 0.688 0.280 0.010 0.011 0.011 | 1.000

USA 0.730 0.031 0.190 0.008 0.041 | 1.000

England 0.798 0.074 0.038 0.031 0.059 | 1.000

Italy 0.017 0.013 0.011 0.015 0.944 | 1.000

Switz. 0.015 0.222 0.020 0.648 0.095 | 1.000

__

mean 0.4496 0.124 0.0538 0.1426 0.230 | 1.000 (verify)

f.j 0.4496 0.124 0.0538 0.1426 0.230 | 1.000 (verify)

The 5 row-profiles define a a cloud of I = 5 points in R
J , with J = 5 (number of

columns) with centroid given by the mean row-profile

The squared χ2-distance between the row profiles of Canada and Switzerland is

d2
χ2 (1, 5) =

(0.688 − 0.015)2

0.4496
+

(0.280 − 0.222)2

0.124
+

(0.010 − 0.020)2

0.0538
+

(0.011 − 0.648)2

0.1426
+

(0.011 − 0.095)2

0.230
= 3.912575

We define similarly the set of 5 column-profiles, which can be regarded as a
cloud of J = 5 points in R

I , with I = 5 and the corresponding pairwise squared
χ2-distances (left as an exercise).

The correspondence analysis (CA) allows to study and visualize the relationships
of a contingency table when the number of categories is high.

87 / 177

The corresponding R code

The R function dist.ldc from the package adespatial computes the

χ2-distance matrix between every pair of row-profiles

R

library(adespatial)

tab<-matrix(c(688, 280, 10 , 11 , 11, 730, 31, 190, 8 , 41, 798, 74,

38, 31, 59, 17, 13, 11, 15, 944, 15, 222, 20, 648, 95),

nrow=5, byrow = TRUE)

colnames(tab)<-c("English", "French", "Spanish", "German", "Italian")

rownames(tab)<-c("Canada","USA","England","Italy","Switz.")

tab

d.chisqr<-dist.ldc(tab,method="chisquare")

d.chisqr

We obtain the following distance matrix (dχ2) between row-profiles

Countries Canada USA England Italy

USA 1.0536310

England 0.6297091 0.6780536

Italy 2.3154271 2.2966246 2.1925680

Switzerland 1.9780231 2.2030640 2.0546442 2.5094977

For instance, d2
χ2 (r1, r5) = (1.9780231)2 = 3.912575, as computed in the

previous slide

88 / 177

Dissimilarity measures for variables

An usual similarity notion between two variables x and y is
Pearson’s correlation coefficient

r =
s2xy
sx sy

This similarity can be transformed into a dissimilarity using the
transformation d =

√
1− r2, which take values in the interval [0, 1]

Highly linearly correlated variables (positively or negatively) will
have d ≈ 0 while for uncorrelated variables d ≈ 1

Alternatively, we can define d = (1− r)/2. In this case the strength
of the linear relationship and the direction are both accounted

We can use the above dissimilarity measures to cluster variables.
Each cluster will consist of a set of variables highly correlated. This
can be useful to detect redundancies and can give an idea of the
number of principal dimensions of data

89 / 177

Clustering methods

Distance-based models rely only on pairwise dissimilarities between
individuals

Density-based clustering seeks for high density regions of points
(clusters) separated by low density of points (noise)

Model-based clustering assumes that the data in each cluster is
drawn from some probabilistic distribution (the standard model is a
finite mixture of multivariate gaussians) and assign a degree of
membership (probability) to each element to belong to a cluster.
Can be considered as generalizations of some distance-based
clustering methods

Constrained-clustering methods, are clustering methods that also
account for other type of information, like spatial relationships
between observations (for instance, contiguity relationships between
cells in a map)

. . .

90 / 177

Two important types of clustering

Hierarchical clustering - produces a nested structure of partitions
and do not requires that the number of clusters is known a priori:

Hierarchical agglomerative (or ascending) clustering algorithm
(HAC) - starts from the partition consisting of N clusters with
one individual per cluster (singletons) and proceeds until a
unique group is obtained.
Divisive clustering algorithm - proceeds in the opposite way
and are usually more computacional demanding, being more
seldom used (not considered in this course)

Partitional clustering - produces flat (non-nested) partition and
requires that the number of clusters is known a priori. Usually seeks
to maximize some criterion like the intra-cluster homogeneity or
the inter-cluster heterogeneity.

91 / 177

Hierarchical ascending clustering algorithm

Algorithm

Input: the proximity matrix containing the pairwise dissimilarities
between N individuals x1, . . . , xN

Starts with N clusters containing a single object each (singletons);

Merges the least dissimilar pair of clusters into a new cluster,
according to the given definition of distance between clusters, and
updates the proximity matrix (reducing its order by one);

Repeats step 2 N − 1 steps, until only the cluster containing all
individuals is obtained.

Output: the sequence (of length N − 1) of the clusters aggregated during
the clustering algorithm along with pairwise distances between these
merged clusters

Once two individuals are grouped together they cannot be separate at a
posterior stage.

92 / 177

Dissimilarity between clusters

The dissimilarity di,j = D(Ci , Cj), between clusters Ci and Cj with ni and nj elements,
respectively, depends on the aggregation method:

Single-linkage or nearest-neighbor:

di,j = min
x∈Ci ,y∈Cj

d(x , y)

Complete-linkage or furthest-neighbor:

di,j = max
x∈Ci ,y∈Cj

d(x , y)

Average:

di,j =
1

ni nj

∑
x∈Ci

∑
y∈Cj

d(x , y)

Centroid

Median

Ward or minimum-variance clustering

. . .

93 / 177

Updating formula for HAC

For all aggregation methods that we are going to consider, the
dissimilarity between two merged clusters, say Ci ∪ Cj , and each one
of the remaining clusters Ck ,

dij,k = D(Ci ∪ Cj , Ck),
can be determined in terms of the pairwise dissimilarities,

di ,j = D(Ci , Cj), di ,k = D(Ci , Ck), dj,k = D(Cj , Ck)
In other words, the proximity matrix containing the pairwise
distances between the clusters at a given step �+ 1 can be
determined in terms of the proximity matrix containing the pairwise
distances between the clusters at the previous step �, via a
convenient updating formula

Therefore and unlike many other statistical methods like PCA, the
HAC algorithm does not require the knowledge of the original data
matrix X, but only the knowledge of the proximity matrix containing
the pairwise distances between the elements of X.

94 / 177

Example of updating formulas

Single-linkage or nearest-neighbor:

dij,k = min{di ,k, dj,k}

Complete-linkage or furthest-neighbor

dij,k = max{di ,k , dj,k}

Average

dij,k =
nidi ,k + njdj,k

ni + nj

see Lance-Williams table

see Lance-Williams table

see Lance-Williams table

95 / 177

Dendrogram

The sequence of length N − 1 of the merged clusters and the
corresponding fusion costs (i.e., the distance between the merged
clusters) can be graphically represented by a special tree graph
called dendrogram

Dendrograms are tree-like diagrams made of branches that
join terminal nodes (leaves)

The branches represent clusters and the heights at which the
branches are connected represent fusion costs. The leaves
represent the objects

The lifetime of a branch is the difference of fusion costs
between the step in which it appears and the step in which it
is aggregated

96 / 177

Example: step -1 (initial step)

As an example we are going to apply the single-linkage clustering
algorithm to a set of 6 points

����

��

.5

PROXIMITY MATRIX

a b

0.7

X = {a, b, c, d , e, f }

c

b

1.0 0.3

b

d

fe

c

a

3.4 2.8

e

f

2.9

ed

1.3

c

d 1.8 .1.3

2.4

0.9

1.9

2.4 1.7Next step merges the clusters {b} and {c}
with fusion cost 0.3 (the least dissimilar pair) and in each dashed box

At the initial step all clusters are singletons

and defining the dissimilarities between each one of the singletons and the new formed cluster {b, c}
the minimum value is chosen, reducing the proximity matrix order by one,

97 / 177

Step -2

��

����

fusion cost DENDROGRAM

1.7

b

d

fe

c

a

X = {a, b, c, d , e, f }

1.3

a b c d e f

objects

0.3

PROXIMITY MATRIX

a {b, c} d e

e

f

0.7

1.9

d

{b, c}

1.8

2.9

3.4

0.9

2.4 0.5

Next step merges the singletons {e} and {f }

with fusion cost 0.5

98 / 177

Step - 3

��

��

��

fusion cost DENDROGRAM

0.5

b

d

fe

c

a

PROXIMITY MATRIX

a {b, c} d

0.7{b, c}

d

{e, f }

1.8 0.9

2.9 1.31.9

0.3

a b c d e f

objects

Next step merges the pair of clusters {a} and {b, c}
with fusion cost 0.7

99 / 177

Step - 4

����

��

fusion cost DENDROGRAM

with fusion cost 0.91

b

d

fe

c

a

PROXIMITY MATRIX

{a, b, c}

d

{e, f }

d

0.9

1.9 1.3

a b c d e f objects

0.7

Next step merges the clusters {a, b, c} and {d}

100 / 177

Step - 5

��������

����

DENDROGRAM

fusion cost

{a, b, c, d} and {e, f } with fusion cost 1.3

b

d

fe

c

a

a b c d e f object

0.9

PROXIMITY MATRIX

{a, b, c, d}

1.3{e, f }

Next step is the final one and merges the clusters

101 / 177

step - 6 (final step)

The final structure of nested clusters and the dendrogram encoding
the clustering procedure are the following

��������

����

DENDROGRAM

fusion cost

a

b

d

fe

c

PROXIMITY MATRIX

a b c d e f objects

1.3

EMPTY

102 / 177

step - 6 (final step)

The final structure of nested clusters and the dendrogram encoding
the clustering procedure are the following

��������

����

DENDROGRAM

fusion cost

a

b

d

fe

c

PROXIMITY MATRIX

a b c d e f objects

1.3

EMPTY

102 / 177

The R function hclust

It performs hierarchical agglomerative clustering using several
aggregation criterion methods and it admits an arbitrary
dissimilarity matrix as input

input: a dissimilarity matrix d and the clustering method among
the options, “ward”, “single”, “complete” (default), “average”,
“mcquitty”, “median” or “centroid”.

value: the function returns an object of the class hclust, which
consists of a list including, among others, the following elements:
merge - a (n − 1)× 2 matrix indicating the clusters being merged
heigth - the list of fusion costs

R (hclust function)

hc<-hclust(d, method=‘‘complete’’, members=NULL)

plot(hc) or plot(hc, hang=-1) to plot the dendrogram with all
leaves at the same height

103 / 177

Example

R (single-linkage example with output)

X<-matrix(c(0,0,0.5,0.5,0.85,0.5,1.75,0.25,2.75,1,3.25,1),

nrow=6,byrow=TRUE) # the set of 6 points {a, b, c, d, e, f } in two variables

[,1] [,2]

[1,] 0.00 0.00 point "a"

[2,] 0.50 0.50 point "b"

[3,] 0.85 0.50 point "c"

[4,] 1.75 0.25 point "d"

[5,] 2.75 1.00 point "e"

[6,] 3.25 1.00 point "f"

d<-dist(X) # by default uses the euclidean distance

SL<-hclust(d, method="single")

SL$height

[1] 0.375 0.5 0.707 0.91 1.25

SL$merge

[,1] [,2]

[1,] -2 -3 (merges singletons {b} and {c})
[2,] -5 -6 (merges singletons {e} and {f })
[3,] -1 1 (merges singleton {a} with cluster {b, c})
[4,] -4 3 (merges singleton {d} with cluster {a, b, c})
[5,] 2 4 (merges cluster {e, f } with cluster {a, b, c, d})
The number with minus sign refers to a singleton ID,

otherwise refers to the step number where the cluster was aggregated

plot(SL, hang=-1) # plot the dendrogram 104 / 177

Where to cut the dendrogram?

A cut in a dendrogram at a given height τ produces the (flat) partition
into the clusters whose fusion cost is smaller than τ

Usually one seeks cuts in the dendrogram such that:

split high height branches (high lifetimes) to get high inter-cluster
heterogeneity

as close as possible to the leaves to get high intra-class homogeneity

Some caution has to be applied regarding the decision where to cut the
dendrogram (and what is the “best” number of clusters). With some
methods (for instance, the Ward method), the dendrogram lifetimes tend
to increase when the larger clusters are merged, due to the way the
fusion costs are defined

Several internal validity indices can be used to estimate the optimal
number of clusters

105 / 177

Example

For instance, to obtain a partition into 2 clusters we have to cut
the dendrogram at some height in the interval]0.9, 1.3[, yielding
the clusters C = {a, b, c , d} and C′ = {e, f }

cutoff

a b c d e f

CUTTING THE DENDROGRAM

1.3

objects

fusion cost

0.9

The cluster {e, f } is relatively well separate from the cluster
{a, b, c , d} since the fusion cost (1.3) between these groups is
relatively high

But cluster {a, b, c , d} is not very homogeneous since the
fusion cost (0.9) of aggregating all of its elements is also
relatively high

106 / 177

Cutting the dendrogram in R

The resulting partition into two clusters {a, b, c , d} and {e, f }
(depicted using distinct colors)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

5
0.

5
1.

0
1.

5

X[,1]

X
[,2

]

R (cutree function)

SL<-hclust(X,method="single")

part<-cutree(SL,2) # 2 clusters

or

part<-cutree(SL,h=1.1) # h is the height

part

plot(X,type="p",cex=0.8,pch=16, col=part,asp=TRUE)

107 / 177

Chaining effect

In single-linkage if two clusters are merged at a fusion cost τ , every
pair of objects, one in each cluster, have pairwise distance greater
than or equal to τ .

As the clusters growth it becomes more and more easier to
incorporate new elements in the cluster since the distances between
these elements and the cluster is the distance to the nearest point in
the cluster

As a consequence, the singletons tend to aggregate to the larger
clusters, often producing elongated clusters (chain effect) and/or
very unbalanced partitions

108 / 177

Chaining effect

The chaining effect is usually produced by the existence of
intermediate points between clusters, giving rise to elongated
clusters connecting distant points

0 1 2 3

−
1.

0
0.

0
0.

5
1.

0
The chaining effect (single method)

X[,1]

X
[,2

]

109 / 177

Single-linkage emphasizes clusters separation

The nearest neighbor distance can be used to measure of
separability between clusters. More precisely, we can measure the
separability of a partition X = C1 ∪ · · · ∪ Ck as the distance
between the closest pair of clusters for the nearest neighbor
criterion, i.e., as

min
i �=j

D(Ci ,Cj) = min
i �=j

(
min

x∈Ci , y∈Cj

d(x , y)

)
.

In each step the single-linkage algorithm merges the pair of closest
clusters, which amounts to say that it merges the pair of clusters
that maximizes the separability of the resulting partition.

Therefore we have the following.

The single-linkage clustering algorithm tends to produce
well separate partitions but not necessarily homogeneous!

110 / 177

Single-linkage and clusters separation

dij ,k

CjCk

Ci

dij

dj ,k

CjCk

Ci

djk,i

CjCk

Ci

di ,k

dik,j

The aggregation of the pair of closest clusters (top row, on the left) yield
the better separated 2-partition among the 3 possible 2-partitions:

{Cij ,Ck}, {Cjk ,Ci}, {Cik ,Cj}
111 / 177

Single-linkage clustering - summary

Pros

Can detect arbitrary cluster shapes

Can be applied to large datasets since it is computationally efficient,
i.e., there are polynomial-time clustering algorithms

Emphasizes clusters separation, i.e., tends to form well separated
clusters

It is invariant under monotonic transformations of the proximity
matrix since it only depends on the rank orders of the pairwise
distances between the points of the dataset

Insensitive to ties in the proximity matrix

Cons

Suffers from the chaining effect - often produces elongated clusters
with very distinct sizes

Sensitive to observation errors and noise

The decision of aggregate two clusters relies only on a pair of
elements, one in each cluster

112 / 177

Complete-linkage

The complete-linkage or furthest neighbor is the opposite of
nearest-neighbor clustering algorithm The fusion cost between two
clusters Ci and Cj in this method is defined as the distance between
the furthest pair of points, one in each cluster, that is,

di ,j = D(Ci , Cj) = max
x∈Ci ,y∈Cj

d(x , y)

�
�
�
�

CjCi

Updating formula for the complete-linkage:

dij ,k = max{di ,k , dj ,k}

113 / 177

Complete-linkage method

In complete-linkage two clusters are merged at a height τ only if all
elements of one cluster are at a distance inferior than or equal to τ
with respect to the elements of the other cluster.

As the cluster growths it becomes more and more difficult to
incorporate new elements in a cluster. Therefore the aggregations
tend to occur between clusters with few elements.

The complete method tend to be sensitive to the presence of
outliers.

114 / 177

Exercise

Perform a clustering analysis with the complete-linkage
method on the set of points of the real line
X = {0.2, 3, 4.2, 5, 5.9} and represent the respective
dendrogram.

Cut the dendrogram in order to obtain two clusters. What you
conclude?

115 / 177

Complete-linkage emphasizes clusters homogeneity

The diameter of a set C is the largest dissimilarity between pairs
of elements of C , i.e.,

diam(C) = max
x ,y∈C

d(x , y)

We can measure the cohesion of a partition X = C1 ∪ . . . ∪ Ck , as
the partition diameter, i.e., as the largest value among the
diameters of C1, . . . ,Ck :

max
i

diam(Ci) = max
i

(
max
x ,y∈Ci

d(x , y)

)
.

In each step the complete-linkage (also called diameter clustering)
method, seeks to aggregate the clusters that produce the smallest
increase in the partition diameter, i.e., such that the resulting
partition has the smallest possible diameter. Hence we have

The complete-linkage clustering algorithm tends to produce
compact clusters (but not necessarily well separated!)

116 / 177

Noise and outliers: single vs complete aggregation methods

The following examples illustrates that the single clustering method is
more sensitive to noise than complete, whereas the opposite occurs with
outliers (the partitions on the top row have two clusters each and
partitions on bottom row 3 clusters)

method=single method=complete

method=single method=complete

117 / 177

Complete-linkage clustering - summary

Pros

Emphasizes cluster compactness - tend to form tight spherical
clusters with small diameters, i.e., homogenous clusters

It is invariant under monotonic transformations of the
proximity matrix - only the ranks of the pairwise dissimilarities
are important.

Cons

Sensitive to outliers

Cannot detect arbitrary cluster shapes

The decision of aggregate two cluster only relies on a pair of
individuals, one in each cluster

118 / 177

Average clustering method

In-between the single-linkage and the complete-linkage clustering methods, we have
the average method, also known as unweighted pair group method average (UPGMA)
The merging cost between two clusters Ci and Cj is defined as the arithmetic mean of
the distances between every point of Ci and eevery point of Cj , i.e., equals

di,j =

∑
x∈Ci

∑
y∈Cj

d(x , y)

ni nj
,

where ni = |Ci | and nj = |Cj |.
Ci Cj

The updating formula is given by (left as an exercise),

dij,k =
ni di,k + nj dj,k

ni + nj

This method often outperforms single-linkage and complete linkage but it is not
invariant under monotonic transformations of the proximity matrix

119 / 177

Centroid clustering model

This method, also known as UPGMC (unweighted pair group method centroid)
implements the very natural idea that the clusters are represented by their centroids
and thus define distance di,j between two clusters Ci and Cj as the distance between
the respective centroids mi and mj :

di,j =

∥∥∥∥∥∥ 1

|Ci |
∑
xi∈Ci

xi − 1

|Cj |
∑
xj∈Cj

xj

∥∥∥∥∥∥ = ‖mi −mj‖

�
�
�
�

C C′

The centroid of the group obtained by merging the clusters Ci and Cj is given by

mij =
nimi + njmj

ni + nj

The updating formula is more complicated in this case. We shall resort to a general
procedure to define the updating formula for the centroid method.

120 / 177

Exercise

Perform a clustering analysis using the centroid method on
the set of 3 points of R3, X = {(0, 0), (8, 0), (4, 7.5)} and
represent the respective dendrogram

What happened ?

121 / 177

Centroid clustering model - inversions

In the centroid method the merging cost can be non-monotonic, giving
rise crossovers (also called inversions) in the dendrogram

All circles have radii equal to the distance between x and y , dx,y .

x y
c

d ′ d ′′

{x , y}

d

dx ,y

d

fusion costs

x y z

inversionz

objects

Since z (red point) lie in the grey area, ouside the black circles,
dx,y < d ′, d ′′. Hence x and y are the first pair of objects to be merged.
Since z lie inside the red circle centred at the centroid c of x and y ,

D({x , y}, z) = dc,z < dx,y = D({x}, {y})

122 / 177

Lance-Williams general updating formula

Given clusters Ci , Cj , Ck and Cij = Ci ∪ Cj we will define updating
formulas for a family of clustering methods

dij,k = αi di,k + αj dj,k + βdi,j + γ|di,k − dj,k |

or

d2
ij,k = αi d

2
i,k + αj d

2
j,k + βd2

i,j + γ|d2
i,k − d2

j,k |

depending on the method considered, where αi , αj , β and γ are
convenient parameters that may depend only on the clusters
cardinality ni = |Ci |, nj = |Cj |, nk = |Ck | and ni + nj = |Cij |:

Ck
i

j

k

Ci ,j
Ci

Cj

di ,j
dij ,k

dj ,k

di ,k

123 / 177

Lance-Williams updating formula - examples

Let us see how to obtain the updating formulas for the single-linkage and complete
linkage of slides 39 and 56 (verificar!)

dij,k = min(di,k , dj,k) (single-linkage),

dij,k = max(di,k , dj,k) (complete-linkage),

from the Lance-Williams table. We can assume di,k ≤ dj,k . Therefore

dij,k = min(di,k , dj,k) = di,k =
di,k + dj,k

2
− 1

2
|di,k − dj,k |

dij,k = max(di,k , dj,k) = dj,k =
di,k + dj,k

2
+

1

2
|di,k − dj,k |,

|di,k − dj,k |
2

0 di,k
di,k + dj,k

2
dj,k

|di,k − dj,k |
2

Hence the Lance-Williams coefficients for the single-linkage and complete-linkage, are:

αi = αj =
1

2
, γ = −1

2
and β = 0 (single-linkage)

αi = αj =
1

2
, γ =

1

2
and β = 0 (complete-linkage)

124 / 177

Lance-Williams chart

NO

αi αj β γ
matrix

1
2

1
2

−1
2

0

1
2

1
2

0 1
2

dij

ni
ni+nj

nj
ni+nj

0 0

1
2

1
2

0 0

dij

dij

dij

ni
ni+nj

nj
ni+nj

−ni nj
(ni+nj)2

0 d2
ij

1
2

1
2

−1
4

0 dij

ni+nk
ni+nj+nk

nj+nk
ni+nj+nk

− nk
ni+nj+nk

0 d2
ij

dissimilarity

single

complete

average

(UPGMA)

McQuitty

(WPGMA)

centroid

(UPGMC)

median

(WPGMC)

Ward

reversals

NO

NO

NO

NO

can

occur

can

occur

125 / 177

Example: updating formula for the centroid method

Using the previous Lance-Williams table we obtain the following
updating formula for the centroid method:

d2
ij ,k = ni

ni+nj
d2
i ,k +

nj
nj+nj

d2
j ,k − ni nj

(ni+nj)2
d2
i ,j

Note that the distances are squared!

Repeat the clustering performed on the set X of slide 121 and
using the update formula given here

126 / 177

Monotonic condition and inversions

We say that a clustering method satisfies the monotonic condition if
whenever two clusters Ci and Cj are merged into a cluster Cij we have

dij,k ≥ di ,j ∀k �= i , j , ij

This implies that the dendrogram cannot have inversions

Proposition

If in the Lance-Williams’s formula the parameters αi , αj are nonnegative,
αi + αj + β ≥ 1, and either γ ≥ 0 or max{−αi ,−αj} ≤ γ ≤ 0, the
clustering method satisfies the monotonic condition (∗)

(∗) A stronger condition is given by Batagelj : the Lance-Williams clustering algorithm
is monotonic if and only if,

γ ≥ −min(α1, α2), α1 + α2 ≥ 0, α1 + α2 + β ≥ 1

From the Lance-Williams table we deduce immediately that the
clustering aggregation methods, single, complete, average, McQuitty and
Ward verify the conditions of the proposition above and therefore satisfy
the monotonic condition. In particular, their dendrograms cannot have
inversions.

127 / 177

Ward’s method

Let X be a dataset with N individuals, x1, . . . , xN in p (observed)
variables with mean vector xG = (x̄1, . . . , x̄p). Given a partition of X into
K clusters

X = C1 ∪ · · · ∪ CK
we define,

SSQt =
N∑
i=1

‖xi − xG‖2 =
N∑
i=1

p∑
j=1

(xij − x̄j)
2 (total inertia)

SSQb =
K∑

k=1

nk‖mk − xG‖2 (between-clusters inertia)

SSQw =
K∑

k=1

∑
x∈Ck

‖x−mk‖2 (total within-clusters inertia),

where mk is the centroid of cluster Ck and nk the number of its elements

128 / 177

Ward’s method

The between-clusters inertia SSQb represents the inertia of the
dataset assuming that each cluster Ck is represented by nk copies of
the cluster centroid mk .

The total within-clusters inertia SSQw represents the information
that is lost by replacing the nk elements of each cluster Ck by nk
copies of the cluster centroid.

By Huygens theorem, SSQt = SSQb + SSQw , which is a constant.

Ward’s clustering method, also called minumum variance criterion,
tries to minimize the total within-clusters inertia SSQw , i.e., the
clusters heterogeneity/variability, which, by Huygens theorem,
amounts to maximize the between-clusters inertia SSQb, i.e., the
clusters separation

Hence Ward’s method seeks to simultaneously optimize two criteria:
maximize the clusters separation and minimize the clusters
variability

129 / 177

Increase in the sum of within-cluster inertia

At beginning all clusters have a unique element and therefore,

SSQt = SSQb , SSQw = 0

At each step, Ward’s method merges the pair of clusters Ci , Cj
yielding the smallest increase in the total within-cluster inertia SSQw

We shall write SSQw as

SSQw =
K∑

k=1

e2k ,

where e2k is the inertia of cluster k in, i.e.,

e2k =
∑
x∈Ck

‖x−mk‖2 =
∑

x,y∈Ck
‖x− y‖2

2nk

(note that the later expression only depends on the pairwise
distances between elements of Ck).

130 / 177

Increase in the sum of within-cluster inertia

When two clusters Ci and Cj are merged into a cluster Cij , the
increase in the total within-cluster inertia SSQw reduces to the
following statistic,

∆ijSSQw = e2ij − e2i − e2j ,

since all other within-group inertias are not affected. After N − 1
aggregation steps (assuming |X | = N) the sum of the successive
increases ∆ij,k is equal to the total inertia SSQt .

It can be proved that

∆ijSSQw =
ninj

ni + nj
‖mi −mj‖2,

which represents a weighted distance between the cluster centroids
(cf. with centroid method).

In particular, ∆ijSSQw is always nonnegative (i.e., the SSQw is
increasing) and only depends on the squared distance between the
cluster centroids mi and mj and on the cluster sizes ni and nj .

131 / 177

A better updating formula for Ward’s method using LW

The fusion cost between the clusters Cij = Ci ∪ Cj and Ck is

∆ij,kSSQw =
(ni + nj)nk
ni + nj + nk

‖mij −mk‖2,

which can be used as an updating formula for Ward’s clustering
method but has the disadvantage that it requires the knowledge of
the original dataset to compute the centroids.

Using the Lance-Williams table we can derive an alternative
updating formula for Ward’s method that only requires the
(squared) proximity matrix at previou step:

d2
ij,k =

(ni + nk)d
2
i ,k + (nj + nk)d

2
j,k − nkd

2
i ,j

ni + nj + nk

The above expression actually returns twice the value of ∆ij,kSSQw

and corresponds to the square of the dendrogram height computed
with R function hclust and the ward.D2 method.

132 / 177

Example

Consider the univariate dataset X = {a, b, c , d} = {1, 2, 4, 8}
The pairwise distances and squared pairwise distances between elements
of X are given, respectively, by




D a b c
b 1
c 3 2
d 7 6 4


 and




D2 a b c
b 1
c 9 4
d 49 36 16




The minimum of the squared distances is attained for D2(a, b) so the
first pair to be clustered will be a ∪ b with squared fusion cost equal to 1

133 / 177

Example (cont.)

D2(a ∪ b, c) =
2D2(a, c) + 2D2(b, c)− D2(a, b)

3

=
2 · 9 + 2 · 4− 1

3
=

25

3

and

D2(a ∪ b, d) =
2D2(a, d) + 2D2(b, d)− D2(a, b)

3

=
2 · 49 + 2 · 36− 1

3
=

169

3

D2(c , d) is not affected. Thus the new squared dissimilarity matrix is


D2 a ∪ b c

c 25

3

d 169
3 16




The minimum of the squared distances is attained for D2(a ∪ b, c) so the
next pair to be clustered will be (a ∪ b) ∪ c with squared fusion cost 25

3

134 / 177

Ward clustering using LW updating formula (concl.)

D2((a ∪ b) ∪ c , d) =
3D2(a ∪ b, d) + 2D2(c , d)− D2(a ∪ b, c)

4

=
3 · 169

3 + 2 · 16− 25
3

4
=

578

12

The dendrogram can be presented either using squared or not squared
fusion costs. Its topology however does not change

√
578
12

578
12

a b c da b c d

D2

1

25
3

D

5√
3

1

135 / 177

Computing using the R function hclust

The previous dendrogram can also be computed using the R
software in the following way:

R (Ward’s method)

X<-c(1,2,4,8)

N<-length(X)

d<-dist(X) # (euclidean) distance matrix

h.ward<-hclust(d,method="ward.D2")

h.ward$height

sum(h.ward$height**2)/2

SSQt=var(X)*(N-1)

plot(h.ward, hang=-1)

136 / 177

Ward’s clustering method - summary

Pros

Tend to form hyperspherical shape clusters, with
approximately the same number of elements each (balanced)

No crossovers

It is regarded by some authors as a natural hierarchical
method to be used with the factorial analysis, such as, PCA,
MCA (multiple correspondence analysis), etc, since it seeks to
optimize the same variance criterion

The sum of all dendrogram heights is equal to 2× SSQt .

Cons

Computationally intensive

Cannot detect arbitrary cluster shapes

Sensitive to outliers since it uses centroids

137 / 177

Cophenetic distances

The cophenetic distance between two individuals x and y with respect to
a given HAC is the merging cost at which x and y become members of
the same cluster, during the course of the hierarchical clustering.

Any dendrogram can be represented by its matrix of cophenetic distances
up to permutation of the order of the leaves. This matrix can be used to
compare distinct classifications

a b c d e f
objects

fusion cost

1.3

0.9
0.7

0.5

0.3




a b c d e
b 0.7 · · · ·
c 0.7 0.3 · · ·
d 0.9 0.9 0.9 · ·
e 1.3 1.3 1.3 1.3 ·
f 1.3 1.3 1.3 1.3 0.5




Two elements x, y belong to the same cluster of a partition obtained
cutting the dendrogram at height τ if and only if their cophenetic
distance is less than τ

138 / 177

Distortion measures - Cophenetic Pearson’s Coefficient

The cophenetic Pearson’s correlation coefficient (CPCC) is Pearson’s
correlation between the original distances (dij), i < j , and the cophenetic
distances (cij), i < j , (using half of the proximity matrix), i.e.,

CPCC =
cov(D,C)

sDsC
=

∑
i<j(dij − d̄)(cij − c̄)√∑

i<j(dij − d̄)2
√∑

i<j(cij − c̄)2

CPCC is considered an internal validation criterion for hierarchical
clustering that can be used to evaluate and compare different
hierarchical clustering methods, although should be used with
caution

A high value of the CPCC means that the cophenetic distances are
a good portray of the original distances

The cophenetic correlation usually ranges between 0.6 and 0.95.

Cophenetic correlations between 0.7 and 0.8 are considered
reasonable good, between 0.8 and 0.9 good and above 0.9 very
good.

139 / 177

Distortion measures - Cophenetic Spearman’s Coefficient

Another distortion measure is the cophenetic Spearman’s rank order
correlation coefficient (CSCC), which only depends on the ranks of the
variables and corresponds to Pearson’s correlation coefficient between the
respective ranked variables rk(C) = (c ′ij) and rk(D) = (d ′

ij) defined by
the vectors of original and cophenetic distances,

CSCC =
cov(rk(D), rk(C))

srk(D)srk(C)
=

∑
i<j(d

′
ij − d̄)(c ′ij − c̄ ′)√∑

i<j(d
′
ij − d̄ ′)2

√∑
i<j(c

′
ij − c̄ ′)2

.

Unlike the Pearson correlation coefficient, Spearman’s rank order
correlation coefficient can be applied to compare original and
cophenetic dissimilarities even if no linear relation between both
dissimilarities exists

A Spearman’s rank order correlation close to 1 means that we have
a strong correlation between the ranks of original and the ranks of
the cophenetic distances, suggesting monotonic relationship between
the original distances and the corresponding cophenetic distances

140 / 177

Cophenetic correlations of example of slide 97

The original dij distances of the example of slide 97 and the corresponding
cophenetic distances cij for the single, complete and avarage methods are




dij a b c d e
b 0.7 · · · ·
c 1 0.3 · · ·
d 1.8 1.3 0.9 · ·
e 2.9 2.4 1.9 1.3 ·
f 3.4 2.8 2.4 1.7 5







csij a b c d e

b 0.7 · · · ·
c 0.7 0.3 · · ·
d 0.9 0.9 0.9 · ·
e 1.3 1.3 1.3 1.3 ·
f 1.3 1.3 1.3 1.3 0.5




Computing the cophenetic Pearson and Spearman correlation coefficients
we obtain,

CPCC = r(dij , cij) = 0.82, CSCC = r(rk(dij), rk(cij)) = 0.84

141 / 177

HAC - summary

Pros

The number of clusters does not need to be defined a priori

Many methods rely on a proximity matrix allowing almost any kind of
resemblance notion

Cons

The aggregation of a point in a group at a given step cannot be revised, even if
the point is misplaced in that group

Computationally demanding for large datasets since keeps track of a square
matrix of order n (number of individuals): the time and space complexity of
most algorithms are not better than O(n2 log(n))

Dendrogram difficult to visualize and interpret for large datasets

Most HAC algorithms are greedy and produce suboptimal solutions

The average and Ward methods are often considered among the best overall HAC
methods

142 / 177

Nonhierarchical clustering

To find a single partition into K clusters of a set of N objects in a p
dimensional space. Two types of criteria are commonly found:

Global criterion such as to represent each cluster by a type-object
(e.g., centroid, medoid) and to assign each object to the nearest
type-object, optimizing some global criterion of internal
homogeneity and/or external heterogeneity, such as, minimizing the
within cluster inertia

Usually requires a prior estimate of the number of clusters

Examples: k-means and k-medoids (PAM) algorithms

Local criterion such as to seek for regions of higher density in data.
May require to set some parameters

Example: DBSCAN

143 / 177

k-means

Shares the same global criterion with Ward’s method:

To minimize the total within-clusters sum of squares (SSQw) of a set of
points partitioned into K clusters in a d-dimensional space

Algorithm (Lloyd)

1 Starts with K randomly chosen initial seeds representing initial
candidates to centroids;

2 Assigns each object to the nearest centroid

3 Recomputes the centroids of the K groups and use them as the new
seeds

4 Repeat the steps 2 and 3 until no new reassignments occur (in
pratice, until the differences between the old seeds and the new
recomputed seeds are below a given tolerance threshold)

144 / 177

k-means algorithm

no new assignments are required
the algorithm stops the solution corresponds to a (local) minimum

among the original points

INITIAL CONFIGURATION WITH 2 SEEDSA

k = 2 centroids (seeds) are randomly chosen

B

each point is assigned to the nearest seed

F

points are re-assigned to the nearest recomputed centroids

re-assign

SSQw = 70

new centroids and the SSQw are recomputed

SSQw = 32 + 38 = 70

G

new centroids and the SSQw are recomputed

E
SSQw = 22 + 64 = 86

H

SSQw = 32
3
+ 320

3
� 117.3

C

the new centroids of the 2 clusters

and the SSQw statistic are recomputed

D

points are re-assigned to the nearest recomputed centroids

re-assign

FINAL CLUSTERS CONFIGURATION

I

145 / 177

Convergence of the k-means algorithm

The k-means algorithm consists essentially of a sequence of two steps
that are repeatedly iterated:

Reassignment of the points of X to the closest centroid - this step

clearly lowers the statistic SSQw =
K∑

k=1

∑
x∈Ck

‖x −mk‖2

Recalculation of the centroids of the K groups to use as the new
seeds - this step also lowers the SSQw statistic, since it is a well
known fact that the minimum of the quadratic function

f (y) =
∑
x∈G

‖x − y‖2,

with G a finite subset of Rd , is attained at the centroid of G , i.e.,
when y = mG

Since there are only finite number of partitions of X into K clusters, the
algorithm cannot continue indefinitely strictly lowering the SSQw statistic
and therefore has to converge to a (possibly local) minimum

146 / 177

k-means: local minimum problem

The clustering solution can be highly depend on the choice of the
initial position of the centroids (seeds) and may converge to a local
minimum

overall minimum

SSQw

partitions into K clusters

local minimums

(suboptimal solution)

(optimal solution)

147 / 177

Example

The solution found by the k-means algorithm in the previous example is
not a global minimum. Actually, with new seeds the algorithm can
converge to a solution that improves (i.e., lowers) the SSQw statistic

SSQw = 56 + 16
3
� 61.3

k = 2 centroids (seeds) are randomly chosen

among the original points

INITIAL CONFIGURATION WITH 2 SEEDSA B

DC

new centroids of the 2 clusters and the SSQw are recomputed no new re-assignments occur - the algorithm stops

FINAL CLUSTERS

SSQw � 61.3

the points are assigned to the nearest centroids

148 / 177

Possible strategies to improve the local minimum?

To repeat the algorithm several times with randomized sets of
K seed points and keep the configuration giving the smallest
SSQw value of the within-cluster inertia

To provide an initial configuration of K seed points close to
the final solution relying on some real hypothesis

To provide an initial configuration of seed points issued from
some hierarchical aggregation method (e.g., Ward), using for
instance, their clusters centroids - this is sometimes called the
consolidation of the hierarchical clustering

149 / 177

k-means in the plane and the Voronoi diagram

Given a set of N points in the plane,

{c1, . . . , cK}

the Voronoi diagram is defined as the partition of the plane into K
convex regions, called Voronoi cells,

R1, . . . ,RK

such that each cell Ri consists of the set points of the plane closest to ci

In each step of the k-means algorithm each cluster corresponds to the set
of points of X belonging to one of the Voronoi cells defined be the K
centroids c1,. . . , cK , which is called Lloyd’s algorithm or Voronoi iteration

The above construction can generalized to a set of K points in the
N-dimensional space

150 / 177

The Voronoi partition and its centroids

The partition below into 6 clusters was obtained applying the k-means
algorithm to a highly dense set of points in the plane with 6 seeds, to give
an approximated idea of the Voronoi cells defined by the final centroids

Each cluster arising from a k-means clustering algorithm lies inside the
Voronoi cell containing the respective cluster centroid.
In particular, the convex hulls of the clusters don’t overlap, i.e., each pair
of clusters can be linearly separated.

151 / 177

Computing k-means with R

The k-means clustering can be performed using the R function

kmeans(x, centers, iter.max = 10, nstart = 1, . . .)

x: numeric matrix of data

centers: the number of clusters or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) rows in x is chosen as the initial centres

nstart: if centers is a number, how many random sets should be chosen (repeat)
Returns a list with components:

cluster: A vector of integers (from 1:k) indicating the number of the cluster where
each point is assigned

centers: A matrix of cluster centers.

totss: The total sum of squares, i.e., SSQt

withinss: Vector of within-cluster sum of squares, one component per cluster

tot.withinss: Total within-cluster sum of squares, i.e., SSQw

betweenss:The between-cluster sum of squares, i.e., SSQb

size: The number of points in each cluster

152 / 177

Example

R

require(datasets)

data(cars)

?cars

head(cars)

cars.cl<-kmeans(cars, 3, nstart=100)

3 centers randomly chosen repeated 100 times

cars.cl

plot(cars,type=‘‘p’’,pch=16,cex=.5)

for(i in 1:50){points(cars[i,1],
cars[i,2],col=cars.cl$cluster[i], pch=16,type=‘‘p’’)}

153 / 177

Clustering result

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

154 / 177

k-means: summary

The optimizing function SSQw is always monotonic decreasing, i.e.,
the intra-group inertia decreases in each step, converging to some
(possibly local) optimum

The number of iterations required to converge is usually small (≈ 10
iterations are enough)

Finding an optimal solution is NP-hard. Actually the time
complexity is O(ndK+1 ln d), where K denotes the number of
clusters, d the dimension and N the number of points)

It tends to form rounded shaped clusters that can be linearly
separated (since each cluster is contained in a Voronoi cell).

In particular, it cannot detect arbitrarily shaped clusters

Nearby points can end in distinct classes. Groups can end empty

Sensitive to noise and outliers

Requires some geometric notion of centroid. In particular, it cannot
be applied to categorical data assumes that the points lie in some
euclidean space

155 / 177

The model-based clustering as a generalization of k-means

The standard model-based clustering is a finite mixture of multivariate
Gaussians, i.e., it is assumed that each cluster Ci is generated by a multivariate
Gaussian distribution with pdf

φ(x |µi ,Σi)

where µi and Σi are the mean and covariance matrix of Ci

One seeks a partition of X into clusters Ci and a mixture of Gaussians with pdf
given by a convex combination of the form

φ =
∑
i

ηiφ(x |µi ,Σi),

with nonnegative weights ηi , i = 1, . . . ,K , such that
∑

i ηi = 1. To determine
the parameters uses the so-called expectation-maximization algorithm

In the model-based clustering the partition can have clusters with different
covariance matrices i.e., with distinct ellipsoidal shapes, volumes and
orientations, that account with distinct weights to the pdf of the finite mixture

The k-means clustering can be considered a particular case of the model-based

clustering, with all weights ηi equal to
1

K
and identical isotropic covariance

matrices Σi = σ2I (I denotes the identity matrix).

156 / 177

Best number of clusters and internal cluster quality

To estimate the optimal number of clusters we usually look for a good trade-off
between a relatively small number of clusters (parsimony principle) and the
minimization of the information (variability) loss due to replacing the
observations in each cluster by some cluster representative
(for instance, the cluster centroid).

This is one of the most difficult tasks in clustering analysis and no definitive
answer can usually be given.

Several internal cluster validity indices can be used to estimate the optimal
number of clusters and/or to assess the cluster quality. Among the most
well-known indices we have:

SSQw .
Calinski-Harabasz index.
Silhouette coefficient.
Davies-Boudin.
Duhn index.
Several other indices can be computed with the R functions clustCrit
and NbClust.

For a more detailed account on validity indices, See, for instance, O. Arbelaitz et al.
An extensive comparative study of cluster validity indices, Pattern Recognition 46
(2013) 243–256

157 / 177

Scree plot of SSQw statistic

A simple method to estimate the best number of clusters consists to study the
variation of SSQw with number of clusters in a scree plot, which essentially
amounts, by Huygens’s theorem, to study the variation of the percentage of

total inertia retained by the clusters, i.e., explained by the partition, SSQb
SSQt

An elbow point in the scree plot indicating high decrease in the SSQw statistic
while further increments in the number of clusters will only marginally improves
this statistic, could suggest a good estimate for the optimal number of clusters

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

data set

x[,1]

x[
,2

]

Although the statistic SSQw depends on the number of clusters, it can be used
to compare partitions of a given dataset X with the same number of clusters.
Partitions yielding smaller SSQw values are preferable for this criterion.

158 / 177

Calinski-Harabaz index

The Calinski-Harabaz index also known as variance ratio criterion is defined as

CH(K) =
SSQb/(K − 1)

SSQw /(N − K)

with the optimal number of clusters being estimated as the number yielding the
largest value for CH(K). (Inspired in the F -ratio test of one-way ANOVA)

Since we have

CH(K) =
SSQb/(K − 1)

SSQw/(N − K)
=

N − K

K − 1
× SSQb

SSQw

=
N − 1 + 1− K

K − 1
× SSQb

SSQw
=

(
N − 1

K − 1
− 1

)
SSQb

SSQw
,

high values of CH(K) are obtained with well separated and homogeneous
clusters, i.e., with large values of SSQb and small values of SSQw , keeping at the
same time, the number of clusters K relatively small, i.e., N−1

K−1
relatively large.

Particularly well adapted when clusters tend to have spherical shapes due to its
definition based on the variance

Several studies suggest Calinski-Harabaz index as being one of the internal
cluster validity indices yielding the best results - see, for instance one of the
reference papers on internal cluster validation,
Milligan GW, Cooper MC (1985) An Examination of Procedures for
Determining the Number of Clusters in a Data Set. Psychometrika 50:159–179.

Can be computed using the R function calinhara of the package fpc

159 / 177

Silhouette coefficient

For each observation i we compute the average dissimilarity a(i)
between i and the remaining points in its cluster

For each one of the other clusters we compute the average
dissimilarity from point i to the points of that cluster and take the
minimum b(i) of these average dissimilarities

The cluster for which the minimum b(i) is attained, i.e., the cluster
with lowest average dissimilarity w.r.t to observation i , is called the
neighbor cluster of i

i

neghbor cluster

b(i)
a(i)

The silhouette coefficient of observation i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
and gives an indication of how well an element is classified in its cluster

160 / 177

Interpretation of silhouette coefficients

The denominator max{a(i), b(i)} is a normalization term
allowing that the index vary in the range [−1, 1]

Small values of a(i) along with large values of b(i) yield a
silhouette coefficient close to one

Likewise, large values of a(i) along with small values of b(i)
yield a silhouette coefficient close to minus one

Observations with silhouette coefficients close to one are very
well classified

Observations with silhouette coefficients close to zero
probably lie between clusters

Observations with negative silhouette coefficients are probably
misplaced in their clusters

161 / 177

Silhouette plot

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = clus, dist =

Average silhouette width : 0.49

n = 760 3 clusters Cj
j : nj | avei∈Cj si

1 : 205 | 0.62

2 : 264 | 0.49

3 : 291 | 0.41

In the figure on the right the dot sizes are proportional to their silhouette
coefficients. Larger dots lie in core regions of the clusters whereas smaller
dots lie in border regions or between clusters

162 / 177

Average silhouette width - an internal validity criterion

The average silhouette width (ASW) is defined as the average of the silhouette
coefficients for all observations

It assess both cluster cohesion and cluster separation

It increases with a strong cluster separation (higher b(i) values) and cluster
tightness (small values of a(i))

Range of ASW
It is common to consider that

between 0.71 and 1.0: a strong structure has been found

between 0.5 and 0.7: a reasonable structure has been found

between 0.26 and 0.5: the structure is weak and can be artificial

below 0.25: no substantial structure has been found

The optimal number of clusters can be estimated maximizing the ASW

A closely related internal validation criterion is Davies-Bouldin index

DB =
1

K

K∑
i=1

max
j �=i

Si + Sj

mij

Here Si denotes some internal cohesion measure of cluster Ci and mij a separation
measure between clusters Ci and Cj , verifying certain properties...
For instance, Si can be the average distance of the points of Ci to its centroid and mij

the distance between the centroids of Ci and Cj

163 / 177

Number of clusters?

Applying the criteria SSQW statistic, ASW and CH to the Ruspini data,
a popular dataset in clustering analysis, all criteria agree on 4 clusters

2 4 6 8 10

20
00

0
60

00
0

SSQw

2:10

S
S

Q
w

[2
:1

0]

2 4 6 8 10

0.
50

0.
60

0.
70

silhouette

number of clusters

A
S

W
[2

:1
0]

2 4 6 8 10

15
0

25
0

35
0

variance ratio criterion

2:10

V
R

C
[2

:1
0]

164 / 177

An (internal) cluster validity criterion

The average of the silhouette widths of the previous example is close to
.75 suggesting that a strong clustering structure was found in Ruspini
data. Since all silhouette coefficients are above .4 no points are
misplaced in their clusters

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = clus, dist =

Average silhouette width : 0.74

n = 75 4 clusters Cj
j : nj | avei∈Cj si

1 : 23 | 0.75

2 : 20 | 0.73

3 : 17 | 0.67

4 : 15 | 0.80

165 / 177

Ruspini plot into 4 clusters using the k-means algorithm

0 20 40 60 80 100 120

0
50

10
0

15
0

166 / 177

Ruspini plot into 4 clusters using the k-means algorithm

R (code)

library(cluster)

ch.res<-rep(NA,10)

si.res<-rep(NA,10)

ssqw.res<-rep(NA,10)

plot(ruspini)

for (n in 2:10){
km <- kmeans(ruspini,n,nstart=500)

ch.res[n]<-round(calinhara(ruspini,km$cluster),digits=2)

si.res[n]<-mean(silhouette(km$cluster,dist(ruspini))[,3])

ssqw.res[n]<-km$tot.withinss

ssqw.res[n]<-km$betweenss/km$tot.withinss

}
par(mfrow=c(2,2))

plot(ssqw.res,type="b",col="black",main="SSQw")

plot(si.res,type="b",col="blue",main="SIL")

plot(ch.res,type="b",col="red",main="CH")

km <- kmeans(ruspini,4,nstart=500)

plot(ruspini, col=km$cluster)
167 / 177

External cluster validation

COMPARING PARTITIONS

168 / 177

Motivation

Several clustering analyses of the same data can be done using
distinct meaningful combinations of clustering methods and
resemblance notions;

Clustering analyses having a high degree of agreement may suggest
that the common patterns produced by these methods is robust;

If the clustering structure is known a priori and it is important to
assess how well the clustering method was able to reproduce this
structure;

It is very difficult (if not impossible or meaningless) to match each
cluster of a partition with the correct cluster of the other partition

The usual way is to compute the number of pairs of individuals that
both clustering methods agree to assign in the same/distinct class

169 / 177

Rand index

Assume that N individuals are classified by two distinct clustering methods. The

total number of pairs of individuals is
(N
2

)
= N(N−1)

2
. Denote by:

A: number of pairs classified in the same class in both partitions

B: number of pairs classified in the same [distinct] class in the first [second]
partition

C : number of pairs classified in the distinct [same] class in the first [second]
partition

D: number of pairs classified in distinct classes in both partitions

The above quantities can be represented in a contingency table as follows:

Part. 2
Classif. in the Classif. in

Part. 1 same group distinct groups
Classif. in the same group A B A+B
Classif. in distinct groups C D C+D

A+C B+D
(N
2

)

170 / 177

Rand index

Rand index (RI) is a simple concordance index used as an external
validity index to compare partitions and is defined as,

RI =
A+ D(

N
2

) =
A+ D

A+ B + C + D
,

where A+D is the number of agreements for both partitions

It ranges from 0 (total disagreement) to 1 (total agreement)

To each partition of a set of N individuals, x1, . . . , xN we associate a
binary vector of length

(
N
2

)
, where the component corresponding to

pair (i , j) is equal 1 if xi and xj are assigned in the same class and 0
otherwise

The Rand index of two partitions is just the simple matching index
between the binary vectors associated to these partitions

Note that the number of groups in each partition can be distinct

171 / 177

Rand index: example

X = {a, b, c , d , e, f }
Partition 1: a b e | c | d f Partition 2: a c | b d | e f




a b c d e
b 1 · · · ·
c 0 0 · · ·
d 0 0 0 · ·
e 1 1 0 0 ·
f 0 0 0 1 0







a b c d e
b 0 · · · ·
c 1 0 · · ·
d 0 1 0 · ·
e 0 0 0 0 ·
f 0 0 0 0 1




The contingency table between partition 1 and partition 2 is

1 0
1 A B A+ B
0 C D C + D

A+ C B + D
(
N
2

) =

1 0
1 0 4 4
0 3 8 11

3 12 15

Hence

RI =
0+ 8

15
= 0.53333 . . .

172 / 177

Computing the Rand index in R

To compute the Rand index of the two partitions in 3 classes,

P1 : a b e | c | d f P1 : a c | b d | e f ,

we encoded these partitions as vectors

(1, 1, 2, 3, 1, 3), (1, 2, 1, 2, 3, 3),

representing the classes of the elements a,b, c, d, e, f

R (Rand index)

Codigo da funcao do Professor Cadima

rand <- function(class1,class2){
n <- length(class1)

c <- as.dist(outer(class1,class1,"=="))

d <- as.dist(outer(class2,class2,"=="))

rand <- sum(c == d)/(n*(n-1)/2)

return(rand) }
rand(c(1,1,2,3,1,3),c(1,2,1,2,3,3))

0.5333333

2 random samples of length 1000 with elements extracted from 1,...,10

p1<-sample(1:10,1000,replace=TRUE)

p2<-sample(1:10,1000,replace=TRUE)

rand(p1,p2)

0.8196997

173 / 177

Correction for chance: adjusted Rand index

The expected value of Rand index between random partitions is not constant (e.g., 0).
To overcome this issue Hubert and Arabie proposed the so-called adjusted Rand index

ARI =
RI − E [RI]

max(RI)− E [RI]
=

RI − E [RI]

1− E [RI]
,

assuming the Permutation Model as the null model for random clusterings i.e., each
partition Pi , i = 1, 2, is drawn at random, subject to having a prescribed number of
classes Ki and a prescribed number of elements Ni,j in each class j = 1, . . . ,Ki .

It can be proved that,

E [RI] =
2Q1 Q2 −

(N
2

)
(Q1 +Q2) +

(N
2

)
(N
2

)2 ,

where Qi =
∑Ki

j=1

(Nij
2

)
, i = 1, 2, yielding

ARI =

(N
2

)
(A+D)− U(N
2

)2 − U
,

where U = (A+ B)(A + C) + (D + B)(D + C) and
(N
2

)
=

N(N−1)
2

.

ARI ∈ [−1, 1] with ARI ≈ 0 for independent random partitions, ARI = 1 for identical
partitions and ARI < 0 if the partitions have a low agreement.

More difficult to interpret than the more simple Rand index

174 / 177

Computing the adjusted Rand index

Consider the two partitions in 3 classes of slide 141,

P1 : a b e | c | d f P2 : a c | b d | e f ,

By the results of slide 141, we have U = (A+ B)(A + C) + (D + B)(D + C) = 144,(N
2

)
= A+ B + C + D = N(N+1)

2
= 15 and we therefore we get

ARI =

(N
2

)
(A+ D)− U(N

2

)− U
= −0.2962963

We can recompute this index using the adjustedRandIndex function of the mclust
package. In order to accomplish that we consider the vectors v1 e v2 representing the
classes of the elements a, b, c, d, e, f , in the two partitions, P1 and P2, that is,

v1 = (1, 1, 2, 3, 1, 3), v2 = (1, 2, 1, 2, 3, 3)

R (Adjusted rand index)

require(mclust)

with the partitions above we get,

adjustedRandIndex(c(1,1,2,3,1,3),c(1,2,1,2,3,3))= -0.2962963

with the same random samples of slide 142 we get,

adjustedRandIndex(p1,p2)=0.0002526569 ≈ 0 as intended :)

175 / 177

