1 MATRICES AND LINEAR ALGEBRA

Exercises - Modelos Matematicos e Aplicacoes
Introduction to Multivariate Statistics - 2020-21

Note: The datasets for some of this Module’s exercises can be found on the course webpage (Section
Materiais de Apoio, Mddulo III. The datasets are in a file called dadosMulti.RData (the extension
indicates that this file may be loaded into an R session, with the command load). The file contains
the following data frames: santarem (Exercise 7), brix2 (Exercise 8), trigo (Exercise 10), kendall
(Exercise 11), adelges (Exercise 12), lobos (Exercise 13) e diday (Exercise 15). The file also contains
the data frame lavagantes, with the dataset discussed in the slides.

1 Matrices and Linear Algebra

1

1. Consider the linear space R2. Let M be a subspace of R? spanned by vector 0

} Let N be the
subspace of R? spanned by vector [ 1 ] .

(a) Characterize the vectors that are in subspace M.
(b) What is the orthogonal projection of the vector [ (cj ] onto the subspace M?
(c) Characterize the vectors of subspace N.

1 } onto the subspace N7

(d) What is the orthogonal projection of vector [ 0

2. Consider the space R™ with its usual inner product < %, ¥ >= X'y.

(a) Characterize the vectors in R™ that are orthogonal to the vector of n ones, 1,,.

ssociate the points/vectors in with sets of n observations on a given variable. om

b) A iate th int tors in R™ with sets of b ti gi iable. Fr
a statistical point of view, how can the elements of the subspace described in the previous
question be interpreted?

3. Let ¥ € R™ be the vector representation of n observations of a given variable. Let y° € R™ be the
corresponding centred vector.

(a) Discuss the effect of a translation of the origin in the units of measurement of the variable
(that is, y; — a + y;) on the vectors ¥ and y°.
b) Discuss the effect of a multiplicative change of scale (y; — by;, Vi) on the vectors ¥ and y°.
g
(c) Discuss the effect of a linear transformation y; — a + by;, Vi, on the vectors ¥ and y*°.

Now consider a second vector X € R™ representing observations of a new variable on the same n
individuals. Let X¢ be the corresponding centred vector.

(d) Discuss the effect of different linear trasformations of the two variables (x; — a + bx; and
yi — ¢+ dy;, Vi) on the vectors that represent them in R™. Discuss the influence of those
transformations on the statistical indicators covariance and correlation coefficient.
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2 PRINCIPAL COMPONENT ANALYSIS

4. Consider the matrices X'X and XX*, where X is an n x p matrix. Confirm that, if \; # 0 is
an eigenvalue of X'X, with corresponding eigenvector ¢;, then X¢; is an eigenvector of matrix
XX!, with the same eigenvalue. Conversely, if \; # 0 is an eigenvalue XX' with corresponding

eigenvector by, then X'b; is an eigenvector of X'X, witht the same eigenvalue.

5. Use the Singular Value Decomposition of a matrix Y, given by:
T
Y = 6wV
i=1
to show that if w; is a left singular vector associated with the singular value ¢; and V; is the
corresponding right singular vector, then:
6. Consider a matrix B and the matrix of orthogonal projections onto the subspace spanned by the

columns of B, Pp = B(B!B) !B!. Using the Singular Value Decomposition of matrix B, find an
alternative expression for matrix Pz. Comment.

2 Principal Component Analysis

7. In the 1973 Agricultural Statistics (Estatisticas Agricolas) of Portugal’s National Statistics Board
(Instituto Nacional de Estatistica, INE), productivities (in t/ha) of 9 agricultural products are given
for each of the 20 municipalities of the Santarém distrcit. The data are shown below, and can be
found in the santarem data frame, whch is available on the course website, in file dadosACP.RData.

Municipality Wheat  Maize Rye Oats Barley = Broadbean  Beans  Chickpea  Potato
(trigo)  (milho) (centeio) (aveia) (cevada) (fava) (feijao) (grao) (batata)
Abrantes 1.041 0.541 0.515 0.595 0.402 0.672 0.327 0.423 7.437
Alcanena 0.887 1.697 0.700 1.051 0.630 0.631 0.517 0.618 10.317
Almeirim 1.013 0.431 0.545 0.511 0.374 0.696 0.376 0.495 7.389
Alpiarca 1.293 1.803 0.891 0.413 1.094 0.591 0.518 0.500 17.678
Benavente 1.559 1.949 0.669 1.053 1.029 0.628 0.346 0.614 8.290
Cartaxo 0.925 1.600 0.544 0.696 0.460 0.657 0.352 0.469 9.071
Chamusca 1.103 3.144 0.379 0.321 0.423 0.542 0.543 0.442 17.199
Constancia 1.516 0.524 0.321 0.562 0.571 0.474 0.381 0.485 11.271
Coruche 1.443 0.483 0.605 0.698 1.250 0.742 0.229 0.371 19.160
Entroncamento | 1.023 4.120 0.716 0.621 0.707 1.057 0.533 0.700 20.600
F.do Zézere 0.981 2.413 0.305 0.773 1.048 0.696 0.524 0.602 9.889
Golega 1.223 3.777 0.646 0.330 0.763 0.763 0.672 0.311 8.113
Macao 0.839 0.772 0.306 0.362 0.260 0.600 0.293 0.420 8.468
Rio Maior 0.809 1.153 0.927 0.694 0.707 1777 0.417 0.433 7.060
Salvaterra 1.509 1.100 1.034 0.697 1.582 1.138 0.636 0.516 10.791
Santarém 0.712 1.342 1.145 0.457 0.686 0.982 0.616 0.426 14.135
Sardoal 0.780 0.463 0.326 0.414 0.435 0.822 0.383 0.396 10.078
Tomar 1.000 1.928 0.430 0.863 1.080 0.913 0.404 0.687 9.320
Torres Novas 1.262 2.453 0.716 0.971 0.885 0.928 0.512 0.664 21.100
V.N.Barquinha | 0.917 1.081 0.811 1.000 0.909 0.967 0.620 0.667 18.347

Here is the variance-covariance matrix for this dataset:
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2 PRINCIPAL COMPONENT ANALYSIS

> round(var(santarem), d=3)

trigo
milho
centeio
aveia
cevada
fava
feijao
grao
batata

trigo milho centeio aveia cevada fava feijao grao batata

0.069 0.016 0.002 0.010 0.050 -0.021 -0.002 0.001 0.236
0.016 1.198 0.017 -0.006 0.040 0.009 0.076 0.038 1.735
0.002 0.017 0.062 0.011 0.039 0.041 0.016 0.002 0.308
0.010 -0.006 0.011 0.057 0.034 0.012 -0.001 0.020 0.106
0.050 0.040 0.039 0.034 0.117 0.026 0.013 0.012 0.470
-0.021 0.009 0.041 0.012 0.026 0.084 0.009 0.003 -0.003
-0.002 0.076 0.016 -0.001 0.013 0.009 0.016 0.003 0.167
0.001 0.038 0.002 0.020 0.012 0.003 0.003 0.013 0.184
0.236 1.735 0.308 0.106 0.470 -0.003 0.167 0.184 23.531

(a) Consider a Principal Component Analysis on the covariance matrix of the data (that is, on
the dataset in its original units).

i
ii.

iii.

iv.

vi.

Discuss the quality of the dimensionality reduction which can be achieved with PCA.

Based on the results produced by the prcomp command, draw the 20-point scatterplot
showing the municipalities on the plane defined by the first two principal components.
Identify the 7 municipalities that appear on the right half of the plot. Also, identify the
point that appears, by itself, in the top left corner.

Calculate, using R, the coefficients of linear correlation between PC 1 and each of the
nine original variables. Confirm the values of the three correlation coefficients between
the first proncipal component and the variables batata (potato), fava (broadbeans) and
milho (maize), using the formula shown in the slides. Repeat for the second principal
component. Discuss.

Try to interpret the nature of the first two principal components. Justify your reply.

. Build the correspnding biplot and discuss it.

Critically assess the Principal Components Analysis (PCA) that you carried out, discussing
in particular the decision to use a covariance-matrix PCA.

(b) Now carry out a Principal Component Analysis of the normalized data, that is, based on the
correlation matrix.

i

ii.

iii.

. Discuss the quality of the reduction in dimensionality that can be obtained by a correlation-

matrix PCA. Comment it, also taking into account the results of the PCA on the original
data.

Calculate the correlation coefficients between each of the original variables and each of
the PCs that were now obtained. Is it necessary to standardize the variables in order to
compute these correlation coefficients?

Draw the relevant biplot and discuss it. In particular, try to interpret the nature of the
first two principal components of the normalized data.

(c) Answer the following question by a user: “which of the PCA variants should I use in this
case’?

8. In a study of greenhouse raspberries, 7 variables characterizing the properties of picked fruits were
observed. Specifically, raspberries were collected from 14 different plants and their mean value for
each plant were recorded, for the following variables: Diametro (diameter), Altura (height), Peso
(weight), Brix, pH, a different measure of acidity, which will be called Acidez, and Acucar (sugar
content). The resulting values are given in the data frame brix2 (the dataset was already studied
in Module II, but there is now the new variable Acidez):
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2 PRINCIPAL COMPONENT ANALYSIS

(a)
(b)

Plant | Diametro Altura Peso Brix pH Acidez Acucar
1 2.0 2.1 3.71 8.4 2.78 1.39 5.12
2 2.1 2.0 3.79 8.4 2.84 1.49 5.40
3 2.0 1.7 3.65 8.7 2.89 1.51 5.38
4 2.0 1.8 3.83 8.6 2.91 1.44 5.23
5 1.8 1.8 3.95 8.0 2.84 1.62 3.44
6 2.0 1.9 4.18 8.2 3.00 1.74 3.42
7 2.1 2.2 4.37 8.1 3.00 1.68 3.48
8 1.8 1.9 3.97 8.0 2.96 1.57 3.34
9 1.8 1.8 3.43 8.2 2.75 1.46 2.02
10 1.9 1.9 3.78 8.0 2.75 1.54 2.14
11 1.9 1.9 3.42 8.0 2.73 1.26 2.06
12 2.0 1.9 3.60 8.1 2.71 1.18 2.02
13 1.9 1.7 2.87 8.4 2.94 1.32 3.86
14 2.1 1.9 3.74 8.8 3.20 1.46 3.89

State, justifying your answer, whether a Principal Component Analysis on the covariance
matrix is suitable for this dataset.

State, justifying your answer, whether a Principal Component Analysis on the correlation
matrix provides a suitable two-dimensional representation of the data, without substantial
loss of information.

Regardless of your answers above, build a biplot for the data. Discuss it.

The 14 plants were not all observed on the same dates. The fruits from each plant were
collected on five different dates:

Date Plants
November 28 | 1,2,3,4
December 13 | 5,6,7,8
January 16 9,10,11,12
February 20 13

April 3 14

Are the different dates of collection reflected in the first principal plane of the standardized
data? In your reply, identify which points in the scatterplot are associated with each date.

If your reply to the previous question was ’yes’ state, with justification, whether it would
necessarily have to be the case that this sub-group structure is reflected in the firat principal
plane. If your answer was 'no’, state why such structure does not have to be reflected in the
first proncipal plane, given the optimizing properties of the first two principal components.

Now assume that a new plant’s raspeberries were observed, with the following mean values for
each (in order) variable: 1.9, 2.0, 3.92, 8.1, 2.91, 1.48, 3.78. If you wish to represent this new
observation on the first principal plane, what coordinates should it have? Justify your answer
and draw the new point on the first principal plane. Confirm your answer, using R’s predict
command, which also has a method for objects obtained resulting from PCAs obtained with
the prcomp command. This command is used in a similar way to the predict command for
linear, or generalized linear, models.

9. Consider the data for the production of corn in the US State of Iowa, already studied in Module
II, and which can be found in the data frame milho.

(a)

Which variant of PCA (covariance matrix or correlation matrix) do you consider suitable for
this dataset? Justify your reply.
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2 PRINCIPAL COMPONENT ANALYSIS

(b) How good is the dimensionality reduction provided by a PCA on the 10 standardized variables?
(c) Build a biplot for the correlation matrix PCA.

i. Comment the biplot, also taking into consideration the multiple linear regression submodel
that was chosen by all the subset selection methods, and which resulted in modelling y
based on the four predictors x1, x2, 6 and z9. Is it possible to make any comment
regarding this choice, based on the biplot?

ii. Comment the following statement: “The biplot suggests that variables x3 and x5 are
strongly correlated, but this conclusion is not confirmed by the correlation matriz between
the 10 variables”.

iii. Comment the following statement: “Since this was a correlation matric PCA, all the
vectors representing the centred variables should be of equal length. The fact that variable
x8 is represented in the biplot by a much shorter vector than all the rest suggests that this
variable is poorly represented on the plane defined by the first two standardized PCs”.

10. An old study carried out in Belgium (Berce e Wilbaux, 1935 Recherche Statistique des relations
existant entre le rendement des plantes de grandes cultures et les facteurs météorologiques en Bel-
gique. Bull. Inst. Agron. Stn. Rech. Gembloux, 4, 32-81), recorded p = 5 meteorological and
agronomical variables throughout n = 11 agricultural seasons. The five variables were:

x1  total rainfall in November and December (mm)
xo mean temperature in July (°C)

xs  total rainfall in July (mm)

x4 radiation in July (mm of alcohol)

x5 mean yield of durum wheat (quintals/ha)

The observed values were:

Season il iQ ig )_(’4 i5

1920-21 || 879 | 196 | 1.0 1661 | 28.37
1921-22 || 89.9 | 15.2 | 90.1 | 968 | 23.77
1922-23 || 153.0 | 19.7 | 56.6 | 1353 | 26.04
1923-24 || 132.1 | 17.0 | 91.0 | 1293 | 25.74
1924-25 || 88.8 | 183 | 93.7 | 1153 | 26.68
1925-26 || 220.9 | 17.8 | 106.9 | 1286 | 24.29
1926-27 || 117.7 | 17.8 | 65.5 | 1104 | 28.00
1927-28 || 109.0 | 18.3 | 41.8 | 1574 | 28.37
1928-29 || 156.1 | 17.8 | 57.4 | 1222 | 24.96
1929-30 || 181.5 | 16.8 | 140.6 | 902 | 21.66
1930-31 || 181.4 | 17.0 | 74.3 | 1150 | 24.37

(a) Carry out a correlation matrix Principal Component Analysis for this dataset, identifying the
five Principal Components.

(b) Build the best possible two-dimensional representation of the n = 11 point scatterplot in R®
for the data.

(c) Calculate the correlation coefficients between the first Principal Component and each of the
five original variables. Interpret your results.
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2 PRINCIPAL COMPONENT ANALYSIS

(d)

Some units of measurement are now outdated. The most frequent units of measurement for
yield are tons per hectare, which means that the values of variable x5 should be divided by 10.
On the other hand, the metric system units for radiation are M.Jm~2, which means that to
convert the values of variable x4 to these units, the following affine transformation is needed:
x; = —0.02960342 + 0.75518263 z4. How do these changes in units affect the replies to the
above questions? Confirm your answer using R.

11. Consider the following data set, discussed by Kendall (Multivariate Analysis, Charles Griffin & Co.,
1980, pg. 20), and with measurements for 20 soil samples:

(a)
(b)

Sample || Sand content | lime content | Clay content Organic Acidity

(%) (%) (%) matter (%) | (pH)
1 77.3 13.0 9.7 1.5 6.4
2 82.5 10.0 7.5 1.5 6.5
3 66.9 20.6 12.5 2.3 7.0
4 47.2 33.8 19.0 2.8 5.8
5 65.3 20.5 14.2 1.9 6.9
6 83.3 10.0 6.7 2.2 7.0
7 81.6 12.7 5.7 2.9 6.7
8 47.8 36.5 15.7 2.3 7.2
9 48.6 37.1 14.3 2.1 7.2
10 61.6 25.5 12.9 1.9 7.3
11 58.6 26.5 14.9 2.4 6.7
12 69.3 22.3 8.4 4.0 7.0
13 61.8 30.8 7.4 2.7 6.4
14 67.7 25.3 7.0 4.8 7.3
15 57.2 31.2 11.6 2.4 6.5
16 67.2 22.7 10.1 3.3 6.2
17 59.2 31.2 9.6 2.4 6.0
18 80.2 13.2 6.6 2.0 5.8
19 82.2 11.1 6.7 2.2 7.2
20 69.7 20.7 9.6 3.1 5.9

Carry out a covariance matrix Principal Component Analysis of the dataset. Explain the
existence of a zero eigenvalue and the nature of the corresponding eigenvector.

Build the biplot associated with the PCA on the standardized data. The relative positions
of the vectors representing the variables acidez and mat.org (organic matter) suggests that
these are two highly correlated variables. However, this fact is not confirmed by the correlation
matrix between the original variables. How can this apparent contradiction be explained?

Now drop the variable areia (sand content) from the data matrix. Repeat the covariance
matrix PCA.

i. Calculate the correlation coefficient between each Principal Component and each variable.

ii. Compare the values obtained with the variable loadings in the linear combinations defining
the PCs and note how the attept to interpret Principal Components only in terms of the
coefficients (loadings) may be misleading.

12. In a study of winged aphids Alate adelges ( D.F. Morrison, Multivariate Statistical Methods, p.477)
measurements of 19 variables were taken on 40 individuals. The 19 observed variables, as well as
the means and variances of the observed values were:
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2 PRINCIPAL COMPONENT ANALYSIS

Name Accronym | Description T 52
length COM body length 15.05 | 14.58
width LAR body width 7.14 4.05
forwing CAA fore-wing length 5.68 1.68
hinwing CAP hind-wing length 3.45 0.83
spirac E number of spiracles 4.88 0.11
antsegl AS1 length of antennal segment I 1.86 0.11
antseg?2 AS2 length of antennal segment II 1.69 0.11
antseg3 AS3 length of antennal segment 111 2.25 0.22
antseg4 AS4 length of antennal segment IV 2.33 0.15
antsegb ASH length of antennal segment V' 2.73 0.15
antspin S number of antennal spines 4.28 1.33
tarsus3 TAR leg length, tarsus III 3.31 0.41
tibia3 TIB leg length, tibia I11 3.38 0.58
femur3 FEM leg length femur III 2.57 0.34
rostrum ROS rostrum 5.58 0.79
ovipos OVI ovipositor 3.72 0.35
ovspin N number of ovipositor spines 7.80 3.81
fold P anal fold (no/yes - 0/1 variable) | 0.73 0.20
hooks GAP number of hind-wing hooks 2.38 0.25

These were the observations:

>
]

COM LAR CAA CAP E AS1 AS2 AS3 AS4 ASH S TAR TIB FEM ROS OVI N P G
21.2 11.0 7.5 4.8 5 2.0 2.0 2.8 2.8 3.3 3 4.4 4.5 3.6 7.0 4.0 8 0 3
20.2 10.0 7.5 5.0 5 2.3 2.1 3.0 3.0 3.2 5 4.2 4.5 3.5 7.6 4.2 8 0 3
20.2 10.0 7.0 4.6 5 1.9 2.1 3.0 2.5 3.3 1 4.2 4.4 3.3 7.0 4.0 6 0 3
22.5 8.8 7.4 4.7 5 2.4 2.1 3.0 2.7 3.5 5 4.2 4.4 3.6 6.8 4.1 6 0 3
20.6 11.0 8.0 4.8 5 2.4 2.0 2.9 2.7 3.0 4 4.2 4.7 3.5 6.7 4.0 6 0 3
19.1 9.2 7.0 4.5 5 1.8 1.9 2.8 3.0 3.2 5 4.1 4.3 3.3 5.7 3.8 8 0 3.
20.8 11.4 7.7 4.9 5 2.5 2.1 3.1 3.1 3.2 4 4.2 4.7 3.6 6.6 4.0 8 0 3
15.5 8.2 6.3 4.9 5 2.0 2.0 2.9 2.4 3.0 3 3.7 3.8 2.9 6.7 3.5 6 0 3.
16.7 8.8 6.4 4.5 5 2.1 1.9 2.8 2.7 3.1 3 3.7 3.8 2.8 6.1 3.7 8 0 3
19.7 9.9 8.2 4.7 5 2.2 2.0 3.0 3.0 3.1 0 4.1 4.3 3.3 6.0 3.8 8 0 3
10.6 5.2 3.9 2.3 4 1.2 1.0 2.0 2.0 2.2 6 2.5 2.5 2.0 4.5 2.7 4 1 2

9.2 4.5 3.7 2.2 4 1.3 1.2 2.0 1.6 2.1 5 2.4 2.3 1.8 4.1 2.4 4 1 2
9.6 4.5 3.6 2.3 4 1.3 1.0 1.9 1.7 2.2 4 2.4 2.3 1.7 4.0 2.3 4 1 2
8.5 4.0 3.8 2.2 4 1.3 1.1 1.9 2.0 2.1 5 2.4 2.4 1.9 4.4 2.3 4 1 2
11.0 4.7 4.2 2.3 4 1.2 1.0 1.9 2.0 2.2 4 2.5 2.5 2.0 4.5 2.6 4 1 2
18.1 8.2 5.9 3.5 5 1.9 1.9 1.9 2.7 2.8 4 3.5 3.8 2.9 6.0 4.5 9 1 2
17.6 8.3 6.0 3.8 5 2.0 1.9 2.0 2.2 2.9 3 3.5 3.6 2.8 5.7 4.3 10 1 2
19.2 6.6 6.2 3.4 5 2.0 1.8 2.2 2.3 2.8 4 3.5 3.4 2.5 5.3 3.8 10 1 2
15.4 7.6 7.1 3.4 5 2.0 1.9 2.5 2.5 2.9 4 3.3 3.6 2.7 6.0 4.2 8 1 3
15.1 7.3 6.2 3.8 5 2.0 1.8 2.1 2.4 2.5 4 3.7 3.7 2.8 6.4 4.3 10 1 2.
16.1 7.9 5.8 3.7 5 2.1 1.9 2.3 2.6 2.9 5 3.6 3.6 2.7 6.0 4.5 10 1 2
19.1 8.8 6.4 3.9 5 2.2 2.0 2.3 2.4 2.9 4 3.8 4.0 3.0 6.5 4.5 10 1 2.
15.3 6.4 5.3 3.3 5 1.7 1.6 2.0 2.2 2.5 5 3.4 3.4 2.6 5.4 4.0 10 1 2
14.8 8.1 6.2 3.7 5 2.2 2.0 2.2 2.4 3.2 5 3.5 3.7 2.7 6.0 4.1 10 1 2
16.2 7.7 6.9 3.7 5 2.0 1.8 2.3 2.4 2.8 4 3.8 3.7 2.7 5.7 4.2 10 1 2.
13.4 6.9 5.7 3.4 5 2.0 1.8 2.8 2.0 2.6 4 3.6 3.6 2.6 5.5 3.9 10 1 2
12.9 5.8 4.8 2.6 5 1.6 1.5 1.9 2.1 2.6 5 2.8 3.0 2.2 5.1 3.6 9 1 3
12.0 6.5 5.3 3.2 5 1.9 1.9 2.3 2.5 3.0 5 3.3 3.5 2.6 5.4 4.3 8 1 2
14.1 7.0 5.5 3.6 5 2.2 2.0 2.3 2.5 3.1 5 3.6 3.7 2.8 5.8 4.1 10 1 2
16.7 7.2 5.7 3.5 5 1.9 1.9 2.5 2.3 2.8 5 3.4 3.6 2.7 6.0 4.0 10 1 2.
14.1 5.4 5.0 3.0 5 1.7 1.6 1.8 2.5 2.4 5 2.7 2.9 2.2 5.3 3.6 8 1 2
10.0 6.0 4.2 2.5 5 1.6 1.4 1.4 2.0 2.7 6 2.8 2.5 1.8 4.8 3.4 8 1 2
11.4 4.5 4.4 2.7 5 1.8 1.5 1.9 1.7 2.5 5 2.7 2.5 1.9 4.7 3.7 8 1 2
12.5 5.5 4.7 2.3 5 1.8 1.4 1.8 2.2 2.4 4 2.8 2.6 2.0 5.1 3.7 8 0 2
13.0 5.3 4.7 2.3 5 1.6 1.4 1.8 1.8 2.5 4 2.7 2.7 2.1 5.0 3.6 8 1 2
12.4 5.2 4.4 2.6 5 1.6 1.4 1.8 2.2 2.2 5 2.7 2.5 2.0 5.0 3.2 6 1 2
12.0 5.4 4.9 3.0 5 1.7 1.5 1.7 1.9 2.4 5 2.7 2.7 2.0 4.2 3.7 6 1 2
10.7 5.6 4.5 2.8 5 1.8 1.4 1.8 2.2 2.4 4 2.7 2.6 2.0 5.0 3.5 8 1 2
11.7 5.5 4.3 2.6 5 1.7 1.5 1.8 1.9 2.4 5 2.6 2.5 1.9 4.6 3.4 8 1 2
12.8 5.7 4.8 2.8 5 1.6 1.4 1.7 1.9 2.3 5 2.3 2.5 1.9 5.0 3.1 8 1 2

@

@

@

o

o

@

(a) Briefly describe the main characteristics of the bundle of vectors representing the 19 centred,
but not standardized, variables in the space of variables, R4C.

(b) Carry out a correlation matrix Principal Component Analysis of the data.

i. Attempt to interpret the first three principal components, based on the available informa-
tion. Justify your comments.

ii. Do you consider a two-dimensional graphical representation adequate? Justify your reply.
Identify a variable whose representation on the first principal plane is not very good,
justifying your answer.
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3 DISCRIMINANT ANALYSIS

iii. The projected scatterplot of points on the plane defined by the first two principal compo-
nents seems to more or less clearly separate groups of individuals. Relate these groups to
the original variables and comment.

iv. Datasets with 19 variables for which a correlation matrix PCA explains such a high pro-
portion of total variance on the first 2 or 3 PCs are not frequent. How can this feature be
justified in the case of this dataset?

v. Critically assess this PCA, taking into account the nature of some of these 19 variables.
If you see some undesirable features, suggest alternatives.

3 Discriminant Analysis

13. The book by D.F. Morrison, Multivariate Statistical Methods (p.288), has data from a study in-
volving nine morphometric variables on the skulls of wolves (Canis lupus L.): palatal length (X;);
postpalatal length (X2); zygomatic width (X3); palatal width outside the first upper molars (X4);
palatal width inside the second upper premolars (X5); width between the postglenoid foramina
(X6); interorbital width (X7); least width of the braincase (Xs); crown length of the first upper
molar (Xo). All measurements are in mm. There are measurements for 25 individuals, who belong
to 4 groups: (1) 6 Rocky Mountain males; (2) 3 Rocky Mountain females; (3) 10 Arctic males; and
(4) 6 Arctic females. The data can be found in the data frame lobos, and are reproduced in the
table below.

X1 X2 X3 X4 X5 X6 X7 X8 X9 | Grupo
126 104 141 81.0 31.8 65.7 509 440 18.2 1

128 111 151 804 33.8 69.8 52.7 432 185
126 108 152 85.7 34.7 69.1 493 456 17.9
125 109 141 831 34.0 68.0 482 438 184
126 107 143 819 34.0 66.1 49.0 424 179
128 110 143 80.6 33.0 65.0 464 40.2 182
116 102 131 76.7 31.5 650 454 39.0 16.8
120 103 130 75.1 30.2 63.8 444 41.1 169
116 103 125 74.7 316 624 413 442 170
117 99 134 834 348 680 40.7 371 17.2
115 100 149 81.0 33.1 66.7 47.2 405 17.7
117 106 142 82.0 326 66.0 449 382 182
117 101 144 824 328 675 453 415 19.0
117 103 149 828 35.1 703 483 43.7 178
119 101 143 815 341 69.1 50.1 41.1 18.7
115 102 146 814 33.7 664 477 420 18.2
117 100 144 813 372 668 414 376 17.7
114 102 141 84.1 31.8 678 478 378 17.2
110 94 132 769 30.1 621 420 404 18.1
112 94 134 795 321 63.3 449 427 177
109 91 133 779 306 619 452 412 17.1
112 99 139 772 327 674 469 409 183
112 99 133 785 325 655 44.2 341 175
113 97 146 84.2 354 687 510 436 17.2
107 97 137 781 30.7 61.6 449 373 16.5

ol s s R R W W W W W W WW W WD NN

(a) Perform a Linear Discriminant Analysis with the 1da command in R’s MASS package.

i. What is the first discriminant (canonical) variable? What is its discriminating capacity?
Comment.
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3 DISCRIMINANT ANALYSIS

ii. Use R’s plot command to visualize the scatterplots on the planes defined by the first three
discriminant axes. Discuss your results.

iii. To which of the four groups would you associate a new set of observations, for a wolf
of unknown sex and habitat, with the following values on the nine observed variables:
125, 104, 145, 81.1, 33.2, 68.2, 49.0, 43.3, 18.27 Use the command predict, which has a
method for objects of class 1da.

(b) Carry out a Principal Component Analysis on the set of observations of the 9 numerical
variables, on the 25 individuals. In particular, assess the planes defined defined by each pair
of PCs. Compare with the results of the LDA. Comment the discriminant capacity of the
Principal Components.

14. Carry out a Discriminant Analysis of the 150 iris flowers of the data frame iris, obtaining linear
functions to discriminate the three iris varieties. In particular,

(a) Use the first 40 individuals from each species to define the discriminant axes (i.e., as a training
set).

(b) Classify the remaining 30 individuals (i.e., the wvalidation set), using the discriminant axes
defined above (use the classification provided by R’s predict command).

(c) Build a table comparing the true species of the 30 observations in the validation set with these
classifications produced by the Linear Discriminant Analysis. Discuss.

(d) Compare the projection of the 150 individuals on the first principal plane, defined by a Principal
Component Analysis of the data. Discuss.

15. Three variables (v1, v2 e v3) were observed on each of ten zebus and ten Charolais cattle. The
resulting values (data in Diday et. al., 1982) are shown below and are available in the data frame
diday:

Zebus Charolesas

U1 | V2 | U3 | U1 | V2 | U3

400 | 224 | 28.2 || 395 | 224 | 35.1
395 | 229 | 29.4 || 410 | 232 | 31.9
395 | 219 | 29.7 || 405 | 233 | 30.7
395 | 224 | 28.6 || 405 | 240 | 30.4
400 | 223 | 28.5 || 390 | 217 | 31.9
400 | 224 | 27.8 || 415 | 243 | 32.1
400 | 221 | 26.5 || 390 | 229 | 32.1
410 | 233 | 25.9 || 405 | 240 | 31.1
402 | 234 | 27.1 || 420 | 234 | 32.4
400 | 223 | 26.8 || 390 | 223 | 33.8

Perform a Linear Discriminant Analysis of the data and say whether you think the three variables
provide a good discrimination of zebus and Charolais cattle.

16. Consider the videiras dataset, studied in Module II, with measurements of vineleaf surface area
and lengths of main vein and left and right lateral veins, for n =200 leaves of each of three varieties.

(a) Perform a Linear Discriminant Analysis, seeking to discriminate the grape varieties based on
the 4 observed numerical variables. Comment the result.
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3 DISCRIMINANT ANALYSIS

(b) Confirm that the vectors of coeflicients (loadings) of the discriminant axes are not orthogonal
to each other, but that the resulting new discriminant variables (vectors of scores) are uncor-
related to each other. Note: In R, the vectors of loadings can be obtained by applying the
coef command to the results of the 1da command; the vectors of scores result from applying
the predict command to the results of 1da and selecting object x.

17. Write an R function to carry out a Linear Discriminant Analysis. This function should accept as
arguments:

e a matrix or data frame with the values of the variables;

e a vector or factor indicating to which of the k subgroups each observation belongs.
The function must compute and output:

e the matrix of between-class (inter-class) variability, B;

the matrix of within-class (intra-class) variability, W;

the eigenvalues and eigenvectors of matrix W—1B;

the discriminant axes (that is, the £ — 1 linear combination of the centred variables which are
defined by the eigenvectors W ~'B associated with non-zero eigenvalues).

If £ > 1, the function should also output:

e the centres of gravity for each of the k scatterplots of points in each group, on each of the
discriminant axes.
e the covariance matrices for each group, on all discriminant axes.
Note: Matrix W~!B is not symmetric, so that using the R’s eigen command may produce (arti-

ficially) complex eigenvalues and eigenvectors. The Re command may be used to extract the real
part of these (false) complex numbers.
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