
1 MATRICES AND LINEAR ALGEBRA

Exer
ises - Modelos Matemáti
os e Apli
ações

Introdu
tion to Multivariate Statisti
s - 2020-21

Note: The datasets for some of this Module's exer
ises 
an be found on the 
ourse webpage (Se
tion

Materiais de Apoio, Módulo III. The datasets are in a �le 
alled dadosMulti.RData (the extension

indi
ates that this �le may be loaded into an R session, with the 
ommand load). The �le 
ontains

the following data frames: santarem (Exer
ise 7), brix2 (Exer
ise 8), trigo (Exer
ise 10), kendall

(Exer
ise 11), adelges (Exer
ise 12), lobos (Exer
ise 13) e diday (Exer
ise 15). The �le also 
ontains

the data frame lavagantes, with the dataset dis
ussed in the slides.

1 Matri
es and Linear Algebra

1. Consider the linear spa
e R
2
. Let M be a subspa
e of R

2
spanned by ve
tor

[

1
0

]

. Let N be the

subspa
e of R
2
spanned by ve
tor

[

1
1

]

.

(a) Chara
terize the ve
tors that are in subspa
e M.

(b) What is the orthogonal proje
tion of the ve
tor

[

c

d

]

onto the subspa
e M?

(
) Chara
terize the ve
tors of subspa
e N.

(d) What is the orthogonal proje
tion of ve
tor

[

1
0

]

onto the subspa
e N?

2. Consider the spa
e R
n
with its usual inner produ
t < ~x, ~y >= ~xt~y.

(a) Chara
terize the ve
tors in R
n
that are orthogonal to the ve
tor of n ones, 1n.

(b) Asso
iate the points/ve
tors in R
n
with sets of n observations on a given variable. From

a statisti
al point of view, how 
an the elements of the subspa
e des
ribed in the previous

question be interpreted?

3. Let
~y ∈ R

n
be the ve
tor representation of n observations of a given variable. Let

~yc ∈ R
n
be the


orresponding 
entred ve
tor.

(a) Dis
uss the e�e
t of a translation of the origin in the units of measurement of the variable

(that is, yi → a+ yi) on the ve
tors
~y and

~yc
.

(b) Dis
uss the e�e
t of a multipli
ative 
hange of s
ale (yi → b yi, ∀i) on the ve
tors
~y and

~yc
.

(
) Dis
uss the e�e
t of a linear transformation yi → a+ byi, ∀i, on the ve
tors
~y and

~yc
.

Now 
onsider a se
ond ve
tor
~x ∈ R

n
representing observations of a new variable on the same n

individuals. Let
~xc

be the 
orresponding 
entred ve
tor.

(d) Dis
uss the e�e
t of di�erent linear trasformations of the two variables (xi → a + bxi and

yi → c + dyi, ∀i) on the ve
tors that represent them in R
n
. Dis
uss the in�uen
e of those

transformations on the statisti
al indi
ators 
ovarian
e and 
orrelation 
oe�
ient.

ISA/ULisboa � Modelos Matemáti
os e Apli
ações � Estatísti
a Multivariada 2020-21 1



2 PRINCIPAL COMPONENT ANALYSIS

4. Consider the matri
es XtX and XXt
, where X is an n × p matrix. Con�rm that, if λj 6= 0 is

an eigenvalue of XtX, with 
orresponding eigenve
tor
~cj , then X~cj is an eigenve
tor of matrix

XXt
, with the same eigenvalue. Conversely, if λj 6= 0 is an eigenvalue XXt

with 
orresponding

eigenve
tor

~bj , then Xt~bj is an eigenve
tor of XtX, witht the same eigenvalue.

5. Use the Singular Value De
omposition of a matrix Y, given by:

Y =

r
∑

i=1

δi ~wi~v
t
i

to show that if
~wi is a left singular ve
tor asso
iated with the singular value δi and

~vi is the


orresponding right singular ve
tor, then:

Y~vi = δi ~wi e Yt ~wi = δi~vi

6. Consider a matrix B and the matrix of orthogonal proje
tions onto the subspa
e spanned by the


olumns of B, PB = B(BtB)−1Bt
. Using the Singular Value De
omposition of matrix B, �nd an

alternative expression for matrix PB. Comment.

2 Prin
ipal Component Analysis

7. In the 1973 Agri
ultural Statisti
s (Estatísti
as Agrí
olas) of Portugal's National Statisti
s Board

(Instituto Na
ional de Estatísti
a, INE), produ
tivities (in t/ha) of 9 agri
ultural produ
ts are given

for ea
h of the 20 muni
ipalities of the Santarém distr
it. The data are shown below, and 
an be

found in the santarem data frame, wh
h is available on the 
ourse website, in �le dadosACP.RData.

Muni
ipality Wheat Maize Rye Oats Barley Broadbean Beans Chi
kpea Potato

(trigo) (milho) (
enteio) (aveia) (
evada) (fava) (feijao) (grao) (batata)

Abrantes 1.041 0.541 0.515 0.595 0.402 0.672 0.327 0.423 7.437

Al
anena 0.887 1.697 0.700 1.051 0.630 0.631 0.517 0.618 10.317

Almeirim 1.013 0.431 0.545 0.511 0.374 0.696 0.376 0.495 7.389

Alpiarça 1.293 1.803 0.891 0.413 1.094 0.591 0.518 0.500 17.678

Benavente 1.559 1.949 0.669 1.053 1.029 0.628 0.346 0.614 8.290

Cartaxo 0.925 1.600 0.544 0.696 0.460 0.657 0.352 0.469 9.071

Chamus
a 1.103 3.144 0.379 0.321 0.423 0.542 0.543 0.442 17.199

Constân
ia 1.516 0.524 0.321 0.562 0.571 0.474 0.381 0.485 11.271

Coru
he 1.443 0.483 0.605 0.698 1.250 0.742 0.229 0.371 19.160

Entron
amento 1.023 4.120 0.716 0.621 0.707 1.057 0.533 0.700 20.600

F.do Zêzere 0.981 2.413 0.305 0.773 1.048 0.696 0.524 0.602 9.889

Golegã 1.223 3.777 0.646 0.330 0.763 0.763 0.672 0.311 8.113

Mação 0.839 0.772 0.306 0.362 0.260 0.600 0.293 0.420 8.468

Rio Maior 0.809 1.153 0.927 0.694 0.707 1.777 0.417 0.433 7.060

Salvaterra 1.509 1.100 1.034 0.697 1.582 1.138 0.636 0.516 10.791

Santarém 0.712 1.342 1.145 0.457 0.686 0.982 0.616 0.426 14.135

Sardoal 0.780 0.463 0.326 0.414 0.435 0.822 0.383 0.396 10.078

Tomar 1.000 1.928 0.430 0.863 1.080 0.913 0.404 0.687 9.320

Torres Novas 1.262 2.453 0.716 0.971 0.885 0.928 0.512 0.664 21.100

V.N.Barquinha 0.917 1.081 0.811 1.000 0.909 0.967 0.620 0.667 18.347

Here is the varian
e-
ovarian
e matrix for this dataset:
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2 PRINCIPAL COMPONENT ANALYSIS

> round(var(santarem), d=3)

trigo milho 
enteio aveia 
evada fava feijao grao batata

trigo 0.069 0.016 0.002 0.010 0.050 -0.021 -0.002 0.001 0.236

milho 0.016 1.198 0.017 -0.006 0.040 0.009 0.076 0.038 1.735


enteio 0.002 0.017 0.062 0.011 0.039 0.041 0.016 0.002 0.308

aveia 0.010 -0.006 0.011 0.057 0.034 0.012 -0.001 0.020 0.106


evada 0.050 0.040 0.039 0.034 0.117 0.026 0.013 0.012 0.470

fava -0.021 0.009 0.041 0.012 0.026 0.084 0.009 0.003 -0.003

feijao -0.002 0.076 0.016 -0.001 0.013 0.009 0.016 0.003 0.167

grao 0.001 0.038 0.002 0.020 0.012 0.003 0.003 0.013 0.184

batata 0.236 1.735 0.308 0.106 0.470 -0.003 0.167 0.184 23.531

(a) Consider a Prin
ipal Component Analysis on the 
ovarian
e matrix of the data (that is, on

the dataset in its original units).

i. Dis
uss the quality of the dimensionality redu
tion whi
h 
an be a
hieved with PCA.

ii. Based on the results produ
ed by the pr
omp 
ommand, draw the 20-point s
atterplot

showing the muni
ipalities on the plane de�ned by the �rst two prin
ipal 
omponents.

Identify the 7 muni
ipalities that appear on the right half of the plot. Also, identify the

point that appears, by itself, in the top left 
orner.

iii. Cal
ulate, using R, the 
oe�
ients of linear 
orrelation between PC 1 and ea
h of the

nine original variables. Con�rm the values of the three 
orrelation 
oe�
ients between

the �rst pron
ipal 
omponent and the variables batata (potato), fava (broadbeans) and

milho (maize), using the formula shown in the slides. Repeat for the se
ond prin
ipal


omponent. Dis
uss.

iv. Try to interpret the nature of the �rst two prin
ipal 
omponents. Justify your reply.

v. Build the 
orrespnding biplot and dis
uss it.

vi. Criti
ally assess the Prin
ipal Components Analysis (PCA) that you 
arried out, dis
ussing

in parti
ular the de
ision to use a 
ovarian
e-matrix PCA.

(b) Now 
arry out a Prin
ipal Component Analysis of the normalized data, that is, based on the


orrelation matrix.

i. Dis
uss the quality of the redu
tion in dimensionality that 
an be obtained by a 
orrelation-

matrix PCA. Comment it, also taking into a

ount the results of the PCA on the original

data.

ii. Cal
ulate the 
orrelation 
oe�
ients between ea
h of the original variables and ea
h of

the PCs that were now obtained. Is it ne
essary to standardize the variables in order to


ompute these 
orrelation 
oe�
ients?

iii. Draw the relevant biplot and dis
uss it. In parti
ular, try to interpret the nature of the

�rst two prin
ipal 
omponents of the normalized data.

(
) Answer the following question by a user: �whi
h of the PCA variants should I use in this


ase�?

8. In a study of greenhouse raspberries, 7 variables 
hara
terizing the properties of pi
ked fruits were

observed. Spe
i�
ally, raspberries were 
olle
ted from 14 di�erent plants and their mean value for

ea
h plant were re
orded, for the following variables: Diametro (diameter), Altura (height), Peso

(weight), Brix, pH, a di�erent measure of a
idity, whi
h will be 
alled A
idez, and A
u
ar (sugar


ontent). The resulting values are given in the data frame brix2 (the dataset was already studied

in Module II, but there is now the new variable A
idez):
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2 PRINCIPAL COMPONENT ANALYSIS

Plant Diametro Altura Peso Brix pH A
idez A
u
ar

1 2.0 2.1 3.71 8.4 2.78 1.39 5.12

2 2.1 2.0 3.79 8.4 2.84 1.49 5.40

3 2.0 1.7 3.65 8.7 2.89 1.51 5.38

4 2.0 1.8 3.83 8.6 2.91 1.44 5.23

5 1.8 1.8 3.95 8.0 2.84 1.62 3.44

6 2.0 1.9 4.18 8.2 3.00 1.74 3.42

7 2.1 2.2 4.37 8.1 3.00 1.68 3.48

8 1.8 1.9 3.97 8.0 2.96 1.57 3.34

9 1.8 1.8 3.43 8.2 2.75 1.46 2.02

10 1.9 1.9 3.78 8.0 2.75 1.54 2.14

11 1.9 1.9 3.42 8.0 2.73 1.26 2.06

12 2.0 1.9 3.60 8.1 2.71 1.18 2.02

13 1.9 1.7 2.87 8.4 2.94 1.32 3.86

14 2.1 1.9 3.74 8.8 3.20 1.46 3.89

(a) State, justifying your answer, whether a Prin
ipal Component Analysis on the 
ovarian
e

matrix is suitable for this dataset.

(b) State, justifying your answer, whether a Prin
ipal Component Analysis on the 
orrelation

matrix provides a suitable two-dimensional representation of the data, without substantial

loss of information.

(
) Regardless of your answers above, build a biplot for the data. Dis
uss it.

(d) The 14 plants were not all observed on the same dates. The fruits from ea
h plant were


olle
ted on �ve di�erent dates:

Date Plants

November 28 1,2,3,4

De
ember 13 5,6,7,8

January 16 9,10,11,12

February 20 13

April 3 14

Are the di�erent dates of 
olle
tion re�e
ted in the �rst prin
ipal plane of the standardized

data? In your reply, identify whi
h points in the s
atterplot are asso
iated with ea
h date.

(e) If your reply to the previous question was 'yes' state, with justi�
ation, whether it would

ne
essarily have to be the 
ase that this sub-group stru
ture is re�e
ted in the �rat prin
ipal

plane. If your answer was 'no', state why su
h stru
ture does not have to be re�e
ted in the

�rst pron
ipal plane, given the optimizing properties of the �rst two prin
ipal 
omponents.

(f) Now assume that a new plant's raspeberries were observed, with the following mean values for

ea
h (in order) variable: 1.9, 2.0, 3.92, 8.1, 2.91, 1.48, 3.78. If you wish to represent this new

observation on the �rst prin
ipal plane, what 
oordinates should it have? Justify your answer

and draw the new point on the �rst prin
ipal plane. Con�rm your answer, using R's predi
t


ommand, whi
h also has a method for obje
ts obtained resulting from PCAs obtained with

the pr
omp 
ommand. This 
ommand is used in a similar way to the predi
t 
ommand for

linear, or generalized linear, models.

9. Consider the data for the produ
tion of 
orn in the US State of Iowa, already studied in Module

II, and whi
h 
an be found in the data frame milho.

(a) Whi
h variant of PCA (
ovarian
e matrix or 
orrelation matrix) do you 
onsider suitable for

this dataset? Justify your reply.
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2 PRINCIPAL COMPONENT ANALYSIS

(b) How good is the dimensionality redu
tion provided by a PCA on the 10 standardized variables?

(
) Build a biplot for the 
orrelation matrix PCA.

i. Comment the biplot, also taking into 
onsideration the multiple linear regression submodel

that was 
hosen by all the subset sele
tion methods, and whi
h resulted in modelling y

based on the four predi
tors x1, x2, x6 and x9. Is it possible to make any 
omment

regarding this 
hoi
e, based on the biplot?

ii. Comment the following statement: �The biplot suggests that variables x3 and x5 are

strongly 
orrelated, but this 
on
lusion is not 
on�rmed by the 
orrelation matrix between

the 10 variables�.

iii. Comment the following statement: �Sin
e this was a 
orrelation matrix PCA, all the

ve
tors representing the 
entred variables should be of equal length. The fa
t that variable

x8 is represented in the biplot by a mu
h shorter ve
tor than all the rest suggests that this

variable is poorly represented on the plane de�ned by the �rst two standardized PCs�.

10. An old study 
arried out in Belgium (Ber
e e Wilbaux, 1935 Re
her
he Statistique des relations

existant entre le rendement des plantes de grandes 
ultures et les fa
teurs météorologiques en Bel-

gique. Bull. Inst. Agron. Stn. Re
h. Gembloux, 4, 32�81), re
orded p = 5 meteorologi
al and

agronomi
al variables throughout n = 11 agri
ultural seasons. The �ve variables were:

x1 total rainfall in November and De
ember (mm)

x2 mean temperature in July (

o
C)

x3 total rainfall in July (mm)

x4 radiation in July (mm of al
ohol)

x5 mean yield of durum wheat (quintals/ha)

The observed values were:

Season
~x1 ~x2 ~x3 ~x4 ~x5

1920-21 87.9 19.6 1.0 1661 28.37

1921-22 89.9 15.2 90.1 968 23.77

1922-23 153.0 19.7 56.6 1353 26.04

1923-24 132.1 17.0 91.0 1293 25.74

1924-25 88.8 18.3 93.7 1153 26.68

1925-26 220.9 17.8 106.9 1286 24.29

1926-27 117.7 17.8 65.5 1104 28.00

1927-28 109.0 18.3 41.8 1574 28.37

1928-29 156.1 17.8 57.4 1222 24.96

1929-30 181.5 16.8 140.6 902 21.66

1930-31 181.4 17.0 74.3 1150 24.37

(a) Carry out a 
orrelation matrix Prin
ipal Component Analysis for this dataset, identifying the

�ve Prin
ipal Components.

(b) Build the best possible two-dimensional representation of the n = 11 point s
atterplot in R
5

for the data.

(
) Cal
ulate the 
orrelation 
oe�
ients between the �rst Prin
ipal Component and ea
h of the

�ve original variables. Interpret your results.
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2 PRINCIPAL COMPONENT ANALYSIS

(d) Some units of measurement are now outdated. The most frequent units of measurement for

yield are tons per he
tare, whi
h means that the values of variable x5 should be divided by 10.
On the other hand, the metri
 system units for radiation are MJ m−2

, whi
h means that to


onvert the values of variable x4 to these units, the following a�ne transformation is needed:

x∗

4 = −0.02960342 + 0.75518263 x4. How do these 
hanges in units a�e
t the replies to the

above questions? Con�rm your answer using R.

11. Consider the following data set, dis
ussed by Kendall (Multivariate Analysis, Charles Gri�n & Co.,

1980, pg. 20), and with measurements for 20 soil samples:

Sample Sand 
ontent lime 
ontent Clay 
ontent Organi
 A
idity

(%) (%) (%) matter (%) (pH)

1 77.3 13.0 9.7 1.5 6.4

2 82.5 10.0 7.5 1.5 6.5

3 66.9 20.6 12.5 2.3 7.0

4 47.2 33.8 19.0 2.8 5.8

5 65.3 20.5 14.2 1.9 6.9

6 83.3 10.0 6.7 2.2 7.0

7 81.6 12.7 5.7 2.9 6.7

8 47.8 36.5 15.7 2.3 7.2

9 48.6 37.1 14.3 2.1 7.2

10 61.6 25.5 12.9 1.9 7.3

11 58.6 26.5 14.9 2.4 6.7

12 69.3 22.3 8.4 4.0 7.0

13 61.8 30.8 7.4 2.7 6.4

14 67.7 25.3 7.0 4.8 7.3

15 57.2 31.2 11.6 2.4 6.5

16 67.2 22.7 10.1 3.3 6.2

17 59.2 31.2 9.6 2.4 6.0

18 80.2 13.2 6.6 2.0 5.8

19 82.2 11.1 6.7 2.2 7.2

20 69.7 20.7 9.6 3.1 5.9

(a) Carry out a 
ovarian
e matrix Prin
ipal Component Analysis of the dataset. Explain the

existen
e of a zero eigenvalue and the nature of the 
orresponding eigenve
tor.

(b) Build the biplot asso
iated with the PCA on the standardized data. The relative positions

of the ve
tors representing the variables a
idez and mat.org (organi
 matter) suggests that

these are two highly 
orrelated variables. However, this fa
t is not 
on�rmed by the 
orrelation

matrix between the original variables. How 
an this apparent 
ontradi
tion be explained?

(
) Now drop the variable areia (sand 
ontent) from the data matrix. Repeat the 
ovarian
e

matrix PCA.

i. Cal
ulate the 
orrelation 
oe�
ient between ea
h Prin
ipal Component and ea
h variable.

ii. Compare the values obtained with the variable loadings in the linear 
ombinations de�ning

the PCs and note how the attept to interpret Prin
ipal Components only in terms of the


oe�
ients (loadings) may be misleading.

12. In a study of winged aphids Alate adelges ( D.F. Morrison, Multivariate Statisti
al Methods, p.477)

measurements of 19 variables were taken on 40 individuals. The 19 observed variables, as well as

the means and varian
es of the observed values were:
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2 PRINCIPAL COMPONENT ANALYSIS

Name A

ronym Des
ription x s
2

length COM body length 15.05 14.58

width LAR body width 7.14 4.05

forwing CAA fore-wing length 5.68 1.68

hinwing CAP hind-wing length 3.45 0.83

spira
 E number of spira
les 4.88 0.11

antseg1 AS1 length of antennal segment I 1.86 0.11

antseg2 AS2 length of antennal segment II 1.69 0.11

antseg3 AS3 length of antennal segment III 2.25 0.22

antseg4 AS4 length of antennal segment IV 2.33 0.15

antseg5 AS5 length of antennal segment V 2.73 0.15

antspin S number of antennal spines 4.28 1.33

tarsus3 TAR leg length, tarsus III 3.31 0.41

tibia3 TIB leg length, tibia III 3.38 0.58

femur3 FEM leg length femur III 2.57 0.34

rostrum ROS rostrum 5.58 0.79

ovipos OVI ovipositor 3.72 0.35

ovspin N number of ovipositor spines 7.80 3.81

fold P anal fold (no/yes - 0/1 variable) 0.73 0.20

hooks GAP number of hind-wing hooks 2.38 0.25

These were the observations:

COM LAR CAA CAP E AS1 AS2 AS3 AS4 AS5 S TAR TIB FEM ROS OVI N P GAP

21.2 11.0 7.5 4.8 5 2.0 2.0 2.8 2.8 3.3 3 4.4 4.5 3.6 7.0 4.0 8 0 3

20.2 10.0 7.5 5.0 5 2.3 2.1 3.0 3.0 3.2 5 4.2 4.5 3.5 7.6 4.2 8 0 3

20.2 10.0 7.0 4.6 5 1.9 2.1 3.0 2.5 3.3 1 4.2 4.4 3.3 7.0 4.0 6 0 3

22.5 8.8 7.4 4.7 5 2.4 2.1 3.0 2.7 3.5 5 4.2 4.4 3.6 6.8 4.1 6 0 3

20.6 11.0 8.0 4.8 5 2.4 2.0 2.9 2.7 3.0 4 4.2 4.7 3.5 6.7 4.0 6 0 3

19.1 9.2 7.0 4.5 5 1.8 1.9 2.8 3.0 3.2 5 4.1 4.3 3.3 5.7 3.8 8 0 3.5

20.8 11.4 7.7 4.9 5 2.5 2.1 3.1 3.1 3.2 4 4.2 4.7 3.6 6.6 4.0 8 0 3

15.5 8.2 6.3 4.9 5 2.0 2.0 2.9 2.4 3.0 3 3.7 3.8 2.9 6.7 3.5 6 0 3.5

16.7 8.8 6.4 4.5 5 2.1 1.9 2.8 2.7 3.1 3 3.7 3.8 2.8 6.1 3.7 8 0 3

19.7 9.9 8.2 4.7 5 2.2 2.0 3.0 3.0 3.1 0 4.1 4.3 3.3 6.0 3.8 8 0 3

10.6 5.2 3.9 2.3 4 1.2 1.0 2.0 2.0 2.2 6 2.5 2.5 2.0 4.5 2.7 4 1 2

9.2 4.5 3.7 2.2 4 1.3 1.2 2.0 1.6 2.1 5 2.4 2.3 1.8 4.1 2.4 4 1 2

9.6 4.5 3.6 2.3 4 1.3 1.0 1.9 1.7 2.2 4 2.4 2.3 1.7 4.0 2.3 4 1 2

8.5 4.0 3.8 2.2 4 1.3 1.1 1.9 2.0 2.1 5 2.4 2.4 1.9 4.4 2.3 4 1 2

11.0 4.7 4.2 2.3 4 1.2 1.0 1.9 2.0 2.2 4 2.5 2.5 2.0 4.5 2.6 4 1 2

18.1 8.2 5.9 3.5 5 1.9 1.9 1.9 2.7 2.8 4 3.5 3.8 2.9 6.0 4.5 9 1 2

17.6 8.3 6.0 3.8 5 2.0 1.9 2.0 2.2 2.9 3 3.5 3.6 2.8 5.7 4.3 10 1 2

19.2 6.6 6.2 3.4 5 2.0 1.8 2.2 2.3 2.8 4 3.5 3.4 2.5 5.3 3.8 10 1 2

15.4 7.6 7.1 3.4 5 2.0 1.9 2.5 2.5 2.9 4 3.3 3.6 2.7 6.0 4.2 8 1 3

15.1 7.3 6.2 3.8 5 2.0 1.8 2.1 2.4 2.5 4 3.7 3.7 2.8 6.4 4.3 10 1 2.5

16.1 7.9 5.8 3.7 5 2.1 1.9 2.3 2.6 2.9 5 3.6 3.6 2.7 6.0 4.5 10 1 2

19.1 8.8 6.4 3.9 5 2.2 2.0 2.3 2.4 2.9 4 3.8 4.0 3.0 6.5 4.5 10 1 2.5

15.3 6.4 5.3 3.3 5 1.7 1.6 2.0 2.2 2.5 5 3.4 3.4 2.6 5.4 4.0 10 1 2

14.8 8.1 6.2 3.7 5 2.2 2.0 2.2 2.4 3.2 5 3.5 3.7 2.7 6.0 4.1 10 1 2

16.2 7.7 6.9 3.7 5 2.0 1.8 2.3 2.4 2.8 4 3.8 3.7 2.7 5.7 4.2 10 1 2.5

13.4 6.9 5.7 3.4 5 2.0 1.8 2.8 2.0 2.6 4 3.6 3.6 2.6 5.5 3.9 10 1 2

12.9 5.8 4.8 2.6 5 1.6 1.5 1.9 2.1 2.6 5 2.8 3.0 2.2 5.1 3.6 9 1 3

12.0 6.5 5.3 3.2 5 1.9 1.9 2.3 2.5 3.0 5 3.3 3.5 2.6 5.4 4.3 8 1 2

14.1 7.0 5.5 3.6 5 2.2 2.0 2.3 2.5 3.1 5 3.6 3.7 2.8 5.8 4.1 10 1 2

16.7 7.2 5.7 3.5 5 1.9 1.9 2.5 2.3 2.8 5 3.4 3.6 2.7 6.0 4.0 10 1 2.5

14.1 5.4 5.0 3.0 5 1.7 1.6 1.8 2.5 2.4 5 2.7 2.9 2.2 5.3 3.6 8 1 2

10.0 6.0 4.2 2.5 5 1.6 1.4 1.4 2.0 2.7 6 2.8 2.5 1.8 4.8 3.4 8 1 2

11.4 4.5 4.4 2.7 5 1.8 1.5 1.9 1.7 2.5 5 2.7 2.5 1.9 4.7 3.7 8 1 2

12.5 5.5 4.7 2.3 5 1.8 1.4 1.8 2.2 2.4 4 2.8 2.6 2.0 5.1 3.7 8 0 2

13.0 5.3 4.7 2.3 5 1.6 1.4 1.8 1.8 2.5 4 2.7 2.7 2.1 5.0 3.6 8 1 2

12.4 5.2 4.4 2.6 5 1.6 1.4 1.8 2.2 2.2 5 2.7 2.5 2.0 5.0 3.2 6 1 2

12.0 5.4 4.9 3.0 5 1.7 1.5 1.7 1.9 2.4 5 2.7 2.7 2.0 4.2 3.7 6 1 2

10.7 5.6 4.5 2.8 5 1.8 1.4 1.8 2.2 2.4 4 2.7 2.6 2.0 5.0 3.5 8 1 2

11.7 5.5 4.3 2.6 5 1.7 1.5 1.8 1.9 2.4 5 2.6 2.5 1.9 4.6 3.4 8 1 2

12.8 5.7 4.8 2.8 5 1.6 1.4 1.7 1.9 2.3 5 2.3 2.5 1.9 5.0 3.1 8 1 2

(a) Brie�y des
ribe the main 
hara
teristi
s of the bundle of ve
tors representing the 19 
entred,

but not standardized, variables in the spa
e of variables, R
40
.

(b) Carry out a 
orrelation matrix Prin
ipal Component Analysis of the data.

i. Attempt to interpret the �rst three prin
ipal 
omponents, based on the available informa-

tion. Justify your 
omments.

ii. Do you 
onsider a two-dimensional graphi
al representation adequate? Justify your reply.

Identify a variable whose representation on the �rst prin
ipal plane is not very good,

justifying your answer.
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3 DISCRIMINANT ANALYSIS

iii. The proje
ted s
atterplot of points on the plane de�ned by the �rst two prin
ipal 
ompo-

nents seems to more or less 
learly separate groups of individuals. Relate these groups to

the original variables and 
omment.

iv. Datasets with 19 variables for whi
h a 
orrelation matrix PCA explains su
h a high pro-

portion of total varian
e on the �rst 2 or 3 PCs are not frequent. How 
an this feature be

justi�ed in the 
ase of this dataset?

v. Criti
ally assess this PCA, taking into a

ount the nature of some of these 19 variables.

If you see some undesirable features, suggest alternatives.

3 Dis
riminant Analysis

13. The book by D.F. Morrison, Multivariate Statisti
al Methods (p.288), has data from a study in-

volving nine morphometri
 variables on the skulls of wolves (Canis lupus L.): palatal length (X1);

postpalatal length (X2); zygomati
 width (X3); palatal width outside the �rst upper molars (X4);

palatal width inside the se
ond upper premolars (X5); width between the postglenoid foramina

(X6); interorbital width (X7); least width of the brain
ase (X8); 
rown length of the �rst upper

molar (X9). All measurements are in mm. There are measurements for 25 individuals, who belong

to 4 groups: (1) 6 Ro
ky Mountain males; (2) 3 Ro
ky Mountain females; (3) 10 Ar
ti
 males; and

(4) 6 Ar
ti
 females. The data 
an be found in the data frame lobos, and are reprodu
ed in the

table below.

X1 X2 X3 X4 X5 X6 X7 X8 X9 Grupo

126 104 141 81.0 31.8 65.7 50.9 44.0 18.2 1

128 111 151 80.4 33.8 69.8 52.7 43.2 18.5 1

126 108 152 85.7 34.7 69.1 49.3 45.6 17.9 1

125 109 141 83.1 34.0 68.0 48.2 43.8 18.4 1

126 107 143 81.9 34.0 66.1 49.0 42.4 17.9 1

128 110 143 80.6 33.0 65.0 46.4 40.2 18.2 1

116 102 131 76.7 31.5 65.0 45.4 39.0 16.8 2

120 103 130 75.1 30.2 63.8 44.4 41.1 16.9 2

116 103 125 74.7 31.6 62.4 41.3 44.2 17.0 2

117 99 134 83.4 34.8 68.0 40.7 37.1 17.2 3

115 100 149 81.0 33.1 66.7 47.2 40.5 17.7 3

117 106 142 82.0 32.6 66.0 44.9 38.2 18.2 3

117 101 144 82.4 32.8 67.5 45.3 41.5 19.0 3

117 103 149 82.8 35.1 70.3 48.3 43.7 17.8 3

119 101 143 81.5 34.1 69.1 50.1 41.1 18.7 3

115 102 146 81.4 33.7 66.4 47.7 42.0 18.2 3

117 100 144 81.3 37.2 66.8 41.4 37.6 17.7 3

114 102 141 84.1 31.8 67.8 47.8 37.8 17.2 3

110 94 132 76.9 30.1 62.1 42.0 40.4 18.1 3

112 94 134 79.5 32.1 63.3 44.9 42.7 17.7 4

109 91 133 77.9 30.6 61.9 45.2 41.2 17.1 4

112 99 139 77.2 32.7 67.4 46.9 40.9 18.3 4

112 99 133 78.5 32.5 65.5 44.2 34.1 17.5 4

113 97 146 84.2 35.4 68.7 51.0 43.6 17.2 4

107 97 137 78.1 30.7 61.6 44.9 37.3 16.5 4

(a) Perform a Linear Dis
riminant Analysis with the lda 
ommand in R's MASS pa
kage.

i. What is the �rst dis
riminant (
anoni
al) variable? What is its dis
riminating 
apa
ity?

Comment.
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3 DISCRIMINANT ANALYSIS

ii. Use R's plot 
ommand to visualize the s
atterplots on the planes de�ned by the �rst three

dis
riminant axes. Dis
uss your results.

iii. To whi
h of the four groups would you asso
iate a new set of observations, for a wolf

of unknown sex and habitat, with the following values on the nine observed variables:

125, 104, 145, 81.1, 33.2, 68.2, 49.0, 43.3, 18.2? Use the 
ommand predi
t, whi
h has a

method for obje
ts of 
lass lda.

(b) Carry out a Prin
ipal Component Analysis on the set of observations of the 9 numeri
al

variables, on the 25 individuals. In parti
ular, assess the planes de�ned de�ned by ea
h pair

of PCs. Compare with the results of the LDA. Comment the dis
riminant 
apa
ity of the

Prin
ipal Components.

14. Carry out a Dis
riminant Analysis of the 150 iris �owers of the data frame iris, obtaining linear

fun
tions to dis
riminate the three iris varieties. In parti
ular,

(a) Use the �rst 40 individuals from ea
h spe
ies to de�ne the dis
riminant axes (i.e., as a training

set).

(b) Classify the remaining 30 individuals (i.e., the validation set), using the dis
riminant axes

de�ned above (use the 
lassi�
ation provided by R's predi
t 
ommand).

(
) Build a table 
omparing the true spe
ies of the 30 observations in the validation set with these


lassi�
ations produ
ed by the Linear Dis
riminant Analysis. Dis
uss.

(d) Compare the proje
tion of the 150 individuals on the �rst prin
ipal plane, de�ned by a Prin
ipal

Component Analysis of the data. Dis
uss.

15. Three variables (v1, v2 e v3) were observed on ea
h of ten zebus and ten Charolais 
attle. The

resulting values (data in Diday et. al., 1982) are shown below and are available in the data frame

diday:

Zebus Charolesas

v1 v2 v3 v1 v2 v3

400 224 28.2 395 224 35.1

395 229 29.4 410 232 31.9

395 219 29.7 405 233 30.7

395 224 28.6 405 240 30.4

400 223 28.5 390 217 31.9

400 224 27.8 415 243 32.1

400 221 26.5 390 229 32.1

410 233 25.9 405 240 31.1

402 234 27.1 420 234 32.4

400 223 26.8 390 223 33.8

Perform a Linear Dis
riminant Analysis of the data and say whether you think the three variables

provide a good dis
rimination of zebus and Charolais 
attle.

16. Consider the videiras dataset, studied in Module II, with measurements of vineleaf surfa
e area

and lengths of main vein and left and right lateral veins, for n=200 leaves of ea
h of three varieties.

(a) Perform a Linear Dis
riminant Analysis, seeking to dis
riminate the grape varieties based on

the 4 observed numeri
al variables. Comment the result.
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3 DISCRIMINANT ANALYSIS

(b) Con�rm that the ve
tors of 
oe�
ients (loadings) of the dis
riminant axes are not orthogonal

to ea
h other, but that the resulting new dis
riminant variables (ve
tors of s
ores) are un
or-

related to ea
h other. Note: In R, the ve
tors of loadings 
an be obtained by applying the


oef 
ommand to the results of the lda 
ommand; the ve
tors of s
ores result from applying

the predi
t 
ommand to the results of lda and sele
ting obje
t x.

17. Write an R fun
tion to 
arry out a Linear Dis
riminant Analysis. This fun
tion should a

ept as

arguments:

• a matrix or data frame with the values of the variables;

• a ve
tor or fa
tor indi
ating to whi
h of the k subgroups ea
h observation belongs.

The fun
tion must 
ompute and output:

• the matrix of between-
lass (inter-
lass) variability, B;

• the matrix of within-
lass (intra-
lass) variability, W;

• the eigenvalues and eigenve
tors of matrix W−1B;

• the dis
riminant axes (that is, the k− 1 linear 
ombination of the 
entred variables whi
h are

de�ned by the eigenve
tors W−1B asso
iated with non-zero eigenvalues).

If k > 1, the fun
tion should also output:

• the 
entres of gravity for ea
h of the k s
atterplots of points in ea
h group, on ea
h of the

dis
riminant axes.

• the 
ovarian
e matri
es for ea
h group, on all dis
riminant axes.

Note: Matrix W−1B is not symmetri
, so that using the R's eigen 
ommand may produ
e (arti-

�
ially) 
omplex eigenvalues and eigenve
tors. The Re 
ommand may be used to extra
t the real

part of these (false) 
omplex numbers.
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