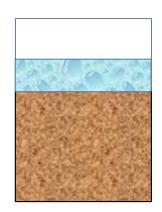


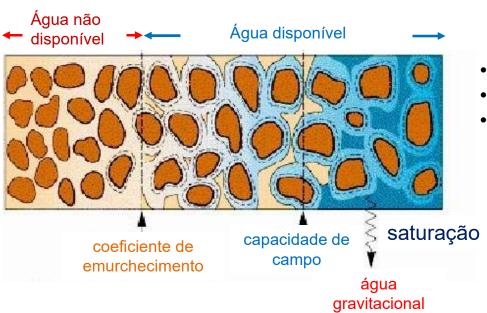
Departamento de Ciências e Engenharia de Biossistemas

REGA E DRENAGEM 2. 1 NECESSIDADES DE ÁGUA PARA REGA

2.1.2. RELAÇÕES SOLO/ÁGUA

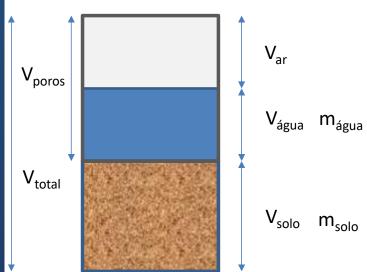
- Conceitos de base relativos à água no solo
- RU, RFU, LRFU, MAD


2.1.3. DOTAÇÃO TOTAL DE REGA


Balanço hídrico do solo com/sem stress hídrico

1. CONCEITOS

A água do solo pode encontrar-se em três formas



- Água gravitacional
- Água capilar
- Água adsorvida ou higroscópica
- $0 \rightarrow -33 \text{ kPa}$ (pF 0 a 2.5)
- 33 kPa → -3100 kPa (pF 2.5 a 4.5)
 - < -3100 kPa (pF > 4.5)

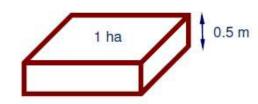
pF = $\log |p/\gamma|$, $\operatorname{com} p/\gamma$ em cm

 $0.8 \text{ atm} \approx \text{pF } 3$

Principais grandezas


ho quartzo	2650 kg/m ³			
d _{ap}	1.2 - 1.6			

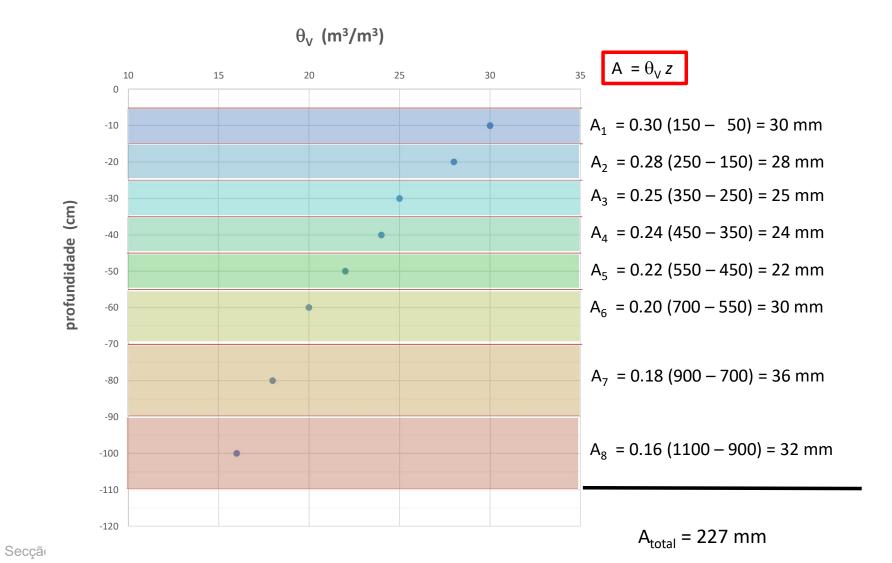
Grandeza	Eq definição	Unidades
Massa volúmica aparente do solo	$\rho = \frac{m_{solo}}{V_{total}}$	kg/m³
Massa volúmica (real) do solo	$\rho_r = \frac{m_{solo}}{V_{solo}}$	kg/m³
Densidade aparente	$d_{ap} = \frac{\rho}{\rho_{\acute{a}gua}}$	_
Porosidade do solo	$\emptyset = \frac{V_{poros}}{V_{total}} = 1 - \frac{\rho}{\rho_r}$	— (%)
Grau de saturação	$s = \frac{V_{\acute{a}gua}}{V_{poros}}$	
Teor de água ponderal / mássico	$\theta_p = \frac{m_{\acute{a}gua}}{m_{solo}}$	kg / kg
Teor de água volúmico	$\theta = \frac{V_{\acute{a}gua}}{V_{total}} = dap \times \theta_p = s \emptyset$	m^3 / m^3


Exercícios

A massa volúmica aparente de um solo seco é 1750 kg/m³ e a massa volúmica dos sólidos é 2500 kg/m³. Determine a porosidade do solo. (R: 0.3)

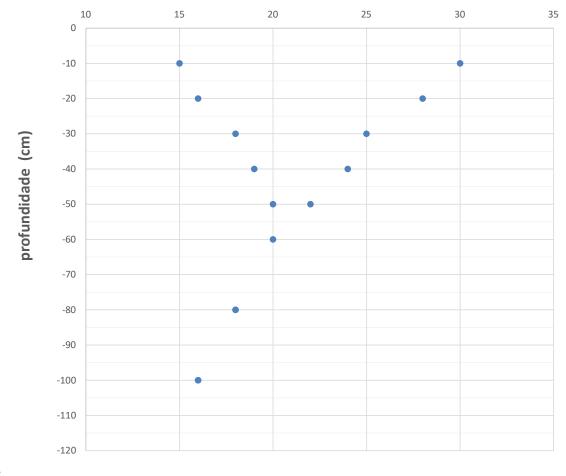
Um vaso, munido de um orifício no fundo, contém 5 l de um solo com um teor volúmico de humidade de 0.15. Sabendo que a capacidade de campo do solo é 0.28, calcule a quantidade de água que sairá pelo orifício quando se deitar no vaso 1 l de água. (R: 0.35 l)

Num terreno com 1 ha encontra-se instalada uma cultura agrícola com a profundidade radicular de 0.5 m. Sabendo que o solo tem uma capacidade de campo de 0.45 e que o mínimo teor volúmico de humidade admissível para produção é 0.24, estime o volume de água de rega para passar desse mínimo à capacidade de campo.


(R: 1050 m³)

Armazenamento total de água

$$V_{\acute{a}gua} = \theta \ V_{total} = \theta \ A_{sup} \ z$$


$$\frac{V_{\acute{a}gua}}{A_{sup}} = A = \theta z$$

Armazenamento total de água num perfil de solo

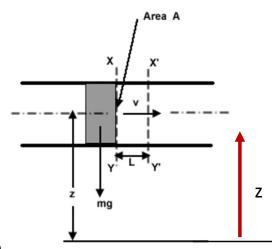
Variação do armazenamento total de água entre duas medições

Α	₁ = 30 mm	A _{1f} = 15 mm	$\Delta A_1 =$	-15 mm
Α	₂ = 28 mm	A _{2f} = 16 mm	$\Delta A_2 =$	-12 mm
Α	₃ = 25 mm	A _{3f} = 18 mm	$\Delta A_3 =$	-7 mm
Α	₄ = 24 mm	A _{4f} = 19 mm	$\Delta A_4 =$	-5 mm
Α	₅ = 22 mm	A _{5f} = 20 mm	$\Delta A_5 =$	-2 mm
Α	₆ = 30 mm	A _{6f} = 30 mm	$\Delta A_6 =$	0 mm
Α	₇ = 36 mm	A _{7f} = 36 mm	$\Delta A_7 =$	0 mm
Α	₈ = 32 mm	A _{8f} = 32 mm	ΔA ₈ =	0 mm

$$A_{total} = 186 \text{ mm}$$

Maneiras de exprimir a água no solo

- Teor de água (ponderal, volumétrico)
- (Energia) potencial


Formas de energia:

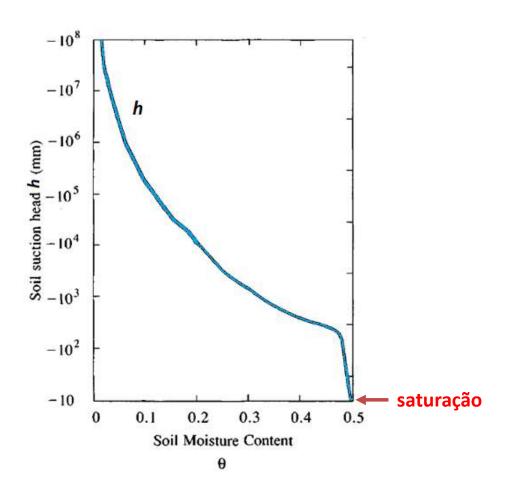
- Energia potencial = mgz
- Energia cinética = ½ mv²
- Energia devida à pressão = p m / ρ

[E=W = F d = pAL= pV = p m/
$$\rho$$
]

Energia total = energia potencial + energia cinética + energia de pressão

desprezam-se as variações de temperatura (energia interna)

		Energia potencial	Energia cinética	Energia da pressão	Unidade
φ:	Energia por unidade de massa	g z	½ v ²	p/ p	m ² s ⁻²
Ψ	Energia por unidade de volume	ρgz	$\frac{1}{2} \rho v^2$	р	Pa
Н	Energia por unidade de peso	Z	½v²/g	ρ/γ	m

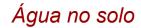

alturas

Carga hidráulica

despreza-se
$$H = z + h (+ v^2/2g)$$

Curva característica – relaciona o teor de água com o potencial hídrico

Limite da reserva facilmente utilizável (LRFU): valor mínimo da água no solo abaixo do qual a planta entra em situação de carência hídrica

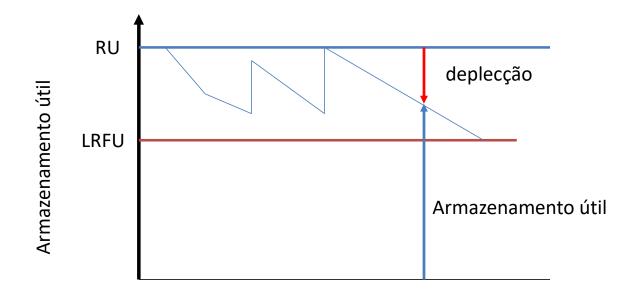

LRFU ——

LRFU=RU-RFU=RU(1-p)

> Reserva utilizável (RU, mm)

$$RU = (CC - CE) \times 1000 \times z$$

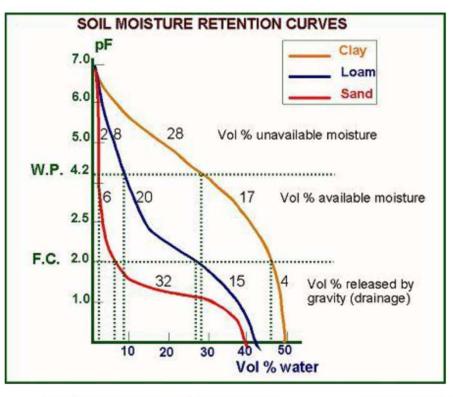
CC e CE em cm³ cm⁻³ e z em m

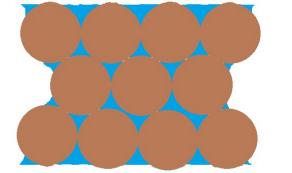


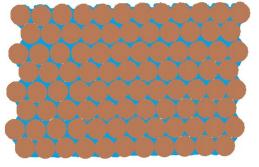
> Reserva facilmente utilizável (RFU, mm)

parte da RU utilizada em situação de conforto hídrico das culturas

$$RFU = RU \times p$$

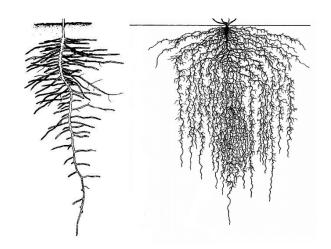

p é a fracção facilmente utilizável (adim)


Armazenamento útil + deplecção = reserva utilizável


RU = TAW (total available water)

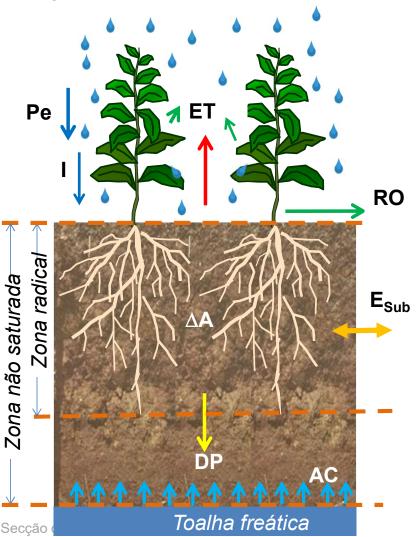
RFU = RAW (readily available water)

	$\theta_{\sf cc}$	$\theta_{\sf CE}$	$(\theta_{cc}-\theta_{ce})$
	m^3/m^3	m³/m³	m^3/m^3
Sand	0.07 - 0.17	0.02 - 0.07	0.05 - 0.11
Loamy sand	0.11 - 0.19	0.03 - 0.10	0.06 - 0.12
Sandy loam	0.18 - 0.28	0.06 - 0.16	0.11 - 0.15
Loam	0.20 - 0.30	0.07 - 0.17	0.13 - 0.18
Silt loam	0.22 - 0.36	0.09 - 0.21	0.13 - 0.19
Silt	0.28 - 0.36	0.12 - 0.22	0.16 - 0.20
Silt clay loam	0.30 - 0.37	0.17 - 0.24	0.13 - 0.18
Silty clay	0.30 - 0.42	0.17 - 0.29	0.13 - 0.19
Clay	0.32 - 0.40	0.20 - 0.24	0.12 - 0.20



600 60 soil water content (mm/m) 500 drainable water soil water content (vol %) 40 aturation 300 30 too strongly retained water 20 200 100 iltingpoint 0 coarse moderately medium moderately fine textured textured textured

Secção de Engenharia Rural


A fracção facilmente utilizável (p) varia com:

- Tipo de solo p pode ser diminuído 5-10% em solos argilosos e aumentado em solos arenosos
- Tipo de cultura
- Desenvolvimento radicular
- ETc $p = p_{\text{tabela}} + 0.04 (5 ET_c)$

Balanço hídrico na zona explorada pelas raizes

Componentes do balanço hídrico na zona explorada pelas raízes

Variação do armazenamento = entradas - saídas

Entradas:

Pe – precipitação efectiva

I - rega

AC – ascensão capilar

Saídas:

RO - Escoamento superficial

DP - Percolação ou drenagem profunda

ETc – Evapotranspiração cultural ETc = Kc ETo

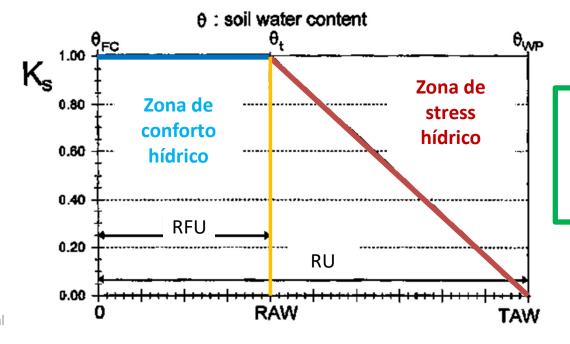
$$\triangle A$$
 – variação do armazenamento
 $\triangle A = A(t_2)$ - $A(t_1)$ $\triangle A = \theta \times z$

Todos os termos em mm

$$\Delta A = [Pe + I + AC - (RO + DP + ET)]_{1\rightarrow 2}$$

 $Se A_2 > A_{CC} \qquad DP = A_2 - A_{CC}$

Quando Dep < RFU</p>

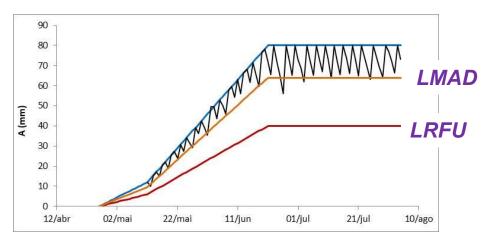

 $K_s = 1$

A > LRFU

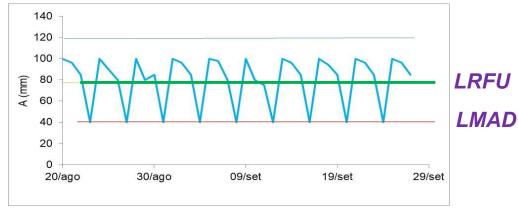
Quando Dep > RFU

 $K_s = \frac{RU - D_p}{RU - RFU} = \frac{RU - D_p}{(1-p) RU} = \frac{A}{LRFU}$

A < LRFU



 $ET_{adj} = K_s K_c ET_o = K_s ET_c$ $ET_{adj} = (K_s K_{cb} + K_e) ET_o$


MAD (maximum allowed depletion) – <u>deplecção de gestão admitida</u>

MAD < RFU - a cultura é mantida em conforto hídrico

Ex: condução da rega gota-a-gota com alta frequência e pequenas dotações; culturas muito sensíveis ao stress

MAD > RFU - a cultura é sujeita intencionalmente a stress hídrico

Exercício

Estime para cada dia do período de 10 dias apresentado o armazenamento e a depleção de água no solo, considerando que no início, devido às precipitações, o solo estava à CC e que no fim do 8º dia é efectuada uma rega de 27 mm. Considere os seguintes dados adicionais:

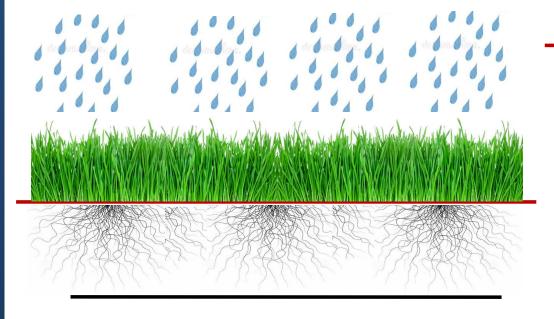
$$\theta_{CC} = 0.21 \text{ m}^3/\text{m}^3 \ \theta_{CE} = 0.08 \text{ m}^3/\text{m}^3 \ z_r = 0.4 \text{ m} \ p = 0.3$$

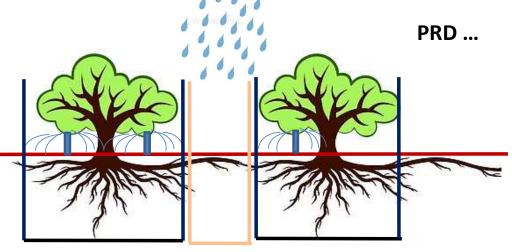
Nota: ajuste o p de acordo com a ETc do dia

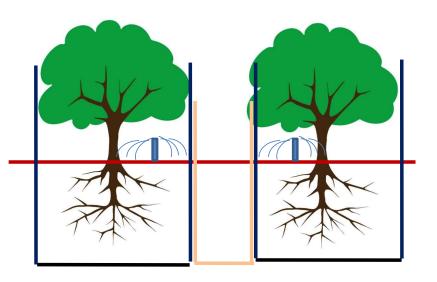
Dia	ET _c	P-RO	I	DP	р	RFU	Α	Dep	K _s	$ET_{c,adj}$
	mm	mm	mm	mm	-	mm	mm	mm	-	mm
0	-	-	-	-	-	-				
1	5.3	0	0							
2	5.0	15	0							
3	5.3	0	0							
4	5.5	0	0							
5	5.4	0	0							
6	5.6	0	0							
7	5.8	0	0							
8	6.3	0	27							
9	5.7	0	0							
10	5.5	0	0							

Resolução

 $\theta_{CC} = 0.21 \text{ m}^3/\text{m}^3 \ \theta_{CE} = 0.08 \text{ m}^3/\text{m}^3 \ z_r = 0.4 \text{ m} \ p = 0.3$


$$RU = (0.21 - 0.08) \times 400 = 52 \text{ mm}$$


Dia	ET _c	P-RO	I	DP	р	RFU	A(*)	Dep	K_s	ET _{c,adj}
	mm	mm	mm	mm	-	mm	mm	mm	-	mm
0	-	-	-	-	-	-	-	-	-	-
1	5.3	0	0		0.29	15.1	52.0	0.0	1.00	5.3
2	5.0	15	0	4.7	0.30	15.5	46.7	5.3	1.00	5.0
3	5.3	0	0		0.29	15.1	52.0	0.0	1.00	5.3
4	5.5	0	0		0.28	14.6	46.7	5.3	1.00	5.5
5	5.4	0	0		0.29	14.9	41.2	10.8	1.00	5.4
6	5.6	0	0		0.28	14.4	35.8	16.2	0.95	5.3
7	5.8	0	0		0.27	14.0	30.5	21.5	0.80	4.7
8	6.3	0	27		0.25	12.9	25.8	26.2	0.66	4.2
9	5.7	0	0		0.27	14.2	48.6	3.4	1.00	5.7
10	5.5	0	0		0.28	14.6	42.9	9.1	1.00	5.5

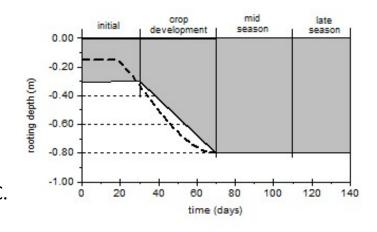

(*) A no início do dia = A no final do dia anterior

Balanço hídrico na zona explorada pelas raizes • Rega localizada

- Precipitação
- Rega por aspersão

Na fase de desenvolvimento vegetativo, o sistema radicular também vai desenvolver-se em profundidade e a equação do balanço hídrico deve ser ajustada de forma a considerar o aumento do armazenamento devido ao aumento do volume de solo explorado

$$\Delta A = Pe + I + AC - (RO + DP + ET) + A_{\Delta z}$$


$$A_{\Delta z} = A_{SNE} * \Delta z_{r}$$

 $A_{\Delta z}$ – aumento do armazenamento de água no solo devido à expansão das raízes (mm)

 A_{SNE} – armazenamento de água no solo ainda não explorado pelas raízes (mm/m) (= $\theta - \theta_{CF}$) × 1000

 Δ **z**_r – aumento da profundidade radicular durante o Δt considerado (m)

O teor de água no solo ainda não explorado pelas raízes pode ser obtido fazendo um balanço hídrico independente, mas muitas vezes encontra-se à CC.

Normalmente assume-se que a expansão do sistema radicular ocorre linearmente durante a fase de desenvolvimento

$$\Delta z_r = \frac{z_{r \, m\acute{a}x} - z_{r \, ini}}{L_{dev}} \, \Delta t \qquad \qquad \begin{array}{c} -r \, max \\ z_{r \, ini} \\ L_{dev} \end{array}$$

 $\mathbf{Z}_{\mathsf{r}\ \mathsf{máx}}\ -\mathsf{profundidade}\ \mathsf{radicular}\ \mathsf{máxima}\ \mathsf{(no}\ \mathsf{fim}\ \mathsf{do}\ \mathsf{período}\ \mathsf{de}\ \mathsf{desenvolvimento}\ \mathsf{(m)}$

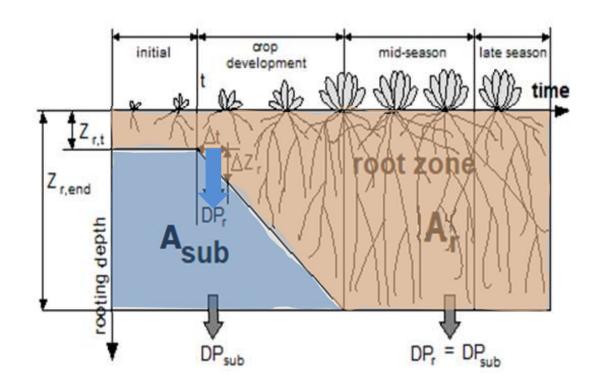
profundidade radicular no início do período de desenvolvimento (m)

duração do período de desenvolvimento (dias)

∆t – passo de cálculo (dias)

Balanço hídrico do solo já explorado pelas raízes e do solo que virá a ser explorado pelas raízes durante o período de desenvolvimento da cultura

Fase inicial


$$\Delta A = Pe + I + AC - (RO + DP_r + ET)$$

 $\Delta A_{sub} = DP_r - DP_{sub}$

Fase de desenvolvimento

$$\Delta A = Pe + I + AC - (RO + DP_r + ET) + A_{\Delta z}$$

 $\Delta A_{sub} = DP_r - DP_{sub} - A_{\Delta z}$

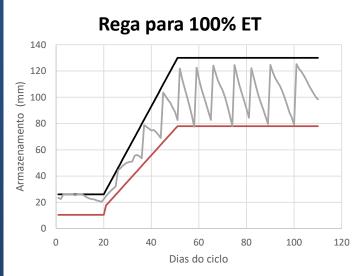
Fase intermédia e final

$$\Delta A = Pe + I + AC - (RO + DP_r + ET)$$

 $DP_{sub} = DP_r$; $A_{sub} = 0$

Necessidades de rega líquidas para o ciclo completo

$$NRL = ET - Pe + RO + DP - AC - \Delta A$$


- Dimensionamento de reservatórios
- Programação da rega

- ET evapotranspiração da cultura na totalidade do ciclo
- Pe precipitação efectiva
- **RO** escorrimento superficial
- **DP** drenagem
- **AC** ascensão capilar
- △A variação do armazenamento do solo entre o início e o final do ciclo

Exercício

Com base nos dados fornecidos (Dados_BH_ciclo.xls):

- 1. Calcular as necessidades de rega úteis anuais, com:
 - $\theta_{CC} = 28\% \text{ (V/V)}$; $\theta_{CE} = 15\% \text{ (V/V)}$; $z_{r ini} = 20 \text{ cm}$ $z_{r m \acute{a} x} = 1 \text{ m}$
 - à sementeira o armazenamento está a 90% da Reserva Utilizável do solo
 - $p_{ini} = 0.6$ resto do ciclo p = 0.4
 - não se rega no mês de Setembro
- 2. Determine a relação ET_{adj} / ET_c obtida com a adopção de uma estratégia de rega em que apenas se fornece uma dotação correspondente a 70% de ET_c e:
 - a) as regas são efectuadas nas mesmas datas em que seriam efectuadas para ausência de stress hídrico
 - b) as regas são diárias

Rega	70%	todos	OS	dias
------	-----	-------	----	------

	140							
	120							
(mm								
Armazenamento (mm)	80							
Pnam	60							
Armaz	40							
	20	7	₹/					
	0							
0		0	20	40 Dia:	60 s do ciclo	80	100	120

ET	472.7
Р	60.5
DP	28.8
ΔA	20.7
Rega	420.3

ET	400.8	85%
Р	60.5	
DP	28.8	
ΔA	70.2	
Rega	298.9	71%

ET	414.7	88%
Р	60.5	
DP	28.8	
ΔA	79.7	
Rega	303.4	72%

$$NRL = ET - (Pe - RO) + DP - AC - \Delta A$$