
Hydrologic regulation of plant rooting depth
Ying Fana,1, Gonzalo Miguez-Machob, Esteban G. Jobbágyc, Robert B. Jacksond,e,f, and Carlos Otero-Casalb

aDepartment of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08854; bNon-Linear Physics Group, Faculty of Physics, Universidade de
Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; cGrupo de Estudios Ambientales–Instituto de Matemática Aplicada San Luis,
Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Luis, D5700HHW San Luis, Argentina; dDepartment of Earth System
Science, Stanford University, Stanford, CA 94305; eWoods Institute for the Environment, Stanford University, Stanford, CA 94305; and fPrecourt Institute for
Energy, Stanford University, Stanford, CA 94305

Edited by Thomas Dunne, University of California, Santa Barbara, CA, and approved August 23, 2017 (received for review July 11, 2017)

Plant rooting depth affects ecosystem resilience to environmental
stress such as drought. Deep roots connect deep soil/groundwater
to the atmosphere, thus influencing the hydrologic cycle and climate.
Deep roots enhance bedrock weathering, thus regulating the
long-term carbon cycle. However, we know little about how deep
roots go and why. Here, we present a global synthesis of 2,200 root
observations of >1,000 species along biotic (life form, genus) and
abiotic (precipitation, soil, drainage) gradients. Results reveal strong
sensitivities of rooting depth to local soil water profiles determined
by precipitation infiltration depth from the top (reflecting climate
and soil), and groundwater table depth from below (reflecting
topography-driven land drainage). In well-drained uplands, root-
ing depth follows infiltration depth; in waterlogged lowlands,
roots stay shallow, avoiding oxygen stress below the water table;
in between, high productivity and drought can send roots many
meters down to the groundwater capillary fringe. This framework
explains the contrasting rooting depths observed under the same
climate for the same species but at distinct topographic positions.
We assess the global significance of these hydrologic mechanisms
by estimating root water-uptake depths using an inverse model,
based on observed productivity and atmosphere, at 30″ (∼1-km)
global grids to capture the topography critical to soil hydrology.
The resulting patterns of plant rooting depth bear a strong topo-
graphic and hydrologic signature at landscape to global scales. They
underscore a fundamental plant–water feedback pathway that may
be critical to understanding plant-mediated global change.

plant rooting depth | soil hydrology | global change biology |
infiltration depth | water table depth

Plant rooting depth is a sensitive parameter in Earth system
models for understanding past and predicting future global

change (1–3) because it is a basic plant functional trait determining
ecosystem resilience (4–6), plant biogeography (7, 8), pedogenesis
(9, 10), and long-term carbon cycle (1, 10, 11). Unlike their
aboveground counterparts, roots are difficult to observe, and basic
knowledge such as their vertical extent remains limited, hindering
mechanistic understanding and prediction of plant-mediated global
change. Observation syntheses in the 1990s (12–14) revealed widely
varying rooting depths (0.3–68 m; SI Appendix, Fig. S1) and broad
associations with biome types; roots are shallow in boreal biomes on
thinly thawed soils; roots of annual crops start from seeds each
season reaching only shallow depths; and deep roots are found in
arid, semiarid, and season-arid climates. In fact, a key finding from
past syntheses is that both the shallowest and the deepest roots are
found in dry biomes (3, 15). Because biomes are closely associated
with climate, subclimate-scale factors likely explain the large within-
biome spread. Candidates include species and age, but the same
species/age displayed contrasting rooting depths in monoculture
crops and plantations (16, 17), because roots are highly adaptive to
local soil environments (18).
A frequently evoked subclimate-scale environmental factor is

soil water status. Near the surface, coarse-grained soils with low
water holding capacity allow deep infiltration encouraging deep
roots (19–21); at the base, waterlogging and associated oxygen
stress in topographic depressions inhibit deep roots (16, 17, 22,

23). Thus, variations in local soil water profile, driven by in-
filtration above and drainage below, are known causes for rooting
depth variations (12). While climate and soil regulate infiltration,
topography drives drainage; water flows toward topographic de-
pressions creating shallow water tables in the latter. This is why
the water table depth (WTD) reflects local topography as much as
or more than regional climate (SI Appendix, Fig. S2); one finds
deep and shallow water tables under most climates (24).
We hypothesize that along a topographic gradient, root–water

relation shifts systematically (Fig. 1); on excessively drained
uplands (position 1), the water table is deep or absent and
rooting depth is limited to infiltration depth/frequency (25)
(example in SI Appendix, Fig. S3B). At a lower position 2, roots
may sense groundwater capillary rise; in climates with dry sea-
sons, dimorphic roots (SI Appendix, Fig. S3C) are observed, with
a shallow cluster using rain and a deep cluster using groundwater
in dry seasons (26–28). At position 3, infiltration meets capillary
rise and water is not limiting. At position 4, seasonal water-
logging limits roots to the oxygenated soils above the water table
(SI Appendix, Fig. S3D); shallow or aerial roots are common in
lowland forests (12, 29, 30). At position 5, permanent water-
logging selects wetland species insensitive to WTD.
To test this hypothesis, we compiled rooting depth observations

(SI Appendix and Dataset S1), recording local drainage conditions
neglected in earlier syntheses. The 2,200 observations (Fig. 2)
represent >1,000 species under a range of climate, soil, and
drainage conditions. Rooting depth varied from <0.01 to >70 m
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with a distribution peak at 1 m. Because the deepest roots were
discovered accidentally, they are likely undersampled.
We plot (log) rooting depth (Fig. 3) vs. several potential drivers

(SI Appendix, Table S1). A wide range of rooting depths are ob-
served at any given annual rainfall (Fig. 3A) and soil texture (Fig.
3B). Many roots penetrated soil concretions (27, 28) or into
bedrock fractures (31–34) (Fig. 3C, below 1:1 line). Across growth
forms (Fig. 3D), shallow roots are found in small, annual herbs
and deep roots in large, broadleaf trees. Among the 30 best-
observed genera (Fig. 3E), shallower roots occur in wetland, de-
sert, and boreal taxa and deeper roots in those of warm-dry re-
gions. The wide spread within a growth form or genera suggests
large plasticity in root response to local environments.
Drainage, quantified by WTD, emerged as a strong environ-

mental factor (Fig. 3F). On one hand, it restricts roots to the
oxygenated soils above the water table (above 1:1 line); points
below are attributable to water table rise/fall outpacing root re-
sponse, temporary perched saturation, or wetland plants in-
sensitive to waterlogging. On the other hand, the presence of a
water table can draw roots deeper to tap its capillary rise; roots
terminating in the capillary fringe and root elongation following
a declining water table are observed in laboratories and the field
(27, 35). Points far above the 1:1 line are from upland plants
disconnected from deep groundwater. These two functions of the

water table, pushing roots shallower to avoid oxygen stress, and
pulling them deeper to tap the capillary rise, result in a narrower
range of rooting depth at a given WTD.
This groundwater push–pull is illustrated in an unintended ex-

periment: the 46 mature trees of 37 species planted as windbreaks in
eastern Nebraska (36). The sites have similar rainfall (∼735 mm/y)
and soil (silt loam), but WTD varied (1–25 m) (SI Appendix, Fig. S4
A and B). The same species displayed contrasting rooting depths (SI
Appendix, Fig. S4 C andD, and E and F) but all terminating near the
water table. Plotting rooting depth vs. WTD (SI Appendix, Fig. S5)
reveals three distinct root–WTD relations: roots independent of
WTD, roots tapping groundwater (pulled deeper), and roots re-
stricted by WTD (pushed shallower). Here, the climate and soil
varied little, bringing out the WTD influence.
An important question is the relative control of genetic vs.

environmental factors. Besides the Nebraska example, we plot
the six most-observed genera (named in Fig. 3E) against mean
annual rainfall (SI Appendix, Fig. S6, Top) and WTD (Bottom).
The latter better explains the spread, as reported in many single-
species studies [e.g., spruce (16) and maize (17)].
These results point to land drainage as a powerful environ-

mental axis at the subclimate scale, a main distinction of this
study from past syntheses and modeling that evoked climate and
soil as primary abiotic drivers (3, 13, 20). We suggest that
drainage gradient be considered along with climate and soil
gradients to fully describe the soil water conditions for roots.
Such an attempt is made in Fig. 4; from Top to Bottom is rainfall
gradient driving regional-scale but episodic infiltration events
(top wetting); from Left to Right is drainage gradient driving
local-scale but more stable water-oxygen status (bottom wetting).
Increasing rainfall (Top to Bottom) wets a deeper profile. De-
teriorating drainage (Right to Left) increases groundwater access
but also oxygen stress. At any point in the landscape, the soil
water profile reflects both wetting mechanisms, with a dry gap
that diminishes toward wetter climates or lower grounds. For
example, in an arid climate on uplands (case 1), shallow infiltration
leads to shallow rooting (25). Downslope (case 2), occasional deep
infiltration (35) leads roots across the dry gap (25, 26). This ex-
plains why both the shallowest (case 1) and deepest (case 2) roots
are found in dry climates; the polarizing root behavior reflects the
polarizing soil hydrology with and without groundwater access (15,

Fig. 1. Schematic of soil water profiles along a drainage gradient, wetted
from above by rain infiltration and from below by groundwater capillary
rise, with a dry gap that diminishes downslope. Along this gradient, plant
rooting depths vary systematically (see text). SI Appendix, Fig. S3 gives ex-
amples of published root images at different drainage positions.
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samples. Inset gives frequency distribution (0.2-m bin width).
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37). In a season-dry climate on well-drained uplands (case 4),
ample wet-season rain wets the soil deeply, enabling deeper roots
necessitated by higher productivity in season-wet biomes, but
groundwater is out of reach (4, 5). Down gradient (case 5),
groundwater becomes accessible; deep roots are frequently ob-
served in upland trees in season-dry climates (26–28). In a per-
humid climate on well-drained slopes (cases 7 and 8), the ample
rain wets the soils completely, but with frequent surface wetting
roots do not need deep water. Across all climates, waterlogging in
lowlands (cases 3, 6, and 9) plus high salinity in arid climates re-
strict roots; observations reveal ubiquitously shallow and wide
roots, aerial roots, or short ephemeral roots tracking seasonal
water table rise/fall (12, 16, 22, 23, 30).
Within this framework, the role of soil texture can be un-

derstood by how it regulates the downward infiltration and the
upward capillary rise (Fig. 5). From the top, infiltration is
stronger–deeper in coarse, and weaker/shallower in fine, tex-
tured soils, leading to systematic shifts in rooting depth (19–21,
38). However, the presence of a water table can confound such a
simple relationship; a shallow water table in a coarse soil can
push roots shallower, and a deep water table in a finer soil can
pull roots deeper, contributing to the poor correlation between
rooting depth and soil texture (Fig. 3B).
This framework accounts for the influence of regional-scale,

fast-changing atmosphere from the top, and landscape-scale,
slower-changing topography from below, in jointly shaping soil
water–oxygen profiles that roots sense and exploit. The following
question arises: what is the global significance of such landscape-
scale root–water relations?

We use inverse modeling to estimate the necessary depths of
root–water uptake (SI Appendix). First, we calculate the soil
water supply profile driven by the observed atmosphere, soil
texture, and topography using a hydrology model that tracks the
store and fluxes in the soil water, groundwater, rivers, and wet-
lands (39, 40). This gives the soil water profile as shown in Figs. 4
and 5 at each grid cell at each time step. To capture the local
drainage emphasized here with computational feasibility, we use
30-arcsecond global grids (<1-km) at hourly intervals over eleven
years (2003–2013). Second, we calculate the ecosystem water
demand from satellite-observed leaf area index and observed-
reanalysis atmosphere, based on the Shuttleworth and Wallace
(41) formula of the Penman–Monteith equation separating plant
transpiration from soil evaporation. Third, given plant water
demand and the soil water supply profile, we estimate the nec-
essary depths of water uptake to meet the demand, based on
Ohm’s law for parallel-connected conductors (details in SI Ap-
pendix). We assume that the many individual plants within a
model grid cell behave collectively to withdraw soil water to meet
the transpiration demand of grid-level productivity observed
from space.
Fig. 6 gives the model maximum depth of root uptake averaged

over ten years (2004–2013). Continent maps are in SI Appendix,
Figs. S11–S15. At the global scale, climate and major biomes are
visible (e.g., shallow in boreal, deep in seasonal forests), consistent
with earlier syntheses and models (3, 13, 14, 20), but under a given
climate or within a biome, the topographic structure emerges as a
powerful force (Fig. 6, Insets and SI Appendix, Figs. S11–S15) as it is
the primary driver of land drainage. Topography is visible in both
the infiltration depth (SI Appendix, Fig. S16) and the WTD (SI
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Appendix, Fig. S17) because deep infiltration terminates at the
WTD, the latter strongly reflecting the topography. Fig. 7 gives
the monthly time series and the 10-y mean uptake profile at six
sites with observations, representing six cases in Fig. 4. The in-
verse model gives the same behavior as observed in the given
environment; for example, shallow roots occur in both arid up-
lands (case 1) and humid lowlands (case 9), deeper roots are
initiated in drought years (cases 4, 5, and 7), and dimorphic roots
develop in seasonal climates (case 5).
The distribution of maximum uptake depth from the inverse

model (Fig. 6) suggests a much higher occurrence of very shal-
low (especially northern continents) and very deep (especially
southern continents) uptake than observed (bars). It may be that
current field sampling of roots is biased toward moderate cli-
mates, and that it may have stopped too soon in seasonal and
arid climates (6, 42, 43), missing a vital part of the plant that may

be small in biomass but essential for survival and functioning in
the absence of rain (4, 5).
The insights gained here are highly relevant to Earth System

Modeling, an essential tool for understanding past and predicting
future global change that regulates and is regulated by land plants.
Current models prescribe rooting depth according to plant func-
tional types, and neglect landscape-scale topography and the
resulting hydrologic convergence from high to low grounds, a
fundamental hydrologic process that creates a strongly articulated,
fine-scaled spatial structure in water availability regardless of the
climate (24, 44). Here, we demonstrate that this hydrologic struc-
ture is a potent force in shaping plant rooting depths, a biological
response that may further differentiate plant–water relations from
uplands to lowlands. The adaptive ability of plant roots to reach
deep soil and groundwater has important consequences for the
hydrologic cycle and regional climate through land–atmosphere
interactions, and it may have expanded the hydrologic habitats for
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land plants by allowing them to survive water-stressed periods.
Therefore, accounting for landscape-scale topography, the resulting
hydrology, and the consequent plant root–water interactions in

Earth System Models may enable critical mechanistic pathways in
these models for exploring and predicting global change that are
strongly mediated by land plants.
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Fig. 6. Inverse-model results of 10-y mean maximum depth (in meters) of root water uptake (Upper). Insets reveal strong local topographic influence. The
frequency distribution (Lower, 0.2-m bin width), over vegetated surface only, suggests large model–observation discrepancy, which may imply observation bias
(undersampling of very shallow and very deep roots). The oscillations in the model distribution are due to soil water uptake crossing discrete soil layers.
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Fig. 7. Modeled uptake profiles at six grid cells with rooting depth observations (27, 30, 45–48), corresponding to six cases in the conceptual model of Fig. 4.
The colored panels plot monthly root water uptake (in millimeters per day per meter soil depth) over the 10 y of simulation, at different soil depth (in meters),
with monthly mean infiltration depth (blue line) WTD (gray line). The 10-y mean uptake profile is shown to the Right. The map at Center is a reduced version
of Fig. 2. The model exhibits the same behavior as observations under different climate/drainage combinations. In the desert, observations are of single plants
not detectable by satellites, so model results of a nearby grid are shown, which have higher leaf area index and thus deeper uptake than observed.
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