
Nonhierarchical clustering 146

To find a single partition into K clusters of a set of N objects in a p
dimensional space. Two types of criteria are commonly found:

Global criterion such as to represent each cluster by a type-object
(e.g., centroid, medoid) and to assign each object to the nearest
type-object, optimizing some global criterion of internal
homogeneity and/or external heterogeneity, such as, minimizing the
within cluster inertia

Usually requires a prior estimate of the number of clusters

Examples: k-means and k-medoids (PAM) algorithms

Local criterion such as to seek for regions of higher density in data.
May require to set some parameters

Example: DBSCAN
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k-means 147

Shares the same global criterion with Ward’s method:

To minimize the total within-clusters sum of squares (SSQw ) of a set of
points partitioned into K clusters in a d-dimensional space

Algorithm (MacQueen)

1 Starts with K randomly chosen initial seeds representing initial
candidates to centroids;

2 Assigns each object to the nearest centroid

3 Recomputes the centroids of the K groups and use them as the new
seeds

4 Repeat the steps 2 and 3 until no new reassignments occur (in
pratice, until the differences between the old seeds and the new
recomputed seeds are below a given tolerance threshold)
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k-means algorithm 148

no new assignments are required
the algorithm stops the solution corresponds to a (local) minimum

among the original points

INITIAL CONFIGURATION WITH 2 SEEDSA

k = 2 centroids (seeds) are randomly chosen

B

each point is assigned to the nearest seed

F

points are re-assigned to the nearest recomputed centroids

re-assign

SSQw = 70

new centroids and the SSQw are recomputed

SSQw = 32 + 38 = 70

G

new centroids and the SSQw are recomputed

E
SSQw = 22 + 64 = 86

H

SSQw = 32
3 + 320

3 ! 117.3

C

the new centroids of the 2 clusters

and the SSQw statistic are recomputed

D

points are re-assigned to the nearest recomputed centroids

re-assign

FINAL CLUSTERS CONFIGURATION

I
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Convergence of the k-means algorithm 149

The k-means algorithm consists essentially of a sequence of two steps
that are repeatedly iterated:

Reassignment of the points of X to the closest centroid - this step

clearly lowers the statistic SSQw =
K∑

k=1

∑

x∈Ck

‖x −mk‖2

Recalculation of the centroids of the K groups to use as the new
seeds - this step also lowers the SSQw statistic, since it is a well
known fact that the minimum of the quadratic function

f (y) =
∑

x∈G

‖x − y‖2,

with G a finite subset of Rd , is attained at the centroid of G , i.e.,
when y = mG

Since there are only finite number of partitions of X into K clusters, the
algorithm cannot continue indefinitely strictly lowering the SSQw statistic
and therefore has to converge to a (possibly local) minimum

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024



k-means: local minimum problem 150

The clustering solution can be highly depend on the choice of the
initial position of the centroids (seeds) and may converge to a local
minimum

overall minimum

SSQw

partitions into K clusters

local minimums

(suboptimal solution)

(optimal solution)
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Example 151

The solution found by the k-means algorithm in the previous example is
not a global minimum. Actually, with new seeds the algorithm can
converge to a solution that improves (i.e., lowers) the SSQw statistic

SSQw = 56 + 16
3 ! 61.3

k = 2 centroids (seeds) are randomly chosen

among the original points

INITIAL CONFIGURATION WITH 2 SEEDSA B

DC

new centroids of the 2 clusters and the SSQw are recomputed no new re-assignments occur - the algorithm stops

FINAL CLUSTERS

SSQw ! 61.3

the points are assigned to the nearest centroids
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Possible strategies to improve the local minimum? 152

To repeat the algorithm several times with randomized sets of
K seed points and keep the configuration giving the smallest
SSQw value of the within-cluster inertia

To provide an initial configuration of K seed points close to
the final solution relying on some real hypothesis

To provide an initial configuration of seed points issued from
some hierarchical aggregation method (e.g., Ward), using for
instance, their clusters centroids - this is sometimes called the
consolidation of the hierarchical clustering
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k-means in the plane and the Voronoi diagram 153

Given a set of N points in the plane,

{c1, . . . , cK}

the Voronoi diagram is defined as the partition of the plane into K
convex regions, called Voronoi cells,

R1, . . . ,RK

such that each cell Ri consists of the set points of the plane closest to ci

In each step of the k-means algorithm each cluster corresponds to the set
of points of X belonging to one of the Voronoi cells defined be the K
centroids c1,. . . , cK

The above construction can generalized to a set of K points in the
N-dimensional space
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The Voronoi partition and its centroids 154

The partition below into 6 clusters was obtained applying the k-means
algorithm to a highly dense set of points in the plane with 6 seeds, to give
an approximated idea of the Voronoi cells defined by the final centroids

Each cluster arising from a k-means clustering algorithm lies inside the
Voronoi cell containing the respective cluster centroid.
In particular, the convex hulls of the clusters don’t overlap, i.e., each pair
of clusters can be linearly separated.
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Computing k-means with R 155

The k-means clustering can be performed using the R function

kmeans(x, centers, iter.max = 10, nstart = 1, . . . )

x: numeric matrix of data

centers: the number of clusters or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) rows in x is chosen as the initial centres

nstart: if centers is a number, how many random sets should be chosen (repeat)
Returns a list with components:

cluster: A vector of integers (from 1:k) indicating the number of the cluster where
each point is assigned

centers: A matrix of cluster centers.

totss: The total sum of squares, i.e., SSQt

withinss: Vector of within-cluster sum of squares, one component per cluster

tot.withinss: Total within-cluster sum of squares, i.e., SSQw

betweenss:The between-cluster sum of squares, i.e., SSQb

size: The number of points in each cluster
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Example 156

R

require(datasets)

data(cars)

?cars

head(cars)

cars.cl<-kmeans(cars, 3, nstart=100)
# 3 centers randomly chosen repeated 100 times

cars.cl

plot(cars,type=‘‘p’’,pch=16,cex=.5)

for(i in 1:50){points(cars[i,1],
cars[i,2],col=cars.cl$cluster[i], pch=16,type=‘‘p’’)}
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Clustering result
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k-means: summary 158

The optimizing function SSQw is always monotonic decreasing, i.e.,
the intra-group inertia decreases in each step, converging to some
(possibly local) optimum

The number of iterations required to converge is usually small (≈ 10
iterations are enough)

Finding an optimal solution is NP-hard. Actually the time
complexity is O(ndK+1 ln d), where K denotes the number of
clusters, d the dimension and N the number of points)

It tends to form rounded shaped clusters that can be linearly
separated (since each cluster is contained in a Voronoi cell).

In particular, it cannot detect arbitrarily shaped clusters

Nearby points can end in distinct classes. Groups can end empty

Sensitive to noise and outliers

Requires some geometric notion of centroid. In particular, it cannot
be applied to categorical data assumes that the points lie in some
euclidean space
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The model-based clustering as a generalization of k-means
159

The standard model-based clustering is a finite mixture of multivariate
Gaussians, i.e., it is assumed that each cluster Ci is generated by a multivariate
Gaussian distribution with pdf

φ(x |µi ,Σi )

where µi and Σi are the mean and covariance matrix of Ci

One seeks a partition of X into clusters Ci and a mixture of Gaussians with pdf
given by a convex combination of the form

φ =
∑

i

ηiφ(x |µi ,Σi ),

with nonnegative weights ηi , i = 1, . . . ,K , such that
∑

i ηi = 1. To determine
the parameters uses the so-called expectation-maximization algorithm

In the model-based clustering the partition can have clusters with different
covariance matrices i.e., with distinct ellipsoidal shapes, volumes and
orientations, that account with distinct weights to the pdf of the finite mixture

The k-means clustering can be considered a particular case of the model-based

clustering, with all weights ηi equal to
1

K
and identical isotropic covariance

matrices Σi = σ2I (I denotes the identity matrix).
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Best number of clusters and internal cluster quality 160

To estimate the optimal number of clusters we usually look for a good trade-off
between a relatively small number of clusters (parsimony principle) and the
minimization of the information (variability) loss due to replacing the
observations in each cluster by some cluster representative
(for instance, the cluster centroid).

This is one of the most difficult tasks in clustering analysis and no definitive
answer can usually be given.

Several internal cluster validity indices can be used to estimate the optimal
number of clusters and/or to assess the cluster quality. Among the most
well-known indices we have:

SSQw .
Calinski-Harabasz index.
Silhouette coefficient.
Davies-Boudin.
Duhn index.
Several other indices can be computed with the R functions clustCrit
and NbClust.

For a more detailed account on validity indices, See, for instance, O. Arbelaitz et al.
An extensive comparative study of cluster validity indices, Pattern Recognition 46
(2013) 243–256
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Scree plot of SSQw statistic 161

A simple method to estimate the best number of clusters consists to study the
variation of SSQw with number of clusters in a scree plot, which essentially
amounts, by Huygens’s theorem, to study the variation of the percentage of
total inertia retained by the clusters, i.e., explained by the partition, SSQb

SSQt

An elbow point in the scree plot indicating high decrease in the SSQw statistic
while further increments in the number of clusters will only marginally improves
this statistic, could suggest a good estimate for the optimal number of clusters
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Although the statistic SSQw depends on the number of clusters, it can be used
to compare partitions of a given dataset X with the same number of clusters.
Partitions yielding smaller SSQw values are preferable for this criterion.
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Calinski-Harabaz index 162

The Calinski-Harabaz index also known as variance ratio criterion is defined as

CH(K) =
SSQb/(K − 1)

SSQw /(N − K)

with the optimal number of clusters being estimated as the number yielding the
largest value for CH(K). (Inspired in the F -ratio test of one-way ANOVA)
Since we have

CH(K) =
SSQb/(K − 1)

SSQw/(N − K)
=

N − K

K − 1
×

SSQb

SSQw

=
N − 1 + 1− K

K − 1
×

SSQb

SSQw
=

(
N − 1

K − 1
− 1

)
SSQb

SSQw
,

high values of CH(K) are obtained with well separated and homogeneous
clusters, i.e., with large values of SSQb and small values of SSQw , keeping at the
same time, the number of clusters K relatively small, i.e., N−1

K−1 relatively large.

Particularly well adapted when clusters tend to have spherical shapes due to its
definition based on the variance
Several studies suggest Calinski-Harabaz index as being one of the internal
cluster validity indices yielding the best results - see, for instance one of the
reference papers on internal cluster validation,
Milligan GW, Cooper MC (1985) An Examination of Procedures for
Determining the Number of Clusters in a Data Set. Psychometrika 50:159–179.
Can be computed using the R function calinhara of the package fpc
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Silhouette coefficient 163

For each observation i we compute the average dissimilarity a(i)
between i and the remaining points in its cluster

For each one of the other clusters we compute the average
dissimilarity from point i to the points of that cluster and take the
minimum b(i) of these average dissimilarities

The cluster for which the minimum b(i) is attained, i.e., the cluster
with lowest average dissimilarity w.r.t to observation i , is called the
neighbor cluster of i

i

neghbor cluster

b(i)
a(i)

The silhouette coefficient of observation i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}

and gives an indication of how well an element is classified in its cluster
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Interpretation of silhouette coefficients 164

The denominator max{a(i), b(i)} is a normalization term
allowing that the index vary in the range [−1, 1]

Small values of a(i) along with large values of b(i) yield a
silhouette coefficient close to one

Likewise, large values of a(i) along with small values of b(i)
yield a silhouette coefficient close to minus one

Observations with silhouette coefficients close to one are very
well classified

Observations with silhouette coefficients close to zero
probably lie between clusters

Observations with negative silhouette coefficients are probably
misplaced in their clusters
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Silhouette plot 165

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = clus, dist =

Average silhouette width :  0.49

n = 760 3  clusters  Cj
j :  nj | avei∈Cj  si

1 :   205  |  0.62

2 :   264  |  0.49

3 :   291  |  0.41

In the figure on the right the dot sizes are proportional to their silhouette
coefficients. Larger dots lie in core regions of the clusters whereas smaller
dots lie in border regions or between clusters
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Average silhouette width - an internal validity criterion 166

The average silhouette width (ASW) is defined as the average of the silhouette
coefficients for all observations

It assess both cluster cohesion and cluster separation
It increases with a strong cluster separation (higher b(i) values) and cluster
tightness (small values of a(i))

Range of ASW
It is common to consider that

between 0.71 and 1.0: a strong structure has been found
between 0.5 and 0.7: a reasonable structure has been found
between 0.26 and 0.5: the structure is weak and can be artificial
below 0.25: no substantial structure has been found

The optimal number of clusters can be estimated maximizing the ASW

A closely related internal validation criterion is Davies-Bouldin index

DB =
1

K

K∑

i=1

max
j "=i

Si + Sj
mij

Here Si denotes some internal cohesion measure of cluster Ci and mij a separation
measure between clusters Ci and Cj , verifying certain properties...
For instance, Si can be the average distance of the points of Ci to its centroid and mij

the distance between the centroids of Ci and Cj
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Number of clusters? 167

Applying the criteria SSQW statistic, ASW and CH to the Ruspini data,
a popular dataset in clustering analysis, all criteria agree on 4 clusters
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An (internal) cluster validity criterion 168

The average of the silhouette widths of the previous example is close to
.75 suggesting that a strong clustering structure was found in Ruspini
data. Since all silhouette coefficients are above .4 no points are
misplaced in their clusters

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = clus, dist =

Average silhouette width :  0.74

n = 75 4  clusters  Cj
j :  nj | avei∈Cj  si

1 :   23  |  0.75

2 :   20  |  0.73

3 :   17  |  0.67

4 :   15  |  0.80
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Ruspini plot into 4 clusters using the k-means algorithm 169
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Ruspini plot into 4 clusters using the k-means algorithm

R (code)

library(cluster)
ch.res<-rep(NA,10)
si.res<-rep(NA,10)
ssqw.res<-rep(NA,10)
plot(ruspini)
for (n in 2:10){
km <- kmeans(ruspini,n,nstart=500)
ch.res[n]<-round(calinhara(ruspini,km$cluster),digits=2)
si.res[n]<-mean(silhouette(km$cluster,dist(ruspini))[,3])
ssqw.res[n]<-km$tot.withinss
# ssqw.res[n]<-km$betweenss/km$tot.withinss
}
par(mfrow=c(2,2))
plot(ssqw.res,type="b",col="black",main="SSQw")
plot(si.res,type="b",col="blue",main="SIL")
plot(ch.res,type="b",col="red",main="CH")
km <- kmeans(ruspini,4,nstart=500)
plot(ruspini, col=km$cluster)
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External cluster validation 171

COMPARING PARTITIONS
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Motivation 172

Several clustering analyses of the same data can be done using
distinct meaningful combinations of clustering methods and
resemblance notions;

Clustering analyses having a high degree of agreement may suggest
that the common patterns produced by these methods is robust;

If the clustering structure is known a priori and it is important to
assess how well the clustering method was able to reproduce this
structure;

It is very difficult (if not impossible or meaningless) to match each
cluster of a partition with the correct cluster of the other partition

The usual way is to compute the number of pairs of individuals that
both clustering methods agree to assign in the same/distinct class
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Rand index 173

Assume that N individuals are classified by two distinct clustering methods. The

total number of pairs of individuals is
(N
2

)
= N(N−1)

2 . Denote by:

A: number of pairs classified in the same class in both partitions

B: number of pairs classified in the same [distinct] class in the first [second]
partition

C : number of pairs classified in the distinct [same] class in the first [second]
partition

D: number of pairs classified in distinct classes in both partitions

The above quantities can be represented in a contingency table as follows:

Part. 2
Classif. in the Classif. in

Part. 1 same group distinct groups
Classif. in the same group A B A+B
Classif. in distinct groups C D C+D

A+C B+D
(N
2

)
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Rand index 174

Rand index (RI) is a simple concordance index used as an external
validity index to compare partitions and is defined as,

RI =
A+ D
(N
2

) =
A+ D

A+ B + C + D
,

where A+D is the number of agreements for both partitions

It ranges from 0 (total disagreement) to 1 (total agreement)

To each partition of a set of N individuals, x1, . . . , xN we associate a
binary vector of length

(N
2

)
, where the component corresponding to

pair (i , j) is equal 1 if xi and xj are assigned in the same class and 0
otherwise

The Rand index of two partitions is just the simple matching index
between the binary vectors associated to these partitions

Note that the number of groups in each partition can be distinct

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Rand index: example 175

X = {a, b, c , d , e, f }
Partition 1: a b e | c | d f Partition 2: a c | b d | e f





a b c d e
b 1 · · · ·
c 0 0 · · ·
d 0 0 0 · ·
e 1 1 0 0 ·
f 0 0 0 1 0









a b c d e
b 0 · · · ·
c 1 0 · · ·
d 0 1 0 · ·
e 0 0 0 0 ·
f 0 0 0 0 1





The contingency table between partition 1 and partition 2 is

1 0
1 A B A+ B
0 C D C + D

A+ C B + D
(N
2

)
=

1 0
1 0 4 4
0 3 8 11

3 12 15

Hence

RI =
0+ 8
15

= 0.53333 . . .
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Computing the Rand index in R 176

To compute the Rand index of the two partitions in 3 classes,

P1 : a b e | c | d f P1 : a c | b d | e f ,

we encoded these partitions as vectors

(1, 1, 2, 3, 1, 3), (1, 2, 1, 2, 3, 3),

representing the classes of the elements a,b, c, d, e, f

R (Rand index)

# Codigo da funcao do Professor Cadima
rand <- function(class1,class2){
n <- length(class1)
c <- as.dist(outer(class1,class1,"=="))
d <- as.dist(outer(class2,class2,"=="))
rand <- sum(c == d)/(n*(n-1)/2)
return(rand) }
rand(c(1,1,2,3,1,3),c(1,2,1,2,3,3))
# 0.5333333
2 random samples of length 1000 with elements extracted from 1,...,10
p1<-sample(1:10,1000,replace=TRUE)
p2<-sample(1:10,1000,replace=TRUE)
rand(p1,p2)
# 0.8196997
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Correction for chance: adjusted Rand index 177

The expected value of Rand index between random partitions is not constant (e.g., 0).
To overcome this issue Hubert and Arabie proposed the so-called adjusted Rand index

ARI =
RI − E [RI ]

max(RI )− E [RI ]
=

RI − E [RI ]

1− E [RI ]
,

assuming the Permutation Model as the null model for random clusterings i.e., each
partition Pi , i = 1, 2, is drawn at random, subject to having a prescribed number of
classes Ki and a prescribed number of elements Ni,j in each class j = 1, . . . ,Ki .

It can be proved that,

E [RI ] =
2Q1 Q2 −

(N
2

)
(Q1 +Q2) +

(N
2

)

(N
2

)2 ,

where Qi =
∑Ki

j=1

(Nij
2

)
, i = 1, 2, yielding

ARI =

(N
2

)
(A+D)− U
(N
2

)2 − U
,

where U = (A+ B)(A + C) + (D + B)(D + C) and
(N
2

)
= N(N−1)

2 .

ARI ∈ [−1, 1] with ARI ≈ 0 for independent random partitions, ARI = 1 for identical
partitions and ARI < 0 if the partitions have a low agreement.

More difficult to interpret than the more simple Rand index
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