Regressão Linear – Abordagem Inferencial

Regressão Linear - Inferência

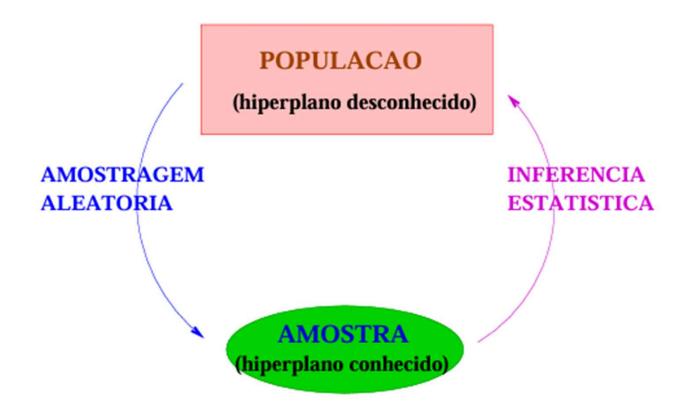
- Até aqui a regressão linear foi usada apenas como técnica descritiva. Se as n observações forem a totalidade da população de interesse, pouco mais há a dizer.
- Mas, com frequência, as n observações são apenas uma amostra aleatória de uma população maior.
- Um hiperplano ajustado a partir duma dada amostra,
 y = b₀ + b₁ x₁ + b₂ x₂ + ... + b_p x_p, é apenas uma estimativa de um hiperplano populacional

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p$$
.

Outras amostras dariam hiperplanos ajustados diferentes.

Coloca-se o problema da inferência estatística.

O problema da Inferência Estatística na Reg. Linear



MODELO - Regressão Linear

A fim de se poder fazer inferência sobre o hiperplano populacional, vamos admitir pressupostos adicionais.

- Y variável resposta aleatória.
- $x_1, ..., x_p$ variáveis preditoras não aleatórias (fixadas pelo experimentador ou trabalha-se condicionalmente aos valores de $x_1, ..., x_p$)

O modelo será ajustado com base em:

 $\{(x_{1(i)}, x_{2(i)}, ..., x_{p(i)}, Y_i)\}_{i=1}^n - n \text{ conjuntos de observações independentes das variáveis } x_1, x_2, ..., x_p e Y, \text{ sobre } n \text{ unidades experimentais.}$

MODELO RL – Linearidade

Vamos ainda admitir que a relação de fundo entre Y e x_1 , x_2 , ..., x_p , é linear (afim), com uma variabilidade aleatória em torno dessa relação, representada por um erro aleatório ε . Para todo o i = 1, ..., n:

$$Y_i = \beta_0 + \beta_1 \quad x_{1(i)} + \dots + \beta_p \quad x_{p(i)} + \epsilon_i$$

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow$

v.a. $cte.$ $cte.$ $cte.$ $cte.$ $cte.$ $cte.$ $cte.$ $cte.$ $cte.$

MODELO Regressão Linear – Os erros aleatórios

Vamos ainda admitir que os erros aleatórios ε_i :

Têm valor esperado (valor médio) nulo:

$$E[\varepsilon_i] = 0$$
, $\forall i = 1,...,n$

(não é hipótese restritiva).

- Têm distribuição Normal (é restritiva, mas bastante geral).
- Homogeneidade de variâncias: têm sempre a mesma variância

$$V[\varepsilon_i] = \sigma^2$$
, $\forall i = 1,...,n$

(é restritiva, mas conveniente).

 São variáveis aleatórias independentes (é restritiva, mas conveniente).

O Modelo Linear

O modelo para inferência na regressão linear é assim:

O Modelo Linear

- $Y_i = \beta_0 + \beta_1 x_{1(i)} + \beta_2 x_{2(i)} + \cdots + \beta_p x_{p(i)} + \varepsilon_i, \quad \forall i = 1, ..., n.$
- $\mathfrak{e}_i \sim \mathcal{N}(0, \sigma^2), \quad \forall i = 1, ..., n.$
- **3** $\{\varepsilon_i\}_{i=1}^n$ v.a. independentes.

NOTA: Os erros aleatórios são variáveis aleatórias independentes e identicamente distribuídas (i.i.d.).

Dado o modelo, o valor esperado (médio) de Y_i , condicional aos valores $x_1, x_2, ..., x_p$ dos preditores, é:

$$\mu_i = E[Y_i | x_1, x_2, ..., x_p] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p$$

NOTA: β_j ($j \neq 0$) é a variação média em Y, associada a um aumento de uma unidade em x_j , mantendo os restantes preditores constantes.

O estudo do modelo

Um primeiro objectivo da inferência: os p+1 parâmetros do modelo, β_j (j=0,1,...,p).

Os parâmetros ajustados $\vec{\mathbf{b}} = (b_0, b_1, b_2, ..., b_p)$, são estimativas desses parâmetros.

Para ser possível construir intervalos de confiança e/ou efectuar testes de hipóteses sobre os valores dos parâmetros populacionais β_i , há-que:

- Definir estimadores $\hat{\beta}_i$ dos parâmetros populacionais;
- conhecer as respectivas distribuições de probabilidades (ao abrigo do Modelo);

A validade da inferência depende da validade dos pressupostos do modelo.

A notação matricial/vectorial

$$\begin{array}{rcl} Y_1 & = & \beta_0 + \beta_1 x_{1(1)} + \beta_2 x_{2(1)} + \cdots + \beta_p x_{p(1)} & + & \varepsilon_1 \\ Y_2 & = & \beta_0 + \beta_1 x_{1(2)} + \beta_2 x_{2(2)} + \cdots + \beta_p x_{p(2)} & + & \varepsilon_2 \\ Y_3 & = & \beta_0 + \beta_1 x_{1(3)} + \beta_2 x_{2(3)} + \cdots + \beta_p x_{p(3)} & + & \varepsilon_3 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ Y_n & = & \underbrace{\beta_0 + \beta_1 x_{1(n)} + \beta_2 x_{2(n)} + \cdots + \beta_p x_{p(n)}}_{=\vec{\mathbf{X}}\vec{\mathbf{B}}} & + & \underbrace{\varepsilon_n}_{=\vec{\mathbf{E}}} \end{array}$$

As n equações correspondem a uma única equação vectorial:

$$\vec{Y} = X\vec{\beta} + \vec{\epsilon} ,$$

onde:

$$\vec{\mathbf{Y}} = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ \vdots \\ Y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{1_{(1)}} & x_{2_{(1)}} & \cdots & x_{\rho_{(1)}} \\ 1 & x_{1_{(2)}} & x_{2_{(2)}} & \cdots & x_{\rho_{(2)}} \\ 1 & x_{1_{(3)}} & x_{2_{(3)}} & \cdots & x_{\rho_{(3)}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1_{(n)}} & x_{2_{(n)}} & \cdots & x_{\rho_{(n)}} \end{bmatrix}, \quad \vec{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}, \quad \vec{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

- \vec{Y} e $\vec{\epsilon}$ são vectores aleatórios,
- X é uma matriz não aleatória e β um vector não-aleatório.

Modelo Regressão Linear - versão vectorial

O Modelo Linear em notação vectorial

- $\mathbf{0} \quad \vec{\mathbf{Y}} = \mathbf{X}\vec{\boldsymbol{\beta}} + \vec{\boldsymbol{\varepsilon}}.$
- $\vec{\epsilon} \sim \mathcal{N}_{n}(\vec{0}, \sigma^{2} \mathbf{I}_{n}), \text{ com } \vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}; \sigma^{2} \mathbf{I}_{n} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma^{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma^{2} & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \sigma^{2} \end{bmatrix}$
- Cada erro aleatório individual ε_i tem distribuição Normal.
- Cada erro aleatório individual tem média zero: $E[\varepsilon_i] = 0$.
- Cada erro aleatório individual tem variância igual: $V[\varepsilon_i] = \sigma^2$.
- Erros aleatórios diferentes são independentes, porque Cov[ε_i, ε_j] = 0 se i ≠ j e, numa Multinormal, isso implica a independência.

A distribuição de **Y**

Teorema (Primeiras Consequências do Modelo)

Dado o Modelo de Regressão Linear, tem-se:

$$\vec{\mathbf{Y}} \sim \mathcal{N}_n(\mathbf{X}\vec{\boldsymbol{\beta}}, \sigma^2 \mathbf{I}_n)$$

De facto, \vec{Y} é soma de vector não aleatório $(\vec{x}\vec{\beta})$ e vector aleatório $(\vec{\epsilon})$:

$$\vec{\mathbf{Y}} = \underbrace{\mathbf{X}\vec{\boldsymbol{\beta}}}_{="\vec{\mathbf{Z}}"} + \underbrace{\vec{\boldsymbol{\varepsilon}}}_{="\vec{\mathbf{Z}}"}.$$

- $\vec{\epsilon} \sim \mathcal{N}(\vec{\mathbf{0}}, \sigma^2 \mathbf{I}_n)$.
- Somar vector constante $(\mathbf{X}\vec{\boldsymbol{\beta}})$ a um vector aleatório Multinormal $(\vec{\boldsymbol{\varepsilon}})$ não destrói a Multinormalidade.
- $E[\vec{Y}] = E[X\vec{\beta} + \vec{\epsilon}] = X\vec{\beta} + E[\vec{\epsilon}] = X\vec{\beta}$.
- $V[\vec{\mathbf{Y}}] = V[\mathbf{X}\vec{\boldsymbol{\beta}} + \vec{\boldsymbol{\varepsilon}}] = V[\vec{\boldsymbol{\varepsilon}}] = \sigma^2 \mathbf{I}_n$

A distribuição de **Y** (interpretação)

$$\vec{\mathbf{Y}} \sim \mathcal{N}_n(\mathbf{X}\vec{\boldsymbol{\beta}}, \sigma^2 \mathbf{I}_n)$$

Tendo em conta as propriedades da Multinormal:

- Cada observação individual Y_i tem distribuição Normal.
- Cada observação individual Y_i tem média $\mu_i = E[Y_i] = \vec{\mathbf{x}}_{[i,]}^t \vec{\boldsymbol{\beta}} = \beta_0 + \beta_1 x_{1(i)} + \beta_2 x_{2(i)} + ... + \beta_p x_{p(i)}.$
- Cada observação individual tem variância igual: $V[Y_i] = \sigma^2$.
- Observações diferentes de Y são independentes, porque Cov[Y_i, Y_j] = 0 se i ≠ j e, numa Multinormal, isso implica a independência.

O vector de estimadores $\hat{\beta}$

O vector de estimadores $\vec{\hat{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p)^t$ é definido a partir da equação do vector $\vec{\mathbf{b}}$ de estimativas mas substituindo o vector $\vec{\mathbf{y}}$ de valores observados de Y pelo vector aleatório $\vec{\mathbf{Y}}$.

Estimadores de Mínimos Quadrados dos parâmetros

$$\hat{\hat{\beta}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \vec{\mathbf{Y}}.$$

O vector $\vec{\hat{\beta}}$ é de dimensão p+1. O seu primeiro elemento é o estimador de β_0 , o seu segundo elemento é o estimador de β_1 , etc... Em geral, o estimador de β_j está na posição j+1 do vector $\vec{\hat{\beta}}$.

Os resultados gerais já referidos permitem facilmente determinar a distribuição de probabilidades do estimador $\hat{\beta}$.

A distribuição do vector de estimadores $\hat{oldsymbol{eta}}$

Teorema (Distribuição do estimador $\hat{\beta}$)

Dado o Modelo de Regressão Linear Múltipla, tem-se:

$$\vec{\hat{\beta}} \sim \mathscr{N}_{p+1}(\vec{\beta}, \sigma^2(\mathbf{X}^t\mathbf{X})^{-1})$$

 $\hat{\beta}$ é produto de matriz não aleatória, $(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t$, e vector aleatório, $\vec{\mathbf{Y}}$:

$$\hat{\boldsymbol{\beta}} = \underbrace{(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t}_{\mathbf{B}''} \underbrace{\vec{\mathbf{Y}}}_{\mathbf{Z}''}.$$

- $\vec{\mathbf{Y}} \sim \mathcal{N}_n(\mathbf{X}\vec{\boldsymbol{\beta}}, \sigma^2 \mathbf{I}_n)$.
- Multiplicar matriz constante, (X^tX)⁻¹X^t, por um vector aleatório Multinormal (Y)
 não destrói a Multinormalidade.
- $\mathbf{E}[\vec{\hat{\beta}}] = \mathbf{E}[(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \vec{\mathbf{Y}}] = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{E}[\vec{\mathbf{Y}}] = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{X} \vec{\beta} = \vec{\beta}.$
- $V[\hat{\boldsymbol{\beta}}] = V[(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \hat{\mathbf{Y}}] = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t V[\hat{\mathbf{Y}}][(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t]^t = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \cdot \sigma^2 \mathbf{I}_n \cdot \mathbf{X}[(\mathbf{X}^t \mathbf{X})^{-1}]^t = \sigma^2 \cdot (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{X}[(\mathbf{X}^t \mathbf{X})^t]^{-1} = \sigma^2 (\mathbf{X}^t \mathbf{X})^{-1}.$

A distribuição de $\vec{\hat{\beta}}$ (interpretação)

$$\vec{\hat{\beta}} \sim \mathscr{N}_{p+1}(\vec{\beta}, \sigma^2(\mathbf{X}^t\mathbf{X})^{-1})$$
.

Tendo em conta as propriedades da Multinormal

- Cada estimador individual $\hat{\beta}_i$ tem distribuição Normal.
- Cada estimador individual tem média $E[\hat{\beta}_j] = \beta_j$, logo é centrado
- Cada estimador individual tem variância $V[\hat{\beta}_j] = \sigma^2 (\mathbf{X}^t \mathbf{X})^{-1}_{(j+1,j+1)}$. (Note-se o desfasamento nos índices).
- Estimadores individuais diferentes não são (em geral) independentes, porque $(\mathbf{X}^t\mathbf{X})^{-1}$ não é, em geral, uma matriz diagonal: $Cov[\hat{\beta}_i, \hat{\beta}_j] = \sigma^2 (\mathbf{X}^t\mathbf{X})^{-1}_{(i+1,j+1)}$.
- Logo, o estimador $\hat{\beta}_j$ de um parâmetro individual β_j tem distribuição $\hat{\beta}_j \sim \mathcal{N}(\beta_j \ , \ \sigma_{\hat{\beta}_j}^2)$, com $\sigma_{\hat{\beta}_j}^2 = \sigma^2(\mathbf{X}^t\mathbf{X})_{(j+1,j+1)}^{-1}$.

Estimação dos parâmetros do Modelo RLS

A recta do modelo RLS tem dois parâmetros: β_0 e β_1 .

Definem-se estimadores desses parâmetros a partir das expressões amostrais obtidas para b_0 e b_1 pelo Método dos Mínimos Quadrados.

Recordar:
$$b_1 = \frac{cov_{xy}}{s_x^2} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1) s_x^2} = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})y_i}{(n-1) s_x^2} = \sum\limits_{i=1}^{n} \frac{x_i - \overline{x}}{(n-1) s_x^2} y_i$$

Estimador de β_1

$$\hat{\beta}_1 = \sum_{i=1}^n \frac{x_i - \overline{x}}{\frac{(n-1)}{N_X^2}} Y_i = \sum_{i=1}^n c_i Y_i, \quad \text{com } c_i = \frac{x_i - \overline{x}}{\frac{(n-1)}{N_X^2}}$$

Nota: O estimador $\hat{\beta}_1$ é combinação linear de Normais independentes, logo tem distribuição Normal.

Estimação dos parâmetros do Modelo RLS (cont.)

Recordar: $b_0 = \overline{y} - b_1 \overline{x}$.

Estimador de β_0

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} = \frac{1}{n} \sum_{i=1}^n Y_i - \overline{x} \sum_{i=1}^n c_i Y_i = \sum_{i=1}^n \left(\frac{1}{n} - \overline{x} c_i \right) Y_i = \sum_{i=1}^n d_i Y_i,$$

com

$$d_i = \frac{1}{n} - \overline{x}c_i = \frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{(n-1)S_x^2}.$$

Quer $\hat{\beta}_1$, quer $\hat{\beta}_0$, são combinações lineares das observações $\{Y_i\}_{i=1}^n$, logo são combinações lineares de variáveis aleatórias Normais independentes. Logo, ambos os estimadores têm distribuição Normal.

Distribuição dos estimadores RLS

Distribuição dos estimadores dos parâmetros

Dado o Modelo de Regressão Linear Simples,

$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{(n-1)S_x^2}\right),$$

$$\hat{\beta}_0 \sim \mathcal{N}\left(\beta_0, \sigma^2\left[\frac{1}{n} + \frac{\overline{x}^2}{(n-1)S_x^2}\right]\right)$$

NOTAS:

- **1** Ambos os estimadores são centrados: $E[\hat{\beta}_1] = \beta_1$ e $E[\hat{\beta}_0] = \beta_0$.
- Quanto maior (n-1) S_X^2 , menor a variância dos estimadores.
- **3** A variância de $\hat{\beta_0}$ também diminui com o aumento de n, e com a maior proximidade de \overline{x} de zero.

A distribuição na amostragem de $\hat{\beta}_i$ (interpretação)



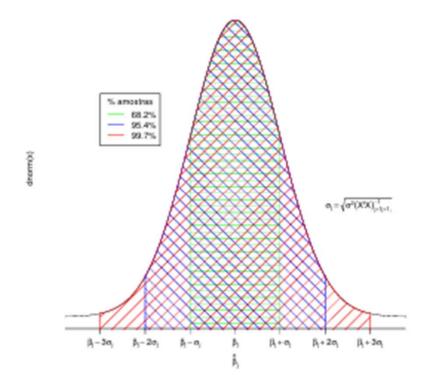
O conjunto de todas as possíveis amostras de dimensão *n* designa-se o Universo de Amostragem

A distribuição de probabilidades de $\hat{\beta}_j$ pode ser vista como a distribuição dos valores de b_i ao longo do Universo de Amostragem.

A distribuição na amostragem de $\hat{\beta}_j$ (interpretação)

$$\hat{\beta}_j \frown \mathcal{N}(\beta_j, \sigma_{\hat{\beta}_j}^2)$$
 com $\sigma_{\hat{\beta}_j}^2 = \sigma^2(\mathbf{X}^t\mathbf{X})_{(j+1,j+1)}^{-1}$.

Distribuição na amostragem de ß



A distribuição dum estimador individual

Como se viu, tem-se, $\forall j = 0, 1, ..., p$:

$$\hat{\beta}_{j} \quad \frown \quad \mathscr{N}\left(\beta_{j} , \sigma^{2}(\mathbf{X}^{t}\mathbf{X})_{(j+1,j+1)}^{-1}\right)$$

$$\Leftrightarrow \quad \frac{\hat{\beta}_{j} - \beta_{j}}{\sigma_{\hat{\beta}_{j}}} \quad \frown \quad \mathscr{N}(0,1) ,$$

$$\text{com } \sigma_{\hat{\beta}_j} = \sqrt{\sigma^2 (\mathbf{X}^t \mathbf{X})_{(j+1,j+1)}^{-1}}.$$

Este resultado distribucional permitiria construir intervalos de confiança ou fazer testes a hipóteses sobre os parâmetros $\vec{\beta}$, não fosse o desconhecimento da variância σ^2 dos erros aleatórios.

Distribuição dos estimadores RLS

Distribuição dos estimadores (cont.)

Dado o Modelo de Regressão Linear Simples,

NOTAS:

- O desvio padrão dum estimador designa-se erro padrão (em inglês, standard error).
- Não confundir os erros padrão dos estimadores, $\sigma_{\hat{\beta}_1}$ e $\sigma_{\hat{\beta}_0}$, com o desvio padrão σ dos erros aleatórios.

O problema de σ^2 desconhecido

Para poder utilizar um estimador $\hat{\beta}_j$ na inferência, é preciso conhecer a sua distribuição de probabilidades, sem a presença de quantidades não-amostrais desconhecidas, além de β_i .

Para ultrapassar este problema é preciso:

- obter um estimador para σ^2 ; e
- ver o que acontece à distribuição de $\hat{\beta}_j$ quando σ^2 é substituído pelo seu estimador.

Como $\sigma^2 = V(\varepsilon_i)$, $\forall i$, e como os erros aleatórios ε_i são desconhecidos, é natural procurar um estimador de σ^2 através dos resíduos.

Estimando σ^2

Quadrado Médio Residual (QMRE)

Define-se o Quadrado Médio Residual como

QMRE =
$$\frac{SQRE}{n-(p+1)} = \frac{\sum_{i=1}^{n} E_i^2}{n-(p+1)}$$

Dado o Modelo Linear, $\hat{\sigma}^2 = QMRE$ é um estimador centrado da variância comum dos erros aleatórios, $\sigma^2 = V[\varepsilon_i]$:

$$E[QMRE] = \sigma^2$$
.

O Quadrado Médio Residual tem como unidades de medida o quadrado das unidades de Y.

Quantidades fulcrais para a inferência sobre β_j

A estimação dos erros padrão com o QMRE transforma as distribuições normais em distribuições *t-Student*

Teorema (Distribuições para a inferência sobre β_i)

Dado o Modelo de Regressão Linear Múltipla, tem-se

$$\frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_{\hat{\beta}_j}} \frown t_{n-(p+1)}, \qquad \forall j = 0, 1, ..., p$$

$$com \ \hat{\sigma}_{\hat{\beta}_j} = \sqrt{QMRE \cdot (\mathbf{X}^t \mathbf{X})_{(j+1,j+1)}^{-1}}.$$

Este Teorema dá-nos os resultados que servem de base à construção de intervalos de confiança e testes de hipóteses para os parâmetros β_j do modelo populacional.

Quantidades centrais para a inferência sobre β_0 e β_1

A estimação dos erros padrão com o QMRE transforma as distribuições normais em distribuições *t-Student*

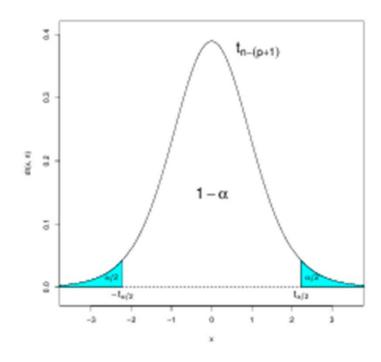
Distribuições *t-Student* para a inferência sobre β_0 e β_1

Dado o Modelo de Regressão Linear Simples, prova-se que:

Este Teorema é crucial, pois dá-nos os resultados que servirão de base à construção de intervalos de confiança e testes de hipóteses para os parâmetros da recta populacional, β_0 e β_1 .

Dedução de intervalo de confiança para β_i

Sabemos que $\frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_{\hat{\beta}_j}} \ \frown \ t_{n-(p+1)}$. Logo,



$$P\left[-t_{\frac{\alpha}{2}} < \frac{\hat{\beta}_{j} - \beta_{j}}{\hat{\sigma}_{\hat{\beta}_{j}}} < t_{\frac{\alpha}{2}}\right] = 1 - \alpha$$

Dedução IC para β_i (cont.)

Trabalhar a dupla desigualdade até isolar β_i :

$$P\left[-t_{\frac{\alpha}{2}} < \frac{\hat{\beta}_{j}-\beta_{j}}{\hat{\sigma}_{\hat{\beta}_{j}}} < t_{\frac{\alpha}{2}}\right] = 1-\alpha$$

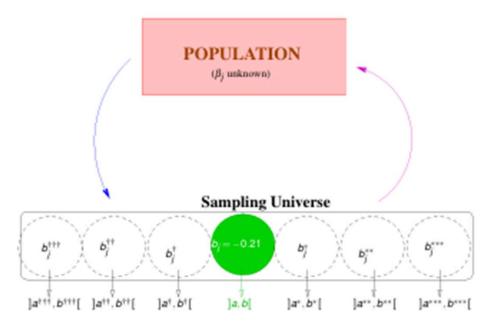
O intervalo aleatório

$$] \hat{\beta}_j - t_{\frac{\alpha}{2}} \cdot \hat{\sigma}_{\hat{\beta}_j} , \hat{\beta}_j + t_{\frac{\alpha}{2}} \cdot \hat{\sigma}_{\hat{\beta}_j} [$$

contém β_i com probabilidade $1 - \alpha$.

Intervalo aleatório para β_j (interpretação)

$$] \hat{\beta}_j - t_{\frac{\alpha}{2}} \cdot \hat{\sigma}_{\hat{\beta}_j} , \hat{\beta}_j + t_{\frac{\alpha}{2}} \cdot \hat{\sigma}_{\hat{\beta}_j} [$$



Cada amostra no Universo de Amostragem gera um intervalo concreto, chamado Intervalo de Confiança

Uma proporção $1-\alpha$ desses intervalos contêm o verdadeiro valor de β_j . Os restantes α não contêm β_j .

Intervalo de confiança para β_i

Intervalo de Confiança a $(1 - \alpha) \times 100\%$ para β_i

Dado o Modelo de Regressão Linear Múltipla e uma amostra, eis o intervalo a $(1-\alpha) \times 100\%$ de confiança para o parâmetro β_i :

sendo:

- b_j o elemento j+1 do vector das estimativas $\vec{\mathbf{b}}$
- $t_{\frac{\alpha}{2}[n-(p+1)]}$ o quantil de ordem $1-\frac{\alpha}{2}$ da distribuição $t_{n-(p+1)}$;
- $\hat{\sigma}_{\hat{\beta}_j} = \sqrt{QMRE \cdot (\mathbf{X}^t \mathbf{X})_{(j+1,j+1)}^{-1}}$ (com o valor de QMRE na nossa amostra).

NOTA: A amplitude do IC aumenta com *QMRE* e o valor diagonal da matriz $(\mathbf{X}^t\mathbf{X})^{-1}$ correspondente ao parâmetro β_i .

Intervalo de confiança para β_1

Intervalo de Confiança a $(1-\alpha) \times 100\%$ para β_1

Dado o Modelo RLS, um intervalo a $(1-\alpha) \times 100\%$ de confiança para o declive β_1 da recta de regressão populacional é dado por:

$$\ \, \Big] \, b_1 - t_{\frac{\alpha}{2}[n-2]} \, \hat{\sigma}_{\hat{\beta_1}} \quad , \quad b_1 + t_{\frac{\alpha}{2}[n-2]} \, \hat{\sigma}_{\hat{\beta_1}} \, \Big[\ ,$$

tendo $t_{\frac{\alpha}{2}[n-2]}$, b_1 e $\hat{\sigma}_{\hat{\beta_1}}$ sido definidos em acetatos anteriores.

NOTAS:

- O intervalo é centrado em b₁.
- A amplitude do intervalo é $2 \times t_{\frac{\alpha}{2}[n-2]} \hat{\sigma}_{\hat{\beta_1}}$.
- A amplitude aumenta com *QMRE* e diminui com $n \in S_X^2$: $\hat{\sigma}_{\hat{\beta}_1} = \sqrt{\frac{QMRE}{(n-1)S_X^2}}$
- A amplitude do IC aumenta para maiores graus de confiança $1-\alpha$.

Intervalo de confiança para β_0

Intervalo de Confiança a $(1-\alpha) \times 100\%$ para β_0

Dado o Modelo de Regressão Linear Simples, um intervalo a $(1-\alpha) \times 100\%$ de confiança para a ordenada na origem, β_0 , da recta populacional é:

$$\left]\;b_0-t_{\frac{\alpha}{2}[n-2]}\cdot\hat{\sigma}_{\hat{\beta_0}}\quad,\quad b_0+t_{\frac{\alpha}{2}[n-2]}\cdot\hat{\sigma}_{\hat{\beta_0}}\;\right[\;,$$

onde $t_{\frac{\alpha}{2}[n-2]}$, b_0 e $\hat{\sigma}_{\hat{\beta}_0}$ foram definidos em acetatos anteriores.

NOTAS:

- O intervalo é centrado em b₀.
- A amplitude do intervalo é $2 \times t_{\frac{n}{2}[n-2]} \hat{\sigma}_{\hat{\beta_0}}$.
- A amplitude aumenta com QMRE e com \overline{x}^2 e diminui com $n \in s_x^2$:

$$\hat{\sigma}_{\hat{\beta}_0} = \sqrt{QMRE \cdot \left[\frac{1}{n} + \frac{\overline{x}^2}{\frac{(n-1)}{S_X^2}}\right]}$$

A amplitude do IC aumenta para maiores graus de confiança 1-α.

Ainda o exemplo dos lírios

RLM

proc reg data=iris;

model PetalWidth = SepalLength SepalWidth PetalLength/clb;

run;

Parameter Estimates							
Variable	DF	Parameter Estimate	And the second s	t Value	Pr > t	95% Confidence Limits	
Intercept	1	-0.24031	0.17837	-1.35	0.1800	-0.59283	0.11221
SepalLength	1	-0.20727	0.04751	-4.36	<.0001	-0.30115	-0.11338
SepalWidth	1	0.22283	0.04894	4.55	<.0001	0.12611	0.31955
PetalLength	1	0.52408	0.02449	21.40	<.0001	0.47568	0.57249

Exemplo b_1 : na nossa amostra estima-se que, em média, a largura da pétala diminui 0.20727 cm por cada aumento de 1 cm no comprimentos da sépala (mantendo-se as outras medições constantes).

Como $t_{0.025(146)=1.976346}$, o IC a 95% para β_1 é:

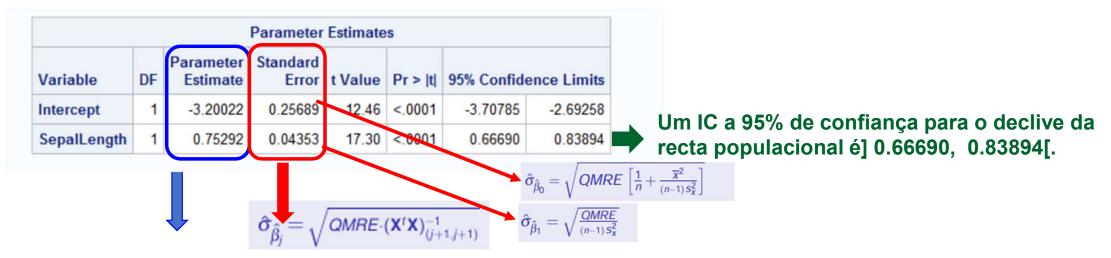
 $](-0.20727) - (1.976346)(0.04751) \ , (-0.20727) + (1.976346)(0.04751)[$

 \Leftrightarrow]-0.30115, -0.11338[

As estimativas dos desvios padrão associados à estimação de cada um dos parâmetros

Temos 95% de confiança em como o verdadeiro valor de β_1 (na população) está compreendido entre -0.30115 e -0.11338.

Ainda o exemplo dos lírios



Nota: O coeficiente associado ao preditor *Sepal.Length* na regressão linear simples agora ajustada é positivo, b_1 =0.75292. No modelo de regressão linear múltipla obteve-se um resultado differente, pois contém, além do preditor comprimento da sépala, outros dois preditores (largura da sépala e comprimento da pétala), que contribuem para a formação dos valores ajustados. Na presença desses dois preditores, a contribuição do comprimento da sépala teve um sinal negativo. Esta aparente contradição sublinha uma ideia importante: a introdução (ou exclusão) de preditores numa regressão linear têm efeitos sobre todos os parâmetros, não sendo possível prever qual será a equação ajustada sem refazer as contas do ajustamento.