ANÁLISE DE VARIÂNCIA

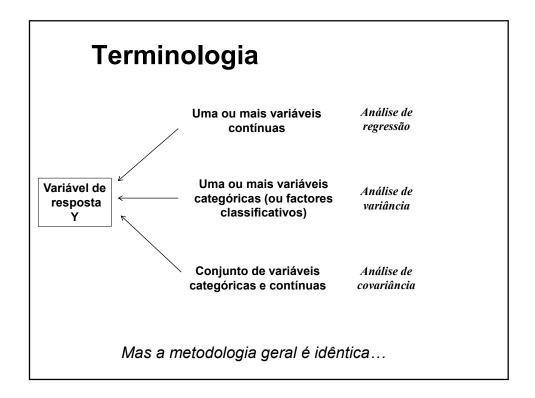
L.T. Gama R.J.B. Bessa

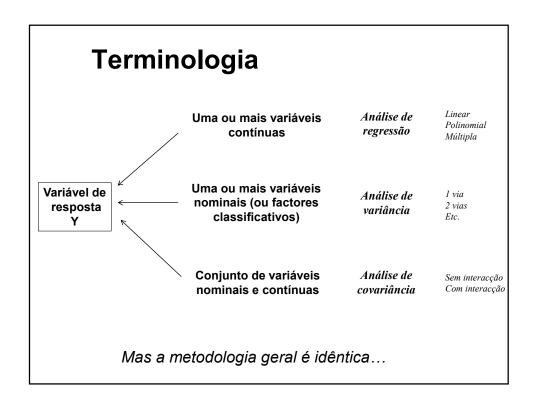
Nota histórica

- ANOVA inicialmente proposta por Sir Ronald Fisher
 - ◆ Teste F…
 - Muitos outros métodos estatísticos
 - Publicou "Statistical Methods for Research Workers" - 1925
- Deu contributo fundamental no desenvolvimento da Genética de Populações e Quantitativa
 - Publicou "The Genetical Theory of Natural Selection" - 1930
 - Mentor da síntese evolucionista moderna (com S. Wright e J. Haldane)

Rothamsted

Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis.

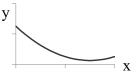

Sir R. Fisher - The Design of Experiments, 1935

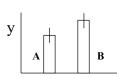

A hypothesis is an idea that can be tested and disproved but not proven.

??

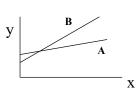
Make everything as simple as possible, but no simpler.

Albert Einstein

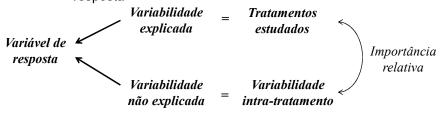



Terminologia

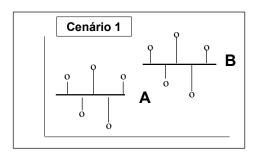
■ Resultados e interpretação diferentes

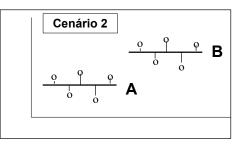

◆ Análise de regressão

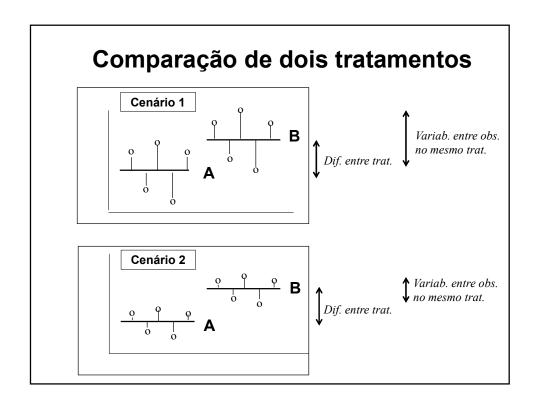
◆ Análise de variância

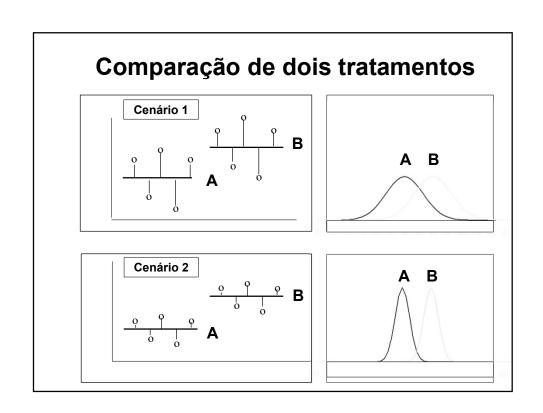


• Análise de covariância

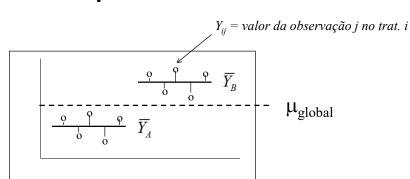



Análise de variância (ANOVA)


- Procedimento estatístico que permite estudar a variabilidade entre observações, considerando a influência de diferentes factores.
 - Forma mais comum de comparar as médias de diferentes tratamentos
- Objectivo
 - Saber como diferentes factores afectam uma variável de resposta



Comparação de dois tratamentos



ANOVA Uma via de classificação (one-way)

- Uma variável de resposta
- Um único factor de variação
 - Com diferentes níveis

Como repartir a variabilidade?

Como repartir a variabilidade?

 \blacksquare Desvio de uma observação em relação à média (Y $_{ij}$ - μ)

Como repartir a variabilidade?

Desvio de uma observação em relação à média (Y_{ij} - μ)

$$\underbrace{Y_{ij} - \mu}_{\text{Desvio de } \mu} = \underbrace{(\overline{Y_i} - \mu)}_{\text{Ef. do trat.}} + \underbrace{(Y_{ij} - \overline{Y_i})}_{\text{Desvio residual}}_{\text{Eq. }}$$

$$\underbrace{\tau_i}_{\text{eij}}$$

$$Y_{ij} = \mu + (\overline{Y_i} - \mu) + (Y_{ij} - \overline{Y_i})$$

Ef. do trat. Desvio residual

 τ_i e_{ij}

$$Y_{ij} = \mu + \tau_i + e_{ij}$$

ANOVA

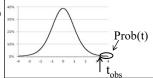
■ Modelo linear

◆ Admitindo uma via de classificação

$$Y_{ij} = \mu + \tau_i + e_{ij}$$

- i.e., uma observação resulta do efeito cumulativo de:
 - Média global (μ)
 - Efeito do tratamento (τ_i)
 - Desvio residual (e_{ii})

Porquê ANOVA?


■ Se a comparação é entre dois tratamentos

•
$$H_0$$
: $\mu_A = \mu_B$; H_A : $\mu_A \neq \mu_B$

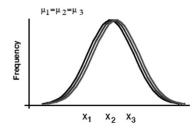
- ◆ T-teste
 - Visto anteriormente

• a)
$$t_{obs} = \frac{\overline{X}_A - \overline{X}_B}{\sqrt{\frac{2s^2}{n}}}$$

- b1) Comparar com t_{crit.} tabelado
- b2) Obter P-value do t_{obs.}

Porquê ANOVA?

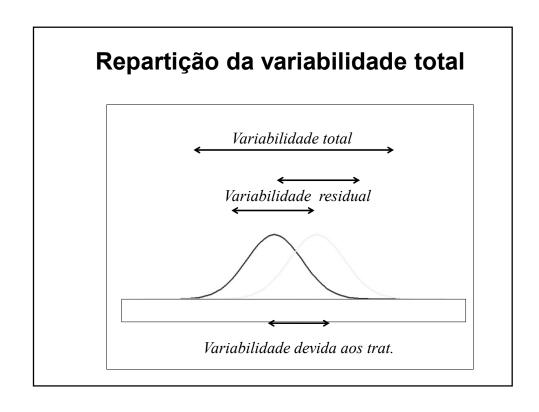
- Se a comparação for de mais de 2 tratamentos
 - ◆ Seria tentador realizar comparações 2 a 2 (t-teste)
 - Contudo, a Prob. Erro tipo I global seria maior que o α pré-determinado
 - Exemplo: 4 tratamentos (A, B, C, D)
 - Há 6 comparações possíveis
 - · AB, AC, AD, BC, BD, CD
 - Probabilidade de que pelo menos uma das comparações na experiência resulte num erro do tipo I
 - $\alpha_{exp} = 1-(1-\alpha)^c$ $c = n^o$ comparações
 - Neste caso, com α=0.05 e c=6
 - $\alpha_{exp} = 0.265$

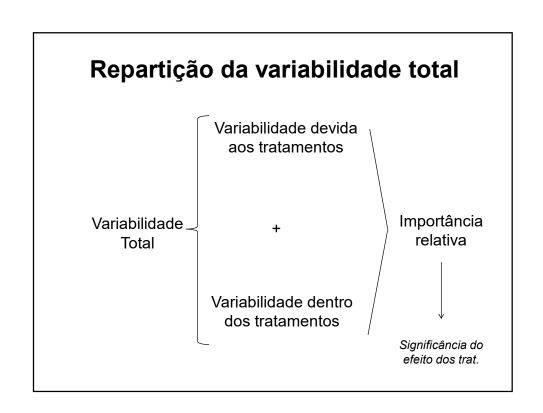

Relembrando

- A type I error (false-positive) occurs if an investigator rejects a null hypothesis that is actually true in the population;
- a type II error (false-negative) occurs if the investigator fails to reject a null hypothesis that is actually false in the population.

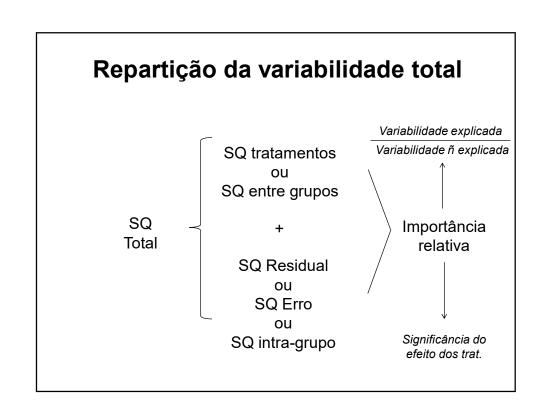

Porquê ANOVA?

- Se a comparação for de mais de 2 tratamentos
 - Alternativa mais correcta (+conservadora?)
 - Comparar
 - · Variabilidade entre tratamentos
 - Variabilidade dentro dos tratamentos
 - Teste de Hipóteses
 - H_0 : $\mu_A = \mu_B = \mu_C$
 - H_A: pelo menos uma diferença entre médias
 - Outros testes permitem identificar quais médias diferem


Teste de hipóteses



$$H_0$$
: $\mu_A = \mu_B = \mu_C$



H_A: pelo menos uma diferença entre médias

Repartição da variabilidade total Variabilidade devida aos tratamentos (Soma dos desvios da média dos trat. em relação à média global)2 Importância Variabilidade_ relativa Total Variabilidade dentro (Soma dos desvios de dos tratamentos cada observ. em relação à média global)2 (Soma dos desvios de cada observ. em relação à média do trat. respectivo)2 Significância do efeito dos trat.

Terminologia

■ Variabilidade total = variância total de y

$$SQ \; \textit{Trat} \; \longrightarrow \; \textit{MQ} \; \textit{Trat} = \frac{\textit{SQ} \; \textit{Trat}}{\textit{g.l. trat}} \\ + \\ SQ \; \textit{Erro} \; \longrightarrow \; \textit{MQ} \; \textit{Erro} = \frac{\textit{SQ} \; \textit{Erro}}{\textit{g.l. erro}}$$

Repartição da variabilidade total

$$\begin{array}{c|c} & SQ & MQ \\ \hline \text{Tratamentos} & \hline / \text{glt} & MQ \\ \hline \text{Trat.} & \\ & + & \\ \hline \sum (Y-\overline{Y})^2 & SQ & MQ \\ \hline \text{Erro} & \hline / \text{gle} & MQ \\ \hline \text{Erro} & \hline \end{array}$$

Repartição da variabilidade total

■ Tabela ANOVA

Fonte de variação	g.l.	Soma de Quadrados	Média de Quadrados	F
Tratamentos	t-1	$SQTrat = \sum (\bar{y}_{i.} - \bar{y}_{})^2$		$F = \frac{MQTrat}{MQErro}$
Resíduo	t(n-1)	$SQErro = \sum (y_{ij} - \overline{y}_{i.})^{2}$	$MQErro = \frac{SQErro}{t(n-1)}$	
Total	tn-1	$SQTotal = \sum (y_{ij} - \overline{y}_{})^{2}$		

 $t = n^{\circ} tratamentos$ $n = n^{\circ} observ./trat.$ y_{ij} = valor da observ. indiv.

 $\bar{y}_{i.} = m\acute{e}diadotrat.i$ $\bar{y}_{..} = m\acute{e}diaglobal$

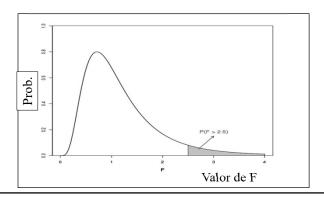
ANOVA

Recordar:

$$s_y^2 = \frac{\sum (y_i - \bar{y})^2}{n - 1} = \frac{\sum y_i^2 - \frac{(\sum y_i)^2}{n}}{n - 1}$$

Como a SQTot corresponde ao numerador de s²_v

$$SQT = \sum (y_{ij} - \bar{y})^2 = \left(\sum y_{ij}^2 - \frac{(\sum y_{ij})^2}{n}\right)$$

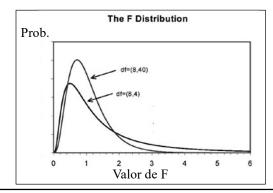

 Σ obs. ao quadrado

Correcção para a média

ANOVA

Quociente de duas variâncias

- ◆ Tem distribuição F
 - Forma geral da distribuição F

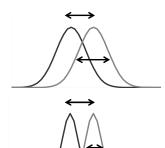

ANOVA

Quociente de duas variâncias

MQTrat MQErro

- ◆ No entanto a distribuição F...
 - Forma da distribuição F depende de

 $\frac{gl\ Trat}{gl\ Erro}$


Distribuição F

■ Valor de F é tanto maior quando o numerador aumenta em relação ao denominador, i.e. :

quando $\frac{Variabilidade\ entre\ Tratamentos}{Variabilidade\ Re\ sidual}$ aumenta

- Se não existir qualquer efeito dos tratamentos em estudo, o valor de F será ~1.
 - Significa que os vários tratamentos provêm de uma mesma população, e diferem apenas devido à amostragem

Distribuição das observações para tratamentos A e B

Valores aproximados de F

ns

**

F = 3.0

**

Teste de significância

- Calcular F_{obs}
- Alternativa 1
 - ullet Obter F_{crit} . para α , gl trat, gl erro
 - Se $F_{obs} > F_{crit}$ então rejeitar H_0

Table A.(> F-DistributionProbability Table Valores críticos $\alpha = 0.05$ Distribuição F 215.71 19.16 9.28 6.59 5,11 230.16 19.30 9.01 6.26 5.05

Teste de significância

- Calcular F_{obs}
- Alternativa 1
 - ullet Obter F_{crit} . para α , glt, gle
 - Se F_{obs} > F_{crit} então rejeitar H_0
- Alternativa 2
 - ◆ Obter P-value para F_{obs}
 - Se P(F) < α, então rejeitar H₀

- F não significativo
 - ◆ Falhamos rejeição de H₀
 - Globalmente médias não diferem
 - · Acabou a análise!!!
- F significativo
 - ◆ Pelo menos 2 médias diferem
 - Quais???
 - Testes de comparações múltiplas
 - · Testes post-hoc
 - · Contrastes ortogonais

ANOVA - Síntese

■ 1. Modelo Linear

$$Y_{ij} = \mu + \tau_i + e_{ij}$$

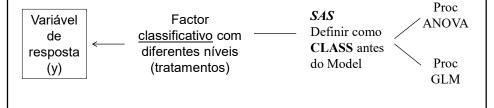
- 2. Definir teste de Hipóteses
 - H_0 : $\mu_A = \mu_B = \mu_C$
 - HA: pelo menos uma diferença entre médias

■ 3. Realizar ANOVA

ANOVA - Síntese

4. Resultados da ANOVA

 \bullet Testar H_0 - Função de α e g.l.


ANOVA

Pressupostos

- Amostragem foi aleatória e tratamentos atribuídos aleatoriamente
- Observações em cada tratamento têm distribuição normal
- Resíduos têm distribuição normal e igual em todos os tratamentos
 - $e_{ii} \sim N (0, \sigma_{e}^{2})$ "Erros são homoscedásticos"
- ◆ Pressuposto inicial: H₀ é verdadeira
 - tentar encontrar evidência em contrário

Software para ANOVA

■ Em qualquer caso há que definir modelo

Software para ANOVA

- SAS
 - Proc ANOVA
 - Apenas para dados balanceados
 - ◆ Proc GLM
 - Mais flexível

(Tb Proc Mixed ou Proc Glimmix)

 Indispensável definir quais são os factores classificativos ou descontínuos

> Proc GLM; **class A**; Model y = **A**;

Software para ANOVA

■ SAS - Exemplo

Data a;

• • •

Proc GLM; Class A;

Model y = A;

LSMeans A / opções;

Exemplo

- Avaliação da cardiotoxicidade do isoproterenol em ratinhos obesos
 - Duas estirpes de ratinhos (Ob e BALB/c)
 - Isoproterenol
 - agente β-agonista capaz de induzir enfarte
 - injectado a 10 animais de cada estirpe (1 mg/kg)
 - Isquémia do miocárdio avaliada pela concentração de troponina cardíaca I às 8 h

Exemplo - Resultados

Rato	Estirpe	Conc_troponina (ng/ml)
1	BALB	5
2	BALB	4
3	BALB	6
4	BALB	4
5	BALB	5
6	BALB	8
7	BALB	6
8	BALB	5
9	BALB	7
10	BALB	4
11	ОВ	8
12	ОВ	7
13	ОВ	8
14	ОВ	9
15	ОВ	6
16	ОВ	10
17	ОВ	7
18	ОВ	5
19	ОВ	6
20	ОВ	8

10_ratos_obesos.xls

Ponto prévio

- Antes de proceder a qualquer análise, devemos assegurar-nos da "normalidade" dos dados
 - ◆ SAS Proc Univariate
- Neste caso, como são muito poucas observações e simuladas, dispensamos

Confirmar que tudo bate certo

	gl	SQ	MQ	F	P(F)
Tratamentos	1	20.0	20.000	9.783	0.006
Erro	18	36.8	2.044		
Total	19	56.8		R^2	= 0.352

- g.l.
- Diferenças das SQ
- MQ
- F
- R²

Resultados SAS - GLM

ependent Variable: o	conc_trop					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		1	20.00000000	20.00000000	9.78	0.0058
Error		18	36.80000000	2.0444444		
Corrected To	otal	19	56.80000000			
	R-Square	Coef	f Var Root 1	MSE conc_trop	Mean	
	0.352113	22.3	34126 1.429	841 6.4	00000	
Source		DF	Type I SS	Mean Square	F Value	Pr > I
estirpe		1	20.00000000	20.00000000	9.78	0.0058
Source		DF	Type III SS	Mean Square	F Value	Pr > I
estirpe		1	20.00000000	20.00000000	9.78	0.0058

o SAS dá-nos também:

- DPR = 1.43
- CVR = 22.3%

Alternativa...

- Neste caso existiam apenas 2 tratamentos, pelo que um t-teste deveria dar o mesmo resultado
- Confirmação no SAS
 - proc ttest; class estirpe;
 - var conc_trop;
 - run;
- Output (lixo apagado)
- The TTEST Procedure

	Variable:	conc_trop				
	estirpe	N	Mean	Std D	ev Sto	d Err
-	BALB	10	5.4000	1.34	99 0	.4269
	OB	10	7.4000	1.50	55 0	.4761
-	Diff (1-2)		-2.0000	1.42	98 0	.6394
-	Method	Vari	ances	DF	t Value	Pr > t
	Pooled	Equa	1	18	-3.13	0.0058

Conclusões (preliminares)

- As estirpes diferem significativamente
 - ◆ P=0.006
 - Ainda assim, estirpe explica apenas ~1/3 da variabilidade observada
 - Desvio-padrão da [troponina] em animais da mesma estirpe é de 1.43 ng/ml
- Qual a magnitude da diferença entre estirpes?
 - Próxima etapa!

Exemplo 2

- Influência de duas celulases recombinantes (A e B) na eficiência alimentar em frangos
- Ensaio até aos 45 d com dieta padrão
- 8 frangos/jaula; 10 jaulas/trat.
- Grupos
 - Controle
 - Enzima A
 - Enzima B
- Medido índice de conversão/jaula

Exemplo 2

11_celulases.xls

Resutados

Jaula	Trat	IC
1	С	2.2
2	С	1.9
3	С	2
4	С	2.3
5	С	2
6	С	1.9
7	С	1.8
8	С	2.1
9	С	2.3
10	С	2

Jaula	Trat	IC
11	Α	1.8
12	Α	1.7
13	Α	2.1
14	Α	1.9
15	Α	2
16	Α	1.7
17	Α	1.9
18	Α	1.8
19	Α	1.6
20	Α	1.7

	Jaula	Trat	IC
1	21	В	1.8
1	22	В	1.7
1	23	В	1.6
1	24	В	1.9
	25	В	1.9
	26	В	1.7
	27	В	1.9
	28	В	1.8
	29	В	1.9
	30	В	1.7

Teste de Hipóteses e Programa

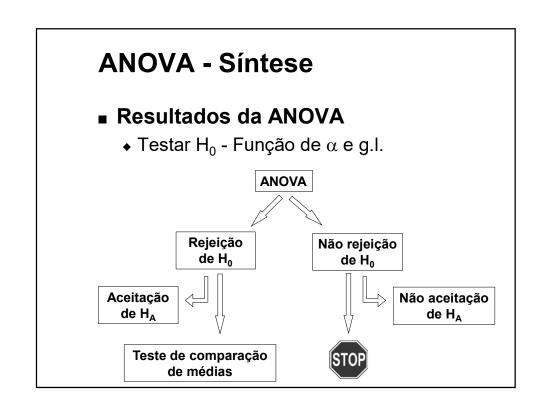
- Teste de Hipóteses
 - H_0 : $\mu_A = \mu_B = \mu_C$
 - H_A: pelo menos uma diferença entre médias

■ Programa – Fase 1

data a;

input Jaula Trat\$ IC;

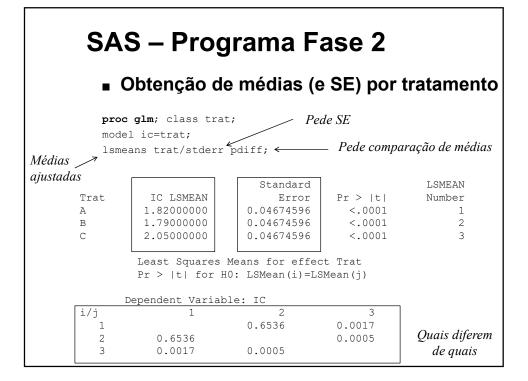
cards;


1 C 2.2 2 C 1.9 ... 29 B 1.9 30 B 1.7

:

proc glm; class trat; model ic=trat;

run;


SA	\S - (Jut	put			
Dependent Variab	ble: IC					
Source Model Error Corrected Total		DF 2 27 29	Sum of Squares 0.40466667 0.59000000 0.99466667	Mean Square 0.20233333 0.02185185	F Value 9.26	Pr > F 0.0009
1. 1	eff Var .835179		MSE IC Me 7824 1.8866			
Source Trat		DF 2	Type I SS 0.40466667	Mean Square 0.20233333	F Value 9.26	Pr > F 0.0009
Source Irat		DF 2	Type III SS 0.40466667	Mean Square 0.20233333	F Value 9.26	Pr > F 0.0009

SAS – Programa Fase 2

■ Obtenção de médias (e SE) por tratamento

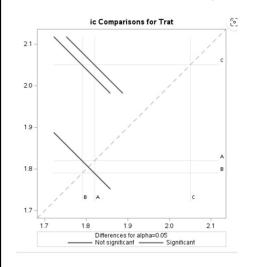
```
proc glm; class trat; Pede SE model ic=trat; lsmeans trat/stderr pdiff; Pede comparação de médias Médias ajustadas
```

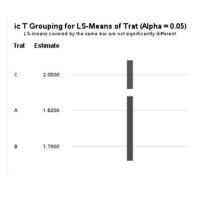

Comparação das LSMeans

- Conversão de PDIFF em superscipts
 - → À mão...
 - Software de ajuda incluir "lines" na linha dos Ismeans

lsmeans trat/stderr pdiff lines;

Comparação das LSMeans


- Quais diferem de quais?...
- Opção Lines faz comparação de médias e dá superscripts
 - Assume $\alpha = 0.05$; pode mudar-se com alpha=...
 - No exemplo
 - proc glm; class trat;
 - model ic=trat;
 - Ismeans trat/stderr pdiff lines;
 - Resultado


 $\,$ T Comparison Lines for Least Squares Means of trat LS-means with the same letter are not significantly different.

	ic LSMEAN	trat	LSMEAN Number
A	2.05	С	3
B B	1.82	А	1
В	1.79	В	2

Comparação das LSMeans

■ SAS 9.3 - **Diffogram**

Alguns detalhes

- Confirmar SQ e gl
- Médias (ajustadas) por tratamento

$$\overline{X}_A = \frac{1.8 + 1.7 + \dots + 1.7}{10} = 1.82$$

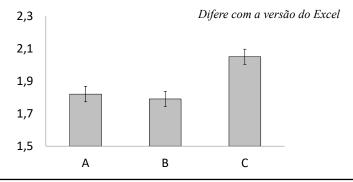
$$\overline{X}_C = \frac{2.2 + 1.9 + \dots + 2.0}{10} = 2.05$$

$$DPR = \sqrt{MQE} = \sqrt{0.02185} = 0.1478$$

■ De onde vem o EP (EPM, SE, SEM, etc.)?

$$EP = \frac{DPR}{\sqrt{n}} = \frac{0.1478}{\sqrt{10}} = 0.0467$$

Apresentação dos resultados


- Efeito da adição de celulases A e B na eficiência alimentar de frangos
 - Significância do efeito do tratamento
 - P(F) = 0.0009
 - Médias por tratamento

Trat.	Média
Controle	2.05ª
Celulase A	1.82 ^b
Celulase B	1.79 ^b
EP	0.047

Médias com letra diferente diferem para P<0.05

Apresentação dos resultados

- Efeito da adição de celulases A e B na eficiência alimentar de frangos
- Apresentação gráfica
 - Gráfico no Excel
 - SE colocado em coluna; escolhido em "Format data series"

Testes de comparação de médias

- Se (e só se...) os resultados do teste F foram significativos
 - Rejeitamos H₀
- Quais são então as médias que diferem?

Comparação de Médias

■ Comparações a priori ou a posteriori

A priori Contrastes	A posteriori Post hoc
Testam médias ou grupos de médias	Testam pares de médias
Testam tendências (lin., quad., etc.)	Não
Testam interacções	Não
Erro experimental controlado	Controle do erro depende do teste escolhido
Não consegue fazer todas as comparações de médias	Sim, mas em princípio deveriam ser usadas para comparar médias independentes

Comparação de Médias

- 1. Comparações a priori
 - + Contrastes ortogonais
 - Combinações lineares das médias dos trats., que permitem "desagregar" a variabilidade observada
 - Ortogonalidade = independência das comparações
 - Regras
 - Soma dos coef. usados = 0
 - Tantos contrastes possíveis quantos os g.l. trat.
 - Se forem bem construídos (=ortogonais) a SQ Trat é repartida na SQ dos vários contrastes
 - Exemplo com 3 tratamentos (g.l.trat = 2)

Α	В	С	SQ	
0.5	0.5	-1	SQ1	- sqt
1	-1		SQ2	ا الله
	A 0.5 1			0.5 0.5 -1 SQ1

Contrastes ortogonais

- O que justifica as diferenças encontradas entre tratamentos na ANOVA?
 - 2 comparações de interesse
 - · Média das 2 celulases vs. Controle

$$\frac{1}{2} \left(\overline{X}_A + \overline{X}_B \right) = \overline{X}_C \implies 0.5 \, \overline{X}_A + 0.5 \, \overline{X}_B - \overline{X}_C = 0$$

· Celulase A vs. Celulase B

$$\overline{X}_{\scriptscriptstyle A} = \, \overline{X}_{\scriptscriptstyle B} \implies 1 \overline{X}_{\scriptscriptstyle A} \, - \, 1 \, \overline{X}_{\scriptscriptstyle B} \, + 0 \, \overline{X}_{\scriptscriptstyle C} = 0$$

		C	Coefficientes			
		Α	В	С	SQ	
Contraste 1	C vs. Média de A e B	0.5	0.5	-1	SQ1	SQT
Contraste 2	A vs. B	1	-1		SQ2	. 5001
						•

Comparação de Médias

• Contrastes ortogonais

Exemplo considerado

		C	Coeficientes			
		Α	В	С	SQ	
Contraste 1	C vs. Média de A e B	0.5	0.5	-1	SQ1	SQT
Contraste 2	A vs. B	1	-1	0	SQ2	

• O que estamos a testar? H₀

$$\text{Contraste 1} \qquad H_{\scriptscriptstyle 0}: \frac{1}{2} \big(\mu_{\scriptscriptstyle A} + \mu_{\scriptscriptstyle B} \big) = \mu_{\scriptscriptstyle C}$$

Contraste 2
$$H_{\scriptscriptstyle 0}$$
: $\mu_{\scriptscriptstyle A}=\mu_{\scriptscriptstyle B}$

Verificar se os contrastes são ortogonais

		Coeficientes			
		Α	В	С	soma
Contraste 1	C vs. Média de A e B	0.5	0.5	-1	0
Contraste 2	A vs. B	1	-1	0	0
verificação	C1 x C2	0.5	-0,5	0	0

		C	Coeficientes		
		Α	В	С	soma
Contraste 1	C vs. Média de A e B	0.5	0.5	-1	0
Contraste 2	A vs. B	1	-1	0	0
Contraste 3	A vs Média de B e C	0.5	-0.5	0	0
verificação	C1xC2xC3				

Verificar se os contrastes são ortogonais

		C	Coeficientes		
		Α	В	С	soma
Contraste 1	C vs. Média de A e B	0.5	0.5	-1	0
Contraste 2	A vs. B	1	-1	0	0
verificação	C1 x C2	0.5	-0,5	0	0

		С	Coeficientes		
		Α	В	С	soma
Contraste 1	C vs. Média de A e B	0.5	0.5	-1	0
Contraste 2	A vs. B	1	-1	0	0
Contraste 3	A vs Média de B e C	1	-0.5	-0.5	0
verificação	C1xC2xC3	0.5	0.25	0	0.75

Comparação de Médias

• Contrastes ortogonais polinomiais

- Outra possibilidade é utilizar contrastes para testar efeitos linear, quadrático, etc.
- Possível se os tratamentos reflectirem níveis crescentes de determinado factor

		Coeficientes dos tratamentos			entos
Nº trat.	Polinómio	T1	T2	Т3	T4
2	Linear	-1	1		
3	Linear	-1	0	1	
	Quadrático	1	-2	1	
4	Linear	-3	-1	1	3
	Quadrático	1	-1	-1	1
	Cúbico	-1	3	-3	1

Comparação de Médias

■ Contrastes ortogonais

- ◆ Definição no SAS 2 formas
 - Contrast (para obter SQ)
 - Estimate (para obter valores estimados)
- ◆ Formato
 - Contrast 'nome' efeito coeficientes
 - Estimate 'nome efeito coeficientes

Nome do factor a estudar (p.e. trat)

Coeficiente a aplicar a cada nível do factor (sequenciado por ordem alfabética)

• Estimate 'C_vs_media_AB' Trat -0.5 -0.5 1;

Contrastes ortogonais

- O que justifica as diferenças encontradas entre tratamentos na ANOVA?
 - 2 comparações de interesse
 - · Média das 2 celulases vs. Controle

$$\frac{1}{2} \left(\overline{X}_A + \overline{X}_B \right) = \overline{X}_C \implies 0.5 \, \overline{X}_A + 0.5 \, \overline{X}_B - \overline{X}_C = 0$$

· Celulase A vs. Celulase B

$$\overline{X}_{\scriptscriptstyle A} = \, \overline{X}_{\scriptscriptstyle B} \implies 1 \overline{X}_{\scriptscriptstyle A} \, - \, 1 \, \overline{X}_{\scriptscriptstyle B} \, + 0 \, \overline{X}_{\scriptscriptstyle C} = 0$$

Contrastes ortogonais

- Como definir no SAS?
 - proc glm; class trat;
 - model ic=trat;
 - Ismeans trat/stderr pdiff;
 - contrast 'celAB_control' trat 0.5 0.5 -1;
 - contrast 'celA_celB' trat 1 -1 0;
 - estimate 'celAB control' trat 0.5 0.5 -1;
 - estimate 'celA_celB' trat 1 -1 0;

run;

Contrast	DF (Contrast SS	Mean Square	F Value	Pr > F
celAB_control celA_celB	1 1	0.40016667 0.00450000	0.40016667 0.00450000	18.31 0.21	0.0002 0.6536
Parameter	Estimate	Standar Erro		Pr > t	
celAB_control celA_celB	-0.24500000 0.03000000			0.0002 0.6536	

 $_{\pi} \Sigma = SQTrat = 0.4046$

Médias no SAS

■ Means vs. LSMeans

- As Means correspondem às médias "brutas", i.e., soma das observações dividida por n
- As LSMeans correspondem às médias ajustadas para determinado factor tendo em conta os outros factores considerados no modelo.
- Frequentemente as Means e LSMeans são iguais.
 No entanto não são se:
 - Os tratamentos não estiverem balanceados (i.e., nº obs. diferente)
 - Existirem factores descontínuos e contínuos no modelo (ANCOVA)

Médias no SAS

Means vs. LSMeans

- ◆ Exemplo
 - Factorial A (2 níveis) e B (3 níveis)
 - Nº observações para as combinações

	A1	A2
B1	20	20
B2	20	20
В3	20	5

- A Mean para A2 é calculada pela média das 45 observ., portanto com menor ponderação para B3
- A LSMean para A2 é calculada considerando a média das células que incluem combinações de A2 com B1, B2 e B3 como se eles estivessem balanceados

■ Conclusão

- Se os dados forem balanceados usar Means
- Se forem n\u00e3o balanceados usar LSMeans (na pr\u00e1tica usar sempre o LSMEANS)

Comparação de Médias

■ Comparações a priori ou a posteriori

A priori Contrastes	A posteriori Post hoc
Testam médias ou grupos de médias	Testam pares de médias
Testam tendências (lin., quad., etc.)	Não
Testam interacções	Não
Erro experimental controlado	Controle do erro depende do teste escolhido
Não consegue fazer todas as comparações de médias	Sim, mas em princípio deveriam ser usadas para comparar médias independentes

Comparação de Médias

- 2. Comparações a posteriori ou post-hoc
 - Comparações múltiplas
- Diferentes testes disponíveis:
 - ◆ Têm diferentes propriedades
 - Diferente nível de controle da possibilidade de erros tipo I e II nas comparações
 - Necessidade de garantir que o teste usado respeita o α para o total das comparações
 - Risco sério de serem declaradas diferenças que não o são realmente (erro tipo I)

Comparação de médias no SAS

- Principais testes post hoc
 - t ou LSD faz teste t de todas as combinações de médias; é o default no SAS.
 - Bonferroni em vez de comparar P com α, compara com α/n (em que n é o nº comparações)
 - Scheffé Critério de comparação de médias construído a partir da distribuição F
 - Tukey Distribuição própria. Extremamente conservador. A escala de comparação de duas médias é tanto mais exigente quanto mais afastadas elas estiverem.
 - Dunnett delineado especificamente para comparar vários tratamentos com um grupo controle

Comparação de médias no SAS

Teste	Tipo de comparação ¹	Mean	LSMean
Student t	MC	t	PDIFF ADJUST=T ²
Duncan	M	DUNCAN	
SNK	M	SNK	
Tukey	M	TUKEY	PDIFF ADJUST=TUKEY
Bonferroni	MC	BON	PDIFF ADJUST=BON
Scheffé	MC	SCHEFFE	PDIFF ADJUST=SCHEFFE
Dunnett	С	DUNNETT	PDIFF ADJUST=DUNNETT

¹ M = Comparação entre médiasC = comparação com grupo controle

Formato e opções no SAS

- Comparação de Médias
- proc glm; class trat; model ic=trat;
- Ismeans trat/s p; ← Default
- Ismeans trat/pdiff adjust=t;
- Ismeans trat/pdiff adjust=tukey; Especifica qual é o grupo controle
- Ismeans trat/pdiff adjust=bon;
- Ismeans trat/pdiff=control ('C') adjust=dunnett;
- run;
- Contrastes
- proc glm; class trat; model ic=trat;
- contrast 'celAB_control' trat 0.5 0.5 -1;
- contrast 'celA_celB' trat 1 -1 0;
- estimate 'celAB control' trat 0.5 0.5 -1;
- estimate 'celA_celB' trat 1 -1 0;
- run;

² Default se nada for especificado

Comparação de médias

■ Resultados obtidos

		P-value			
Médias	Diferença	LSD	Tukey	Bonferroni	Dunnett
А-В	0.03	0.6536	0.8931	1.000	-
A-C	-0.23	0.0017	0.0047	0.0052	0.0033
B-C	-0.26	0.0005	0.0015	0.0016	0.0010

Formato e opções das LSMeans

- SAS
 - ◆ Definição de qual é e comparação com uma linha controle
- proc glm; class A B;
- model y = A B A*B;
- Ismeans A*B /pdiff=control ('1' '1') adjust=dunnett;

em que A=1 e B=1 é o grupo controle

Exemplo

- Eficácia de 4 estratégias de controle de nemátodes GI em borregos (5 animais/trat.)
 - Placebo (CONT)
 - Fenbendazol (FBZ)
 - Ivermectina (IVM)
 - Nicotina extraída com metanol da planta do tabaco (NIC)
 - Resultados

12 parasitas.xls

- EPG 5 d após tratamento (desvio em relação ao valor inicial)

Ovos/g fezes

CONT	FBZ	IVM	NIC
100	875	850	700
-50	725	700	450
-130	645	620	520
20	795	770	620
200	975	950	580

Exemplo

- Analise
- Interprete
- Apresente

