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Notations

Non bold letters (upper or lower case) represent scalar

quantities: x , y , A,. . .

Lower case bold letters represent vectors x, y, ωx, ωy,. . .

Upper case bold letters represent matrices A, B, X, Y,. . .
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LINEAR ALGEBRA
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Eigenvalues and eigenvectors

Definition

Ap→p = [aij ] a square matrix of order p. A vector v → Rp
, v ↑= ω0, is

called an eigenvector of A if there is ε → R such that Av = εv.
ε is called the corresponding eigenvalue.

Example

A =




3 0 2

0 ↓1 1

2 0 0



 , v =




10

1

5





We have

Av =




3 0 2

0 ↓1 1

2 0 0








10

1

5



 =




40

4

20



 = 4




10

1

5



 = 4v

Hence v is an eigenvector of A associated to the eigenvalue ε = 4.
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Eigenvalues and eigenvectors (cont.)

The spectrum of A, denoted ϑ(A), is the collection of the p

eigenvalues of A (including repetitions), i.e., the collection of p

roots (real and complex) of its characteristic polynomial,

pA(x) = det(A↓ xIp) (which has degree p)

The eigenspace associated with an eigenvalue ε, denoted E (ε), is
the linear space spanned by the eigenvectors associated with ε

The trace of A, denoted tr(A), is the sum of all diagonal elements of

A and equals the sum of all eigenvalues of A (including repetitions):

tr(A) = a11 + a22 + · · ·+ app =

∑

ω→ε(A)

ε

The determinant of A (not defined here) equals the product of all

eigenvalues of A (including repetitions):

detA =

∏

ω→ε(A)

ε

A is invertible ↔ det(A) ↑= 0 ↔ 0 is not an eigenvalue of A
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Example revisited
Returning to the example of slide 6 we have the the following:

ϑ(A) : ↓1, ↓1, 4

tr(A) = 3 + (↓1) + 0 = 2 corresponds to the sum of its diagonal

elements which is also equal to sum of its eigenvalues (counting

with repetitions): (↓1) + (↓1) + 4 = 2

det(A) = (↓1)↗ (↓1)↗ 4 = 4 ↑= 0 which is equal to the product of

its eigenvalues (counting with repetitions)

E (↓1) = ↘(1, 1, 0)≃ has dim=1

E (4) = ↘(0, 1, 5)≃ has dim=1

Since dimE (↓1) + dimE (4) = 2 < 3 = p, A is not diagonalizable, i.e.,

we cannot find an invertible matrix P and a diagonal matrix ! such that

A = P!P
↑1

Exercise

Verify that (1, 1, 0) is an eigenvector of A associated to the eigenvalue

ε = ↓1
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Eigenvalues and eigenvectors - R

R

A=matrix(c(3,0,2,0,-1,1,2,0,0),ncol=3,byrow=TRUE)

A

EV<-eigen(A) # eigenvalues and eigenvectors of A

det(A) # determinant of A

tr<-sum(diag(A)) # trace of A

tr
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Orthonormal sets

Definition

Given v1, . . . , vq → Rp
with q ⇐ p we say that {v1, . . . , vq} is an

orthonormal set if

⇒vi⇒ = 1, ⇑i and vi ⇓ vj (i ↑= j)

If q = p, {v1, . . . , vq} is called an orthonormal basis of Rp

Denoting by Vp↓q = [ V1 · · · Vq ] the matrix whose columns are the q

vectors, v1, . . . , vq, we have the following:

{v1, . . . , vq} is an orthonormal set i! V
T
V = Iq

{v1, . . . , vp} is an orthonormal basis i! V
T
V = VV

T
= Ip i!

V
↑1

= V
T

In the later case we can write for all u → Rp
,

u = (u
T
v1)v1︸ ︷︷ ︸

proj
v1
(u)

+ · · ·+ (u
T
vp)vp︸ ︷︷ ︸

proj
vp
(u)

(1)
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Orthonormal basis
If ⇒u⇒ = 1 and {v1, . . . , vp} is an orthonormal basis of Rp

we have,

applying (1) of slide 8,

u = cos(ϖ1)v1 + · · ·+ cos(ϖp)vp

with u
T
u = cos

2
(ϖ1) + · · ·+ cos

2
(ϖp) = 1, where ϖi , i = 1, . . . , p,

denotes the angle between u and vi

The case p = 2:

v1

v2

ω1

ω2

cos(ω1)v1

cos(ω2)v2 u = cos(ω1)v1 + cos(ω2)v2
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Interlude: matrix multiplications

If Am↓n =

[
a1 a2 · · · an

| | |

]
with aj → Rn

, j = 1, . . . , n, and

Bn↓p =





↓b
T
1 ↓

↓b
T
2 ↓
.
.
.

↓b
T
n ↓




then AB =

∑n
j=1 ajb

T
j

Example

[
1 3

2 4

] [
1 2

3 ↓1

]
=

[
1

2

] 
1 2


+

[
3

4

] 
3 ↓1



=

[
10 ↓1

14 0

]

Note that if b = (ϱ1, . . . ,ϱn) one gets, Ab = A





ϱ1

ϱ2
.
.
.

ϱn




=

∑n
j=1 ϱjaj
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Eigenvalue decomposition of a symmetric matrix

Theorem

Let A be a symmetric matrix (AT = A) of order p. Then we can find matrices Vp→p

and !p→p , such that

A = V!V
T (2)

where:

V = [ v1 v2 · · · vp ] verify V
T
V = VV

T = Ip : matrix of (unit and pairwise
orthogonal) eigenvectors of A

! = diag(ω1,ω2, . . . ,ωp) with ω1 ↑ ω2 ↑ · · · ↑ ωp : diagonal matrix containing
the corresponding eigenvalues of A (Avi = ωivi )

Using the decomposition of a matrix product in terms of sums of columns and rows
products described in slide 10, we can rewrite (2) as,

A = ω1v1v
T
1 + ω2v2v

T
2 + · · ·+ ωpvpv

T
p ,

which is called the spectral decomposition of A
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Singular value decomposition of an arbitrary matrix

We are going to state a slight di!erent version of the SVD known as compact SVD.

Theorem

Let A be matrix of type N → p and rank r . Then we can find matrices UN→r , ”r→r

and Vp→r , such that

A = U”V
T (3)

where:

U = [ u1 · · · ur ] verify U
T
U = Ir : matrix of (unit and pairwise orthogonal) left

singular vectors of A

V = [ v1 · · · vr ] verify V
T
V = Ir : matrix of (unit and pairwise orthogonal)

right singular vectors of A

” = diag(ε1, . . . , εr ) with ε1 ↑ · · · ↑ εr > 0: diagonal matrix of the nonzero
singular values of A (Avi = εiui and A

T
ui = εivi )

Using the results of slide 10 we can rewrite (3) as,

A = ε1u1vT1 + ε2u2vT2 + · · ·+ εrurvTr ,

which is called the singular value decomposition of A
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PRINCIPAL COMPONENT ANALYSIS
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Summary statistics - univariate case
Given vectors x = (x1, . . . , xN) and y = (y1, . . . , yN) ↓ RN containing N observations
of two quantitative variables, we define:

(sample) mean of x:

x̄ =
1

N

N∑

i=1

xi

(sample) variance of x:

s2x =
1

N ↔ 1

N∑

i=1

(xi ↔ x̄)2

(sample) covariance between x and y:

s2xy =
1

N ↔ 1

N∑

i=1

(xi ↔ x̄)(yi ↔ ȳ) =
1

N ↔ 1
(x↑)T y↑,

where x
↑ = (x1 ↔ x̄ , . . . , xN ↔ x̄) and y

↑ = (y1 ↔ ȳ , . . . , yN ↔ ȳ) are the
corresponding centered vectors

(sample) linear correlation coe”cient between x and y:

rxy =
s2xy
sx sy
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Variable’s cloud and individual’s cloud

XN↓p = [ xij ] a data matrix with xij → R. Then:

Each column of X represents the observations of some quantitative

variable across N individuals:

XN↓p = [x1 · · · xp] with xj = (x1j , . . . , xNj) → RN , j = 1, . . . , p

We obtain in this way a cloud of p vectors in RN
- variable’s cloud.

Each row of X represents the observations of p variables of a single

individual:

X
T
p↓N = [x

1 · · · xN ] with x
i
= (xi1, . . . , xip) → Rp, i = 1, . . . ,N

We obtain in this way a cloud of N points in Rp
- individuals’s

cloud.

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2024/2025 15



Summary statistics - multivariate case

The (sample) mean vector of the dataset X, i.e., the cloud’s center

of gravity, is

x
G
=

1

N

N∑

i=1

x
i → Rp,

that is, x
G
= (x̄1, . . . , x̄p) with x̄j =

1
N

∑N
i=1 xij

The (sample) covariance matrix of the N ↗ p data matrix X is

S = [s
2
jk ] =

1

N ↓ 1

N∑

i=1

(x
i ↓ x

G
)(x

i ↓ x
G
)
T ,

where the (sample) covariance between variables j and k is equal to

s
2
jk =

1

N ↓ 1

N∑

i=1

(xij ↓ x̄j)(xik ↓ x̄k)

The total variance of X is

tr(S) = s211 + · · ·+ s2kk =
1

N ↔ 1

p∑

j=1

N∑

i=1

(xij ↔ x̄j )
2 =

1

N ↔ 1

N∑

i=1

↗xi ↔ x
G↗2
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Centered data matrix and covariance
For each j = 1, . . . , p, the centered vector of the N observations of

variable j is

x
↔
j = (x1j ↓ x̄j , . . . , xNj ↓ x̄j) → RN

The (sample) covariance s
2
jk between variables j and k can then be

written, using the centered vectors x
↔
j and x

↔
k , as a simple inner product

(in RN
) divided by N ↓ 1,

s
2
jk =

1

N ↓ 1
(x

↔
j )

T
x
↔
k (4)

Likewise, if we define the (column) centered data matrix as

X
↔
= [ x

↔
1 · · · x

↔
p ],

i.e.,

(X
↔
)
T
= [ (x

1 ↓ x
G
) · · · (x

N ↓ x
G
) ],

the covariance matrix S = [s
2
jk ] of X can be written as

S =
1

N↑1 (X
↔
)
T
X

↔
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Standardized data matrix and correlation

For each j = 1, . . . , p, the standardized vector of the N observations of variable j is

zj =

(
x1j ↔ x̄j

sj
, . . . ,

xNj ↔ x̄j
sj

)
=

(
x↑1j
sj

, . . . ,
x↑Nj

sj

)
↓ RN

and we obtain the corresponding standardized data matrix,

Z = [ z1 · · · zp ]

The (sample) linear correlation coe”cient between variables j and k is

rjk =
s2jk
sj sk

=
1

N ↔ 1

N∑

i=1

(
xij ↔ x̄j

sj

)(
xik ↔ x̄k

sk

)
=

1

N ↔ 1
z
T
j zk

Hence the (sample) correlation matrix R = [rij ] of X equals the covariance
matrix of the standardized data matrix, i.e.,

R = 1
N↓1Z

T
Z

The total variance of Z is equal to

tr(R) = r11 + · · ·+ rpp = p
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Principal component analysis - motivation

Principal component analysis (PCA) is a statistical multvariate

method that aims to reduce the dimensionality of a dataset X while

preserving its information, i.e., the data set total variability, as much

as possible

This goal is achieved by defining a set of uncorrelated variables,

called principal components, that are linear combinations of the

original (or standardized) variables, in such a way that the first few

principal components explains the maximum proportion of the data

set total variability

The dimension reduction is (particularly) e!ective when the original

variables are (highly) correlated

PCA is probably the most widely used multivariate statistical

method
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Example: iris flower data set

The well known iris flower data set consists of the sepal and

petal lengths and widths, SL,SW,PL,PW (in cm), of 50 iris

flowers of setosa species, 50 iris flowers of versicolor species

and 50 iris flowers of virginica species.

Thus the iris flower dataset defines a cloud of 150 points in

R4
. We can try to have a geometrical grasp of the shape of

this 4-dimensional cloud by projecting it on a two dimensional

space (plane), using all possible combinations of two variables
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Example: iris flower data set

pairs(iris[-5],asp=TRUE,pch=16,col=c(rep("red",50),
rep("green",50),rep("blue",50)))

Sepal.Length

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

2 3 4 5

Sepal.Width

Petal.Length

1 2 3 4 5 6 7

0 1 2 3

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

1
2

3
4

5
6

7

Petal.Width
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Best 2-dimensional representation using PCA

Another approach is to define new synthetic uncorrelated

variables that are linear combinations of the original iris

flowers measurements, the so-called principal components

(PC), in such a way each PC explains, as much as possible, of

the total dataset variability

The projection of the cloud of iris flowers on the plane

associated with the first two PCs, called principal factorial

plane (PFP), explains 98.1% of the iris dataset variability and

thus provides an excellent 2-dimensional portray of the

original cloud of iris flowers

This is actually the best representation among all

2-dimensional representations of the iris flower dataset, in the

sense that it is the 2-dimensional representation that retains

the largest amount of the dataset variability
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Best two-dimensional representation of the iris flowers

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

PC1

P
C

2
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Eigenvalues of the covariance matrix
Let XN↓p be a data matrix and S =

1
N↑1 (X

↔
)
T
X

↔
the corresponding

covariance matrix. Then:

S is symmetric (S
T
= S)

x
T
Sx is a semi-definite positive quadratic form, that is,

x
T
Sx ⇔ 0, ⇑x → Rp

the eigenvalues ε1, . . . ,εp of S are nonnegative real numbers and

we may assume that

ε1 ⇔ ε2 ⇔ · · · ⇔ εp ⇔ 0

If moreover all variables are globally non-correlated then all

eigenvalues of S are strictly positive real numbers. In this case S is

invertible, x
T
Sx is a definite positive quadratic form, which

amounts to say that

x
T
Sx > 0, ⇑x → Rp, x ↑= ω0
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Linear combinations

Let XN↓p = [ x1 · · · xp ] be a data matrix containing the observations of

p variables across N individuals.

A linear combination of the p columns x1, . . . , xp of X is

y = ς1x1 + · · ·+ ςpxp = [ x1 · · · xp ]




ς1
.
.
.

ςp



 = Xa,

where

a = (ς1, . . . ,ςp) =




ς1
.
.
.

ςp



 → Rp,

is the vector of coe”cients (loadings).
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Covariance between linear combinations

Given a, b ↓ Rp , the (sample) covariance between the linear combinations Xa and Xb

is
cov(Xa,Xb) = a

T
Sb (5)

Actually, using (4) of slide 17 we have,

cov(Xa,Xb) =
1

N ↔ 1
[(Xa)↑]T (Xb)↑

exercise
=

1

N ↔ 1
(X↑

a)TX↑
b

=
1

N ↔ 1
a
T (X↑)TX↑

b = a
T 1

N ↔ 1
(X↑)TX↑

b

= a
T
Sb

In particular, var(Xa) = a
T
Sa

Exercise

Prove that centering a linear combination of p vectors x1, . . . , xp is equivalent to the
linear combination of the centered vectors x

↑
1 , . . . , x

↑
p with the same coe!cients, i.e.,

(Xa)↑ = (ϑ1x1 + · · ·+ ϑpxp)
↑ = ϑ1 x

↑
1 + · · ·+ ϑp x

↑
p = X

↑
a,

where X = [ x1 · · · xp ], X↑ = [ x↑1 · · · x
↑
p ] and a = (ϑ1, . . . ,ϑp) ↓ Rp
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First principal component - formulation
To define the first principal component we seek a linear combination of

the p variables x1, . . . , xp that maximizes the variance, that is, we want

to solve the following problem:

determine a → Rp
such that var(Xa) = a

T
Sa is maximum

Without further restrictions on vector a the problem is ill-posed since if

we multiply the vector of coe”cients a by a scalar ε we obtain

var(X(εa)) = εaTSεa = ε2
a
T
Sa = ε2

var(X(a)),

which shows that the variance of a linear combination can be arbitrarily

large. To overcome this issue we reformulate the problem as follows:

determine a → Rp
with ⇒a⇒ = 1 : var(Xa) = a

T
Sa is maximum (6)

The previous problem can be equivalently formulated as the problem of

maximizing the so-called Rayleigh-Ritz ratio (cf. slides Prof. Cadima)

determine a → Rp \ {ω0} :
a
T
Sa

aT a
is maximum (7)
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First principal component (cont.)

The covariance matrix S admits a spectral (see slide 11) of the form,

S = ε1v1v
T
1 + ε2v2v

T
2 + · · ·+ εpvpv

T
p (8)

where v1, . . . , vp → Rp
are unit and pairwise orthogonal eigenvectors of S

associated to (sorted) real eigenvalues ε1 ⇔ ε2 ⇔ · · · ⇔ εp ⇔ 0

By the results of slide 9, we have for all a → R
p
, ⇒a⇒ = 1,

a = cos(ϖ1)v1 + · · ·+ cos(ϖp)vp, (9)

with

cos
2 ϖ1 + · · ·+ cos

2 ϖp = 1, (10)

where ϖi denotes the angle between the vectors a and vi , , i = 1, . . . , p
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First principal component (cont.)

Applying (8), (9) and (10) from the previous slide, along with relations
ω1 ↑ · · · ↑ ωp ↑ 0, ↗vi↗2 = v

T
i vi = 1 for all i and v

T
i vj = 0, i ↘= j , we obtain by

straightforward computations (since all products envolving vi and vj , j ↘= i , vanish),

a
T
Sa = ω1 cos

2 ϖ1 + · · ·+ ωp cos
2 ϖp

≃ ω1 cos
2 ϖ1 + · · ·+ ω1 cos

2 ϖp

= ω1(cos
2 ϖ1 + · · ·+ cos2 ϖp) = ω1

Thus var(Xa) = a
T
Sa ≃ ω1 (the largest eigenvalue of S). Taking a = v1, we get

a
T
Sa = aTω1a = ω1A

Ta = ω1,

since v1 is an eigenvector of S associated to the eigenvalue ω1.
The maximum variance of a linear combination Xa of the p columns x1, . . . , xp , with
unit vector of coe”cients a, is attained along the direction of a unit eigenvector v1 of
S associated with the largest eigenvalue ω1

Hence the first principal component is

PC1 : y1 = Xv1 with maximum variance ω1

The larger the value of ω1, the more the cloud of points is elongated along the PC1
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Second principal component
To define the second principal component PC2, we seek a linear combination of the p
original observed variables that maximizes the variance and is uncorrelated with PC1:

determine a ↓ Rp with

{
↗a↗ = 1
a ⇐ v1

: var(Xa) = a
T
Sa is maximum

Since a ⇐ v1 ⇒ cos ϖ1 = 0, we seek a = cos(ϖ2)v2 + · · ·+ cos(ϖp)vp , with
cos2(ϖ2) + · · ·+ cos2(ϖp) = 1 and we obtain similarly,

a
T
Sa = ω2 cos

2 ϖ2 + · · ·+ ωp cos
2 ϖp

≃ ω2(cos
2 ϖ2 + · · ·+ cos2 ϖp) = ω2

Taking a = v2 (a unit eigenvector of S associated with the second largest eigenvalue
ω2 and orthogonal to v1), one gets

a
T
Sa = ω2

The second PC is thus defined by a unit eigenvector v2 of S, associated with the
second largest eigenvalue ω2 and orthogonal to the vector v1

PC2 : y2 = Xv2 with maximum variance equal to ω2
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Principal components

In general, to define the j-th principal component PCj , j = 2, . . . , p, we seek a linear
combination of the p original observed variables, that maximizes the variance and is
uncorrelated with PC1, . . . ,PCj↓1:

determine a ↓ Rp with






↗a↗ = 1
a ⇐ v1

...
a ⇐ vj↓1

∣∣∣∣∣∣∣∣∣

var(Xa) = a
T
Sa is maximum (11)

We construct in this way a collection of p principal components

y1 = Xv1, y2 = Xv2, . . . , yp = Xvp

with maximum variances,
ω1 ↑ ω2 ↑ . . . ↑ ωp ↑ 0,

where v1, . . . , vp are unit and pairwise orthogonal eigenvectors of S, respectively
associated to ω1, . . . ,ωp , i.e., for all j , k = 1, . . . , p, k ↘= j we have

↗vj↗ = 1, vj ⇐ vk , Svj = ωjvj
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Vector of loadings
The vector vj defining the j-th principal component yj = Xvj , contains

the coe”cients, also called loadings, of the j-th principal component

w.r.t. the original observed variables x1, . . . , xp. In other words, writing

the vector of loadings as vj = (ς1, . . . ,ςp) we obtain,

yj = ς1x1 + · · ·+ ςpxp

If the p eigenvalues of the covariance matrix S are pairwise distinct,

i.e., ε1 > · · · > εp ⇔ 0, the vector of loadings defining each PC is

unique up to sign: if yj = Xvj is a solution of (11) of slide 31, then

y
↗
j = X(↓vj) is also a solution of (11) - this is the most common

situation

If there are repeated eigenvalues of S the PCs associated with

repeated eigenvalues are not uniquely determined. Actually, the

vectors of loadings defining these PCs can arise from any

orthonormal base of the eigenspace associated with the repeated

eigenvalue and therefore can be defined in infinitely many distinct

ways
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Scores matrix

Recall that,

XN→p = [xij ] is the original data matrix of the p observed variables across N
individuals

X
T = [ x1 · · · x

N ], with x
i = (xi1, . . . , xip) the i-th row of X, i.e., the

coordinates of i-individual in the cloud of N points of Rp

x
G = (x̄1, . . . , x̄p) is the center of gravity (also called barycenter) of the cloud of
individuals

X
↑ = [x↑ij ] is the centered data matrix, where x↑ij = xij ↔ x̄j

x
i ↔ x

G = (x↑i1, . . . , x
↑
ip) the i-th row of X↑, i.e., the vector of the coordinates of

individual i in the centered cloud of N points

V = [ v1 · · · vp ] is the matrix of loadings

The matrix Y
↑ = [y↑

ij ] = X
↑
V is called scores matrix: the rows of Y↑ correspond to

the vectors of coordinates, also called (factor) scores, of the N individuals w.r.t the
new coordinate axes defined by the vectors of loadings of the PCs

The column j of Y↑, y↑j , contains the values of the (centered) cloud of N individuals
w.r.t the new sinthetic variable yj that defined the PCj
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Scores of individual i when p = 2

x
G

PC1

PC2

v1

v2

y ↖
i1

y ↖
i2

x
i

[ y ↖
i1

y ↖
i2
] =


projv1(x

i ↓ x
G ) projv2(x

i ↓ x
G )

= (xi ↓ x

G )[ v1 v2 ]
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Covariance of the scores matrix

The covariance matrix of the (centred) scores matrix Y
↔
, is

cov(Y
↔
) = cov(X

↔
V) =

1

N ↓ 1
(X

↔
V)

T
(X

↔
V)

= V
T 1

N ↓ 1
(X

↔
)
T
X

↔
V = V

T
SV = ! = diag(ε1, . . . ,εp)

The total variation of Y
↔
, i.e., the dataset total variability is

p∑

j=1

var(y
↔
j ) =

p∑

j=1

εj = tr(!) = tr(S) =

p∑

j=1

var(xj)

The quality of the reduction obtained by keeping the first k PCs

(1 ⇐ k ⇐ p) is assessed by the proportion of variability explained by

the first k PCs:
ε1 + · · ·+ εk

ε1 + · · ·+ εp
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Covariance and correlation

The covariance between the observed variable xj and the PC yk is

cov(xj , yk) =
1

N ↓ 1
[(Xej)

↔
]
T
(Xvk)

↔
=

1

N ↓ 1
(X

↔
ej)

T
(X

↔
vk)

= e
T
j

1

N ↓ 1
(X

↔
)
T
X

↔
vk = e

T
j Svk = e

T
j εkvk

= εke
T
j vk = εkvjk

where vjk = e
T
j vk is j-th component of vk , i.e., (j , k)-entry of the

loadings matrix V

The correlation between xj and yk is

cor(xj , yk) =
cov(xj , yk)↙

xj
↙
yk

=
εkvjk

sj
↙
εk

=

↙
εkvjk

sj

The contribution of individual i to the construction of PCk is the

part of the variance of PCk that is explained by i :

ctri,k =
(y

↔
i,k)

2

∑N
j=1(y

↔
j,k)

2
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Example: iris flower dataset revisited

R

X=iris[-5] # non standardized

head(X)

iris.acp<-prcomp(X) # performs PCA on the covariance
matrix

summary(iris.acp)

iris.acp$sdev # std accounted by the PCs

sum(iris.acp$sdev[1]ˆ2) # total variance

iris.acp$rot # matrix of loadings

iris.acp$x # matrix of scores

plot(iris.acp$x[,1:2],asp=TRUE,pch=16,col=c(rep("red",50),
rep("green",50),rep("blue",50))) #
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Importance of the PC components

The R command summary(iris.acp) gives, for each j , the standard

deviation


εj associated with PCj , the proportion of the total variance

explained by PCj ,
εj∑
k εk

, and the cumulative variance explained by the

first j PCs:

PC1 PC2 PC3 PC4

Standard deviation 2.0563 0.49262 0.2797 0.15439

Proportion of Variance 0.9246 0.05307 0.0171 0.00521

Cumulative Proportion 0.9246 0.97769 0.9948 1.00000

Thus we have that:

The cloud of points projected on the line associated with the first

PC explains about 92% of the dataset’s total variability

The cloud of points projected on the plane associated with the first

two PCs (principal factorial plane - PFP) explains about 98% of the

total variability of the dataset,

and so on. . .
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More on the R command prcomp

iris.acp$sdev give, for each j , the standard deviation
√

ωj associated with PCj :
2.0562689 0.4926162 0.2796596 0.1543862

sum(iris.acp$sdev[1]ˆ2) gives the dataset total variance: 4.572957

iris.acp$rotation returns the matrix of loadings, where column j contains the
coe”cients of the PCj , yj , written as linear combination of the original observed
variables x1, . . . , x4:

PC1 PC2 PC3 PC4
Sepal.Length 0.3614 -0.6566 0.5820 0.3155
Sepal.Width -0.0845 -0.7302 -0.5979 -0.3197
Petal.Length 0.8567 0.1734 -0.0762 -0.4798
Petal.Width 0.3583 0.0755 -0.5458 0.7537

The first PC (for instance), is a linear combination of the observed measurements as:

y1 = 0.3614 Sepal.Length↔ 0.0845 Sepal.Width + 0.8567Petal.Length + 0.3583Petal.Width

⇑ 0.3614 Sepal.Length + 0.8567Petal.Length + 0.3583Petal.Width

which represents a kind of overall measurement of the iris flowers that explains a large
amount (↑ 90%) of the total variability of the iris dataset
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More on the R command prcomp - loadings

The columns of the loading matrix are unit eigenvectors of S and

pairwise orthogonal

R

V<-iris.acp$rotation

S <- cov(S)

round(t(V)%*% V,10) # gives the identity matrix

v1 <- V[,1]

lambda1 <- iris.acp$sdev[1]ˆ2

S %*% v1

lambda1%*% v1
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More on the R command prcomp - scores

iris.acp$x returns the matrix of factor scores, where each row i contains coordinates
of the individual i w.r.t. the PCs, i.e., w.r.t. the new synthetic variables y1, . . . , y4:

PC1 PC2 PC3 PC4
-2.68413 -0.31940 0.02791 0.00226
-2.71414 0.17700 0.21046 0.09903
-2.88899 0.14495 -0.01790 0.01997
-2.74534 0.31830 -0.03156 -0.07558

...
...

...
...
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More on the R command prcomp - scores

R

N <- 150 X.G <- colMeans(X) # iris’s cloud center of gravity

Xc <- scale(X,scale=FALSE) # centred iris data matrix

Yc <- Xc %*% V # scores matrix

head(Yc) ; head(iris.acp$x) # should be equal!

sum(iris.acp$x[,1]ˆ2)/(N-1) ; iris.acp$sdev[1]ˆ2
# contributions of each individual to the 1st PC
Yc[,1]*Yc[,1]/sum(Yc[,1]*Yc[,1])
vspace.25ex
# individuals with contribution above the average
Yc[,1]*Yc[,1]/sum(Yc[,1]*Yc[,1]>1/150

# quality of the representation of individual i in each PC
Yc[1,]*Yc[1,]/sum(Yc[1,]*Yc[1,])

# quality of the representation of individual i in the PFP
(Yc[1,1]*Yc[1,1]+Yc[1,2]*Yc[1,2])/sum(Yc[1,]*Yc[1,])

cos2<-matrix(0,ncol=4,nrow=150)

for (i in 1:150) { cos2[i,]<-Yc[i,]*Yc[i,]/sum(Yc[i,]*Yc[i,]) }
sort(rowSums(cos2[,1:2]))

order(rowSums(cos2[,1:2]))

plot(iris.acp$x[,1:2],pch=16,col=c(rep("red",50),
rep("green",50),rep("blue",50)),asp=TRUE)

points(iris.acp$x[rowSums(cos2[,1:2])<.7,1:2],pch=1)
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Representation of the iris flower dataset in the PFP

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

PC1

P
C

2

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2024/2025 43



Drawbacks of the PCA on the covariance matrix

The first PCs tend to be dominated by the variable(s) with the

largest variance(s)

The PCs are invariant under orthogonal transformations of the

variables (e.g. rotations), but not under di!erentiated change of

scalars in each variable. As a consequence the PCA is highly

dependent on the units of measurements - this is a major drawback

Another important drawback when there are distinct units of

measurements is how to a interpret a PC if the PC is a linear

combination of variables expressed in totally di!erent units of

measurements, say, for instance temperature and weight?

When the variables have di!erent units of measurements or very di!erent

variances it is advisable or even mandatory to standardize (i.e., to center

and reduce the variables to unit variance) prior to perform the PCA. This

amounts to compute the eigenvectors of the correlation matrix of X
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PCA on the correlation matrix
Let XN↓p = [xij ] be the usual data matrix and ZN↓p = [zij ], be the

corresponding data matrix of the standardized variables zij =
xij↑x̄j
sj

The covariance matrix of the standardized data Z is

R = cov(Z) =
1

N ↓ 1
Z
T
Z,

which corresponds to the correlation matrix of X

The PCs are now given by Yj = Zvj where v1, . . . , vp are unit and

pairwise orthogonal eigenvectors of R associated with eigenvalues

ε1 ⇔ · · · ⇔ εp

The total variance is now the number of variables:

p =

p∑

i=1

var(zj) = ε1 + · · ·+ εp

The correlation coe”cient between zj and yk reduces to

cor(zj , yk) =


εkvkj
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Interpretation of the results in space of variables
Each standardized variable zj and each PC yk , can be represented as vectors in R

N .
This allows to reinterpret geometrically some of the previous statistics:

The variables zj , j = 1, . . . , p, lie in a hypersphere of radius
⇓
N ↔ 1:

↗zj↗2 = z
T
j zj = (N ↔ 1)var(zj ) = N ↔ 1

More generally, the length of centered variable is also proportional to its
standard deviation (exercise)
The length of each PC is proportional to its standard deviation:

↗yk↗2 = y
T
k yk = (Zvk )

T (Zvk )

= v
T
k Z

T
Zvk = (N ↔ 1)vTk Rvk

= (N ↔ 1)ωk = (N ↔ 1)var(yk )

The correlation coe”cient between zj and yk is the cosine of the angle ϖjk
between the variables zj and yk :

cor(zj , yk ) =
cov(zj , yk )√

var(zj )
√

var(yk )
=

cov(zj ,yk )
N↓1√

var(zj )
√

var(yk )

=
1

N ↔ 1

z
T
j yk

↔zk↔↗
N↓1

⇓
ωk↗

N↓1

=
z
T
j yk

↗zj↗ ↗yk↗
= cos(ϖjk )

The correlation coe”cient between zj and zk is the cosine of the angle between
the vectors representing these variables (exercise)
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How many PCs ?

No exact answer can be given. Some empirical rules are listed below:

To define a cuto! %: to consider a given cumulative percentage of the total
variation (usually between 70% and 90%) and to choose the smallest number m
of PC such that the % of explained variance by the first m PCs exceeds the
chosen %.

Scree plot: to look for a elbow point in the scree plot of the variance

Kaiser’s rule (for PCA on correlation matrix): to retain the PCs with variance
greater than the average value 1: the PCs with variance inferior to 1 contain
less information than the original variables and are not worthing to retain. (for
the PCA on the covariance matrix, the cuto! value 1 should be replaced by the
average of the PCs variances)

Jolli!e’s variant of Kaiser’s rule (for PCA on correlation matrix): is a more
conservative rule that proposes a cuto! value of 0.7

Broken-stick model: a unit stick is randomly broken into p segments. The
expected length of the k-th largest segment is ϱ↑k = 1

p

∑p
j=k

1
j . This rule retains

the PCs while the variance of each PCk keeps above the length ϱk
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PCA on the correlation matrix - summary

All variables have the same variance and therefore their importance

is equalized

The cloud of individuals tend to have a more rounded shape

The PCA tend to reflect existing correlation patterns among

variables

The first PC tends to be dominated by groups of variables that

highly correlated

The PCs can be interpreted since they are linear combinations of

dimensionless variables

The number of PCs that are necessary to explain a given proportion

of the total dataset variability is usually higher compared to the

PCA on the covariance matrix
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A more geometrical approach to PCA using SVD
Applying the SVD to the centered data matrix X

↔
we obtain

X
↔
= U”V

T
=

∑r
j=1 φjujv

T
j

where

”r↓r = diag(φ1, . . . , φr ) is the diagonal matrix containing the

(positive) singular values of Z with φ1 ⇔ φ2 ⇔ · · · ⇔ φr > 0

UN↓r = [ u1 · · · ur ], with u1, . . . ,ur → RN
, is the matrix of left

singular vectors of Z

Vp↓r = [ v1 · · · vr ], with v1, . . . , vr → Rp
, is the matrix of right

singular vectors of Z

U
T
U = V

T
V = Ir , that is, the left and right singular vectors, are

unit and pairwise orthogonal vectors vectors

For each k = 1, . . . , p we have a rank k linear approximation of X
↔
,

X(k) =

k∑

j=1

φjujv
T
j = U(k)”(k)V(k)

T

Here U(k) is the submatrix of U containing the first k columns, etc. . .
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Best rank k-linear approximation

For instance, we have the following rank one and rank two linear approximations,

X(1) = ε1u1v
T
1 = U(1)”(1)V(1)T

X(2) = ε1u1v
T
1 + ε2u1v

T
2 = U(2)”(2)V(2)T

All rows of X(k) are linear combinations of vT1 , . . . , vTk . Moreover:

For each k, the cloud of N points defined by the rows of X(k) lie in a
k-dimension linear subspace W(k) of Rp (generated by the vectors v1 . . . , vk ),
that is close to the cloud of centered points defined by the rows of X↑

Denoting by i the point defined by row i of X↑ (a red dot in next slide) and by
i ↘ the corresponding k-approximated point in W(k) (corresponding projected
blue dot), which is defined by the row i of X(k), we have that i ↔ i ↘ is a linear
combination of vj , j > k, and thus orthogonal to the linear space W(k)

Denoting by di the distance between i and the origin (center of gravity), by di→
the distance between i ↘ and the origin and setting ei = d(i , i ↘), we have a
decomposition

d2
i = d2

i→ + e2i (12)
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Best fitting k-dimensional linear space

X
G = ε0

di

Rp

1
2

j

p

W
k

i

i ∝

ei

d2
i = d2

i ∝ + e2i

di ↗

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2024/2025 51



Best k-dimensional fitting

The cloud of (blue) points X(k) gives the best rank k approximation

of X
↔
, corresponding to the best fitting k-dimensional linear space

in terms of least square distances, between the centered cloud of

points defined by X
↔
and the cloud of the projected points in the

k-dimensional space, X(k). In other words it minimizes the sum of

square distances
∑

i e
2
i (Eckart-Young’s Theorem)

Using the decomposition (12) of the slide 49 we obtain,

var(X
↔
)︸ ︷︷ ︸

total var.

=
1

N ↓ 1

∑

i

d
2
i =

1

N ↓ 1

∑

i →

d
2
i → +

1

N ↓ 1

∑

i

e
2
i

= var(X(k))︸ ︷︷ ︸
explain. var.

+
1

N ↓ 1

∑

i

e
2
i

︸ ︷︷ ︸
unexplain. var.

Therefore the optimal solution in the sense of the least square

distances, minimizes the variance that is left unexplained, i.e.,

maximizes the variance of the cloud of N points projected in a

k-dimensional space (explained variance) - main goal of PCA!
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Equivalence between the EVD and SVD approaches
We shall assume all singular values positive (otherwise we have to work with a slight
di!erent version of the SVD decomposition):

(X↑)TX↑ = (U”V
T )T (U”V

T ) = V”
T
U

T
U”V

T = V”
2
V
T ,

which is equivalent to say that,

S = V

(
1

⇓
N ↔ 1

”

)2

V
T (13)

Hence the PC loadings, i.e., the eigenvectors of S, are the right singular vectors of X↑

and the corresponding PC standard deviations, the singular values of X↑ divided by⇓
N ↔ 1. The PC factor scores are given by

Y
↑ = X

↑
V = U”V

T
V = U”,

and the left singular vectors verify

U = X
↑
V”

↓1 = Y
↑
”

↓1,

where Y
↑
”

↓1 is a matrix of normalized scores (more precisely, with constant standard
deviations 1↗

N↓1
)

One can consider, alternatively, the SVD of 1↗
N↓1

(X↑)TX↑. In this case the PCs

variances ωj are the squared singular values ε2j of 1↗
N↓1

(X↑)TX↑ (see the slides of

Prof. Cadima)
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comparing PCA via EVD and via SVD in R

R

# EVD APPROACH TO PCA
X<-iris[-5] # can be replaced by your own dataset or standardized
X.pca <- prcomp(X) # computes the PCA of X
loadings <- X.pca$rotation # eigenvectors of S=cov(X) (loadings)

sdev <- X.pca$sdev
# standard deviations of the PCs (square roots of the eigenvalues of S)

scores <- X.pca$x # scores (coordinates of the individuals w.r.t PCs)

# SVD APPROACH TO PCA
Xc <- scale(X,scale=FALSE) # Xc = centered X
X.svd<-svd(Xc) # computes the SVD of Xc
left.sing <- X.svd$u # left singular vectors of Xc
singvalues <- X.svd$d # singular values of Xc
right.sing <- X.svd$v # right singular vectors of Xc

# EQUIVALENCE BETWEEN EVD AND SVD APPROACHES

sdev; singvalues/sqrt(N-1)
# eigenvalues of S = square of sing values of Xc (divided by N-1)

head(loadings); head(right.sing) # loadings = right sing vectors

head(scores) ; head(left.sing%*%diag(singvalues))
# scores = normalized left sing vectors
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A very useful decomposition. . .
Any matrix CN→p of rank r can be decomposed as a

C = AB
T =

r∑

i=1

aib
T
i ,

where A = [ a1 · · · ar ] and B = [ b1 · · · br ], with ai ↓ R
N and bi ↓ R

p

In particular, any matrix C of rank one, i.e., with proportional rows and proportional
columns, can be decomposed as:

C = a b
T =





a1
...
aN






b1 · · · bp

, with

a =





a1
...
aN



 = (a1, . . . , aN) ↓ RN , b =





b1
...
bp



 = (b1, . . . , bN) ↓ Rp

The decomposition is not unique. For instance,

C =


2 4 6
4 8 12


=


2
4

 
1 2 3


=


1
2

 
2 4 6



In the general case the decomposition can be obtained using the SVD. . .
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Biplots

The biplots provide simultaneous representations of the individuals and

variables of a data matrix in a low dimension space (usually of dimension

two or three), using the SVD applied to the centered data matrix in order

to obtain a decomposition of the type described in the previous slide

Let X
↔
be the matrix obtained by centering the p observed variables of a

data matrix XN↓p (i.e., column centering the matrix). We will assume

X
↔
has rank p. Applying the SVD we can write,

X
↔
= U”V

T
(14)

where,

UN↓p verifies U
T
U = Ip is the matrix of left singular vectors of X

↔

Vp↓p verifies V
T
V = Ip is the matrix of right singular vectors of

X
↔
, i.e., the matrix of loadings of X

”p↓p = diag(φ1, . . . , φp) is a diagonal matrix containing the singular

values of X
↔
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Biplots (cont.)

Using the decomposition (14) of the previous slide we can decompose

X
↔
= GH

T
in many di!erent ways. We will refer here two of them:

G = U” and H = V - focuses on distances between individuals

G = U and H = V” - focuses on covariances/correlations between

variables

In the first case, G = U” contains the left singular vectors scaled by the

respective singular values which gives the factor scores (coordinates) of

the individuals. Actually, the right singular vectors of X
↔
are eigenvectors

of the covariance matrix S, i.e, vectors of loadings of X and therefore the

scores matrix is given

Y
↔
= X

↔
V = U”V

T
V = U”

The matrix H = V,corresponds to the matrix of right singular vectors,

i.e. to the matrix of the vectors of loadings
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Biplots (cont.)
Consider now the second case, GN↓p = U and Hp↓p = V” and denote

G
T
= [ g

1 · · · g
N
],

where g
j → Rp

is the j-th row of G. Similarly denote

H
T
= [ h

1 · · · h
p
],

where h
k → Rp

is the k-th row of H The rows of G and H are called,

respectively, markers of individuals and variables. We have,

(N ↓ 1)S = (X
↔
)
T
X

↔
= (GH

T
)
T
GH

T

= HG
T
GH

T
= HU

T
UH

T
= HH

T

Hence

(h
j
)
T
h
k
= (N ↓ 1)s

2
jk ,

that is, the inner product between the markers h
j
and h

k
is proportional

to the covariance between the observed variables xj and xk . In particular,

the length of each variable marker is proportional to the standard

deviation of the corresponding variable and we get, denoting ϖjk the angle

between the variable markers h
j
and h

k
,

cos(ϖjk) = rjk
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Euclidean and Mahalanobis distances
The usual squared (euclidean) distance between the individuals x

i , xε ↓ R
p is

d2
iε = ↗xi ↔ x

ε↗2 = (xi ↔ x
ε)T (xi ↔ x

ε)

The (squared) Mahalanobis distance accounts for the dataset variability and
generalizes the euclidean distance. Assuming the covariance matrix S invertible, the
Mahalanobis distance between the individuals x

i , xε ↓ R
p is defined as

ε2iε = (xi ↔ x
ε)TS↓1(xi ↔ x

ε)

The Mahalanobis distance between the individuals x
i = Hg

i and x
ε = Hg

ε is
proportional to the (squared) euclidean distance between the corresponding markers gi

and g
ε. Actually, from relation (13) of slide 53, we obtain

(N ↔ 1)V”↓2
V
T = (N ↔ 1) ((X↑)TX↑))↓1 = S

↓1

and therefore

(N ↔ 1)(gi ↔ g
ε)T (gi ↔ g

ε) = (N ↔ 1)(gi ↔ g
ε)T””

↓2
”(gi ↔ g

ε)

= (N ↔ 1)(gi ↔ g
ε)T”(VT

V)”↓2(VT
V)”(gi ↔ g

ε)

= (gi ↔ g
ε)T (V”)TS↓1(V”)(gi ↔ g

ε)

= (gi ↔ g
ε)THT

S
↓1

H(gi ↔ g
ε)

= (H(gi ↔ g
ε))TS↓1

H(gi ↔ g
ε)

= (xi ↔ x
ε)TS↓1(xi ↔ x

ε) = ε2iε, (UFF!)
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“Exact” interpretation of a biplot
Summarizing, we have the following “exact interpretations”:

The cosine of the angle between two variable markers is the

correlation coe”cient between these variables

The length of a variable marker is proportional to the standard

deviation of the variable

The euclidean distance between individual markers is proportional to

the Mahalanobis distance between the corresponding individuals

The coordinate of the orthogonal projection of an individual marker

g
i
onto the line defined by a variable marker h

j
equals value of the

individual on that variable divided by the standard deviation of the

variable

The last property follows directly from relation X
↔
= GH

T
, which implies

that x
↔
ij = (g

i
)
T
h
j
and therefore,

proj
hj (g

i
) =

(g
i
)
T
h
j

⇒hj⇒2 h
j
=

x
↔
ij

⇒hj⇒2 h
j

Note that ⇒proj
hj (g

i
)⇒ =

|x↑
ij |

↘hj↘
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“Approximated interpretations” of a biplot

Let GT (m) = U(m)T and H
T (m) = ”(m)V(m)T , 1 ≃ m ≃ p be the submatrices

containing the first m rows of GT and H
T , resp. Denote

(G(m))T = [ g1m · · · g
N
m ], (H(m))T = [ h1m · · · h

p
m ]

The rows of G(m) and H(m) give approximations to the markers of the individuals
and variables. We have:

The cosines of the angles between variable markers are approximately equal to
the correlation coe”cients between these variables

The length of a variable marker is approximately proportional to the standard
deviation of the variable

The (euclidean) distances between individual markers are approximately
proportional to the Mahalanobis distance between these individuals

The coordinate of the orthogonal projection of an individual marker gi onto the
line defined by a variable marker hj is approximately equal to the value of the
individual on that variable divided by the standard deviation of the variable

The higher the proportion of the explained variance by the first m PCs, the better the
approximations in the previous points
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Displaying a biplot using in R software

We can display the biplot of the iris flowers data set in two distinct ways, with the
biplot function:

R

Xc <- scale(iris[-5],scale=FALSE) #centred iris flower dataset

iris.svd <- svd(Xc) # compute the svd UDVT̂ of the centred iris dataset

U <- iris.svd$u

V <- iris.svd$v

Delta <- diag(iris.svd$d) # creates a diagonal matrix with diagonal with
the singular values

par(mfrow=c(2,2)) # 4 simultaneous windows

plot(iris.pca$x[,1:2],asp=TRUE,pch=16) # plot

biplot(U % * % Delta, V, asp=TRUE,cex=.5) # G=U Delta; H=V

biplot(U, V% * %Delta, asp=TRUE,cex=.5) # G=U; H=V Delta

biplot(iris.acp, asp=TRUE,cex=.5) # computes the second species
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Iris flower biplots
The output obtained by the script of the previous sliede

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2024/2025 63



Some notes on generalized euclidean distances

If S is a symmetric positive definite (hence invertible) matrix of order p, we define the
(squared) generalized euclidean distance between the vectors x, y ↓ Rp as

d2
S
(x, y) = (x↔ y)TS↓1(x↔ y)

If S = Ip , d2
S
(x, y) = (x↔ y)T (x↔ y) = ↗x↔ y↗2 is the usual (squared)

Euclidean distance between x and y

If S = cov(X), d2
S
(x, y) is the (squared) Mahalanobis distance between x and y

When the variables are uncorrelated, the covariance matrix S is a diagonal
matrix containing the variances of the p variables and d2

S
(x, y) equals the

(squared) euclidean distance between the corresponding standardized variables

The Mahalanobis distance of between an individual and the cloud’s center of
gravity is ‘smaller’ along the directions of X of greater variability and generalizes
to the multivariate case the idea of how many standard deviations each observed
vector x is far away from the mean. This can be useful, for instance, to detect
outliers. . .
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Mahalanobis distances for the iris flower data set
The variance-covariance matrices of the sepal and the petal widths are, respectively:


0.6856935 ↔0.0424340
↔0.0424340 0.1899794


,


3.116278 1.2956094
1.295609 0.5810063



The iris flowers at Mahalanobis distances from the mean less than or equal to 1 are
displayed in red and the iris flowers at mahalanobis distances greater than 1 and
smaller than or equal to 2 displayed in blue color
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Contribution and square cosine
Recall that the contribution of individual i to a PCk is the part of the variance
of PCk that is due to individual i :

ctri,k =
(y↑

i,k )
2

∑N
j=1(y

↑
j,k )

2

Individuals with contributions above the average are usually more important to
interpret the PC

A related notion is the square cosine of a PC k with an individual i , which gives
the contribution of the PC to the squared distance of the individual to the origin:

cos2i,k =
(y↑

i,k )
2

∑p
j=1(y

↑
i,j )

2

Square cosines can be added together to assess the quality of representation of
an individual i by its projection on the space defined by several PCs. For
instance, the quality of representation of individual i in the PFP is given by,

cos2i,1 + cos2i,2 =
(y↑

i,1)
2 + (y↑

i,2)
2

∑p
j=1(y

↑
i,j )

2

Only well represented individuals should be interpreted!
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PCA interpretation - summary

Proportion of the variance explained by a PC

Correlation between a variable and a PC

Contribution of an individual to a PC

Squared cosine of a PC with an individual

Biplot
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CLUSTER ANALYSIS
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