
M A S S ,  B E R N O U L L I ,  A N D  
E N E R G Y  E Q U AT I O N S

This chapter deals with three equations commonly used in fluid
mechanics: the mass, Bernoulli, and energy equations. The mass equa-
tion is an expression of the conservation of mass principle. The

Bernoulli equation is concerned with the conservation of kinetic, potential,
and flow energies of a fluid stream and their conversion to each other in
regions of flow where net viscous forces are negligible and where other
restrictive conditions apply. The energy equation is a statement of the con-
servation of energy principle. In fluid mechanics, it is found convenient to
separate mechanical energy from thermal energy and to consider the con-
version of mechanical energy to thermal energy as a result of frictional
effects as mechanical energy loss. Then the energy equation becomes the
mechanical energy balance.

We start this chapter with an overview of conservation principles and the
conservation of mass relation. This is followed by a discussion of various
forms of mechanical energy and the efficiency of mechanical work devices
such as pumps and turbines. Then we derive the Bernoulli equation by
applying Newton’s second law to a fluid element along a streamline and
demonstrate its use in a variety of applications. We continue with the devel-
opment of the energy equation in a form suitable for use in fluid mechanics
and introduce the concept of head loss. Finally, we apply the energy equa-
tion to various engineering systems.
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5
OBJECTIVES
When you finish reading this chapter, you
should be able to

! Apply the mass equation to
balance the incoming and
outgoing flow rates in a flow
system

! Recognize various forms of
mechanical energy, and work
with energy conversion
efficiencies

! Understand the use and
limitations of the Bernoulli
equation, and apply it to solve a
variety of fluid flow problems

! Work with the energy equation
expressed in terms of heads, and
use it to determine turbine
power output and pumping
power requirements
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5–1 ! INTRODUCTION
You are already familiar with numerous conservation laws such as the laws
of conservation of mass, conservation of energy, and conservation of
momentum. Historically, the conservation laws are first applied to a fixed
quantity of matter called a closed system or just a system, and then extended
to regions in space called control volumes. The conservation relations are
also called balance equations since any conserved quantity must balance
during a process. We now give a brief description of the conservation of
mass, momentum, and energy relations (Fig. 5–1).

Conservation of Mass
The conservation of mass relation for a closed system undergoing a change
is expressed as msys ! constant or dmsys/dt ! 0, which is a statement of the
obvious that the mass of the system remains constant during a process. For
a control volume (CV), mass balance is expressed in the rate form as

Conservation of mass: (5–1)

where m. in and m. out are the total rates of mass flow into and out of the con-
trol volume, respectively, and dmCV/dt is the rate of change of mass within
the control volume boundaries. In fluid mechanics, the conservation of mass
relation written for a differential control volume is usually called the conti-
nuity equation. Conservation of mass is discussed in Section 5–2.

Conservation of Momentum
The product of the mass and the velocity of a body is called the linear
momentum or just the momentum of the body, and the momentum of a rigid
body of mass m moving with a velocity V

→
is mV

→
. Newton’s second law states

that the acceleration of a body is proportional to the net force acting on it
and is inversely proportional to its mass, and that the rate of change of the
momentum of a body is equal to the net force acting on the body. Therefore,
the momentum of a system remains constant when the net force acting on it
is zero, and thus the momentum of such systems is conserved. This is known
as the conservation of momentum principle. In fluid mechanics, Newton’s
second law is usually referred to as the linear momentum equation, which is
discussed in Chap. 6 together with the angular momentum equation.

Conservation of Energy
Energy can be transferred to or from a closed system by heat or work, and
the conservation of energy principle requires that the net energy transfer to
or from a system during a process be equal to the change in the energy con-
tent of the system. Control volumes involve energy transfer via mass flow
also, and the conservation of energy principle, also called the energy bal-
ance, is expressed as

Conservation of energy: (5–2)

where E
.

in and E
.

out are the total rates of energy transfer into and out of the
control volume, respectively, and dECV/dt is the rate of change of energy
within the control volume boundaries. In fluid mechanics, we usually limit

E
#
in " E

#
out !

dECV

dt

m
#

in " m
#

out !
dmCV

dt
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FIGURE 5–1
Many fluid flow devices such as this
Pelton wheel hydraulic turbine are
analyzed by applying the conservation
of mass, momentum, and energy
principles.
Courtesy of Hydro Tasmania, www.hydro.com.au.
Used by permission.
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our consideration to mechanical forms of energy only. Conservation of
energy is discussed in Section 5–6.

5–2 ! CONSERVATION OF MASS
The conservation of mass principle is one of the most fundamental princi-
ples in nature. We are all familiar with this principle, and it is not difficult to
understand. As the saying goes, You cannot have your cake and eat it too! A
person does not have to be a scientist to figure out how much vinegar-and-
oil dressing will be obtained by mixing 100 g of oil with 25 g of vinegar.
Even chemical equations are balanced on the basis of the conservation of
mass principle. When 16 kg of oxygen reacts with 2 kg of hydrogen, 18 kg
of water is formed (Fig. 5–2). In an electrolysis process, the water will sep-
arate back to 2 kg of hydrogen and 16 kg of oxygen.

Mass, like energy, is a conserved property, and it cannot be created or
destroyed during a process. However, mass m and energy E can be con-
verted to each other according to the well-known formula proposed by
Albert Einstein (1879–1955):

(5–3)

where c is the speed of light in a vacuum, which is c ! 2.9979 # 108 m/s.
This equation suggests that the mass of a system changes when its energy
changes. However, for all energy interactions encountered in practice, with
the exception of nuclear reactions, the change in mass is extremely small and
cannot be detected by even the most sensitive devices. For example, when
1 kg of water is formed from oxygen and hydrogen, the amount of energy
released is 15,879 kJ, which corresponds to a mass of 1.76 # 10"10 kg. A
mass of this magnitude is beyond the accuracy required by practically all
engineering calculations and thus can be disregarded.

For closed systems, the conservation of mass principle is implicitly used by
requiring that the mass of the system remain constant during a process. For
control volumes, however, mass can cross the boundaries, and so we must
keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates
The amount of mass flowing through a cross section per unit time is called
the mass flow rate and is denoted by m. . The dot over a symbol is used to
indicate time rate of change.

A fluid flows into or out of a control volume, usually through pipes or
ducts. The differential mass flow rate of fluid flowing across a small area
element dAc in a cross section of the pipe is proportional to dAc itself, the
fluid density r, and the component of the flow velocity normal to dAc,
which we denote as Vn, and is expressed as (Fig. 5–3)

(5–4)

Note that both d and d are used to indicate differential quantities, but d is
typically used for quantities (such as heat, work, and mass transfer) that are
path functions and have inexact differentials, while d is used for quantities
(such as properties) that are point functions and have exact differentials. For
flow through an annulus of inner radius r1 and outer radius r2, for example,

dm
#

! rVn dAc

E ! mc2

2 kg
H2

16 kg
O2

18 kg
H2O

FIGURE 5–2
Mass is conserved even during

chemical reactions.

→

→

dAc
Vn

V

n

Control surface

FIGURE 5–3
The normal velocity Vn for a surface 

is the component of velocity
perpendicular to the surface.
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but (total mass flow rate

through the annulus), not m. 2 " m. 1. For specified values of r1 and r2, the
value of the integral of dAc is fixed (thus the names point function and exact
differential), but this is not the case for the integral of dm. (thus the names
path function and inexact differential).

The mass flow rate through the entire cross-sectional area of a pipe or
duct is obtained by integration:

(5–5)

While Eq. 5–5 is always valid (in fact it is exact), it is not always practi-
cal for engineering analyses because of the integral. We would like instead
to express mass flow rate in terms of average values over a cross section of
the pipe. In a general compressible flow, both r and Vn vary across the pipe.
In many practical applications, however, the density is essentially uniform
over the pipe cross section, and we can take r outside the integral of Eq.
5–5. Velocity, however, is never uniform over a cross section of a pipe
because of the no-slip condition at the walls. Rather, the velocity varies
from zero at the walls to some maximum value at or near the centerline of
the pipe. We define the average velocity Vavg as the average value of Vn
across the entire cross section of the pipe (Fig. 5–4),

Average velocity: (5–6)

where Ac is the area of the cross section normal to the flow direction. Note
that if the speed were Vavg all through the cross section, the mass flow rate
would be identical to that obtained by integrating the actual velocity profile.
Thus for incompressible flow or even for compressible flow where r is uni-
form across Ac, Eq. 5–5 becomes

(5–7)

For compressible flow, we can think of r as the bulk average density over the
cross section, and then Eq. 5–7 can still be used as a reasonable approximation.
For simplicity, we drop the subscript on the average velocity. Unless other-
wise stated, V denotes the average velocity in the flow direction. Also, Ac
denotes the cross-sectional area normal to the flow direction.

The volume of the fluid flowing through a cross section per unit time is
called the volume flow rate V

.
(Fig. 5–5) and is given by

(5–8)

An early form of Eq. 5–8 was published in 1628 by the Italian monk Bene-
detto Castelli (circa 1577–1644). Note that many fluid mechanics textbooks
use Q instead of V

.
for volume flow rate. We use V

.
to avoid confusion with

heat transfer.
The mass and volume flow rates are related by

(5–9)m
#

! rV
#

!
V
#

v

V
#

! !
Ac

 Vn dAc ! Vavg Ac ! VAc  (m3/s)

m
#

! rVavg Ac  (kg/s)

Vavg !
1
Ac

 !
Ac

 Vn dAc

m
#

! !
Ac

 dm
#

! !
Ac

 rVn dAc  (kg/s)

!
2

1

 dm
#

! m
#

total!
2

1

 dAc ! Ac2 " Ac1 ! p(r 2
2 " r 1

2)
Vavg

FIGURE 5–4
The average velocity Vavg is defined 
as the average speed through a cross
section.

Vavg

Cross section

Ac

V = VavgAc

FIGURE 5–5
The volume flow rate is the volume of
fluid flowing through a cross section
per unit time.
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where v is the specific volume. This relation is analogous to m ! rV !
V/v, which is the relation between the mass and the volume of a fluid in a
container.

Conservation of Mass Principle
The conservation of mass principle for a control volume can be expressed
as: The net mass transfer to or from a control volume during a time interval
$t is equal to the net change (increase or decrease) in the total mass within
the control volume during $t. That is,

or

(5–10)

where $mCV ! mfinal – minitial is the change in the mass of the control vol-
ume during the process (Fig. 5–6). It can also be expressed in rate form as

(5–11)

where m. in and m. out are the total rates of mass flow into and out of the con-
trol volume, and dmCV/dt is the rate of change of mass within the control
volume boundaries. Equations 5–10 and 5–11 are often referred to as the
mass balance and are applicable to any control volume undergoing any
kind of process.

Consider a control volume of arbitrary shape, as shown in Fig. 5–7. The
mass of a differential volume dV within the control volume is dm ! r dV.
The total mass within the control volume at any instant in time t is deter-
mined by integration to be

Total mass within the CV: (5–12)

Then the time rate of change of the amount of mass within the control vol-
ume can be expressed as

Rate of change of mass within the CV: (5–13)

For the special case of no mass crossing the control surface (i.e., the control
volume resembles a closed system), the conservation of mass principle
reduces to that of a system that can be expressed as dmCV/dt ! 0. This rela-
tion is valid whether the control volume is fixed, moving, or deforming.

Now consider mass flow into or out of the control volume through a differ-
ential area dA on the control surface of a fixed control volume. Let n→ be the
outward unit vector of dA normal to dA and V

→
be the flow velocity at dA rel-

ative to a fixed coordinate system, as shown in Fig. 5–7. In general, the
velocity may cross dA at an angle u off the normal of dA, and the mass flow
rate is proportional to the normal component of velocity V

→

n ! V
→

cos u rang-
ing from a maximum outflow of V

→
for u ! 0 (flow is normal to dA) to a min-

imum of zero for u ! 90° (flow is tangent to dA) to a maximum inflow of V
→

for u ! 180° (flow is normal to dA but in the opposite direction). Making

dmCV

dt
!

d
dt

 !
CV

 r dV

mCV ! !
CV

 r dV

m
#

in " m
#

out ! dmCV/dt  (kg/s)

min " mout ! $mCV  (kg)

aTotal mass entering
the CV during $t

b " aTotal mass leaving
the CV during $t

b ! a Net change in mass
within the CV during $t

b
Water

∆mbathtub =
 min –

 mout = 20 kg
min = 50 kg

mout = 30 kg

FIGURE 5–6
Conservation of mass principle 

for an ordinary bathtub.

→

→

Control
volume (CV)

Control surface (CS)

dV

dm
dA

n

V

u

FIGURE 5–7
The differential control volume dV
and the differential control surface 

dA used in the derivation of the
conservation of mass relation.
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use of the concept of dot product of two vectors, the magnitude of the nor-
mal component of velocity can be expressed as

Normal component of velocity: (5–14)

The mass flow rate through dA is proportional to the fluid density r, normal
velocity Vn, and the flow area dA, and can be expressed as

Differential mass flow rate: (5–15)

The net flow rate into or out of the control volume through the entire con-
trol surface is obtained by integrating dm. over the entire control surface,

Net mass flow rate: (5–16)

Note that V
→

· n→ ! V cos u is positive for u % 90° (outflow) and negative for
u & 90° (inflow). Therefore, the direction of flow is automatically
accounted for, and the surface integral in Eq. 5–16 directly gives the net
mass flow rate. A positive value for m. net indicates net outflow, and a nega-
tive value indicates a net inflow of mass.

Rearranging Eq. 5–11 as dmCV/dt ' m. out " m. in ! 0, the conservation of
mass relation for a fixed control volume can then be expressed as

General conservation of mass: (5–17)

It states that the time rate of change of mass within the control volume plus
the net mass flow rate through the control surface is equal to zero.

The general conservation of mass relation for a control volume can also
be derived using the Reynolds transport theorem (RTT) by taking the prop-
erty B to be the mass m (Chap. 4). Then we have b ! 1 since dividing the
mass by mass to get the property per unit mass gives unity. Also, the mass
of a system is constant, and thus its time derivative is zero. That is, dmsys /dt
! 0. Then the Reynolds transport equation reduces immediately to Eq.
5–17, as shown in Fig. 5–8, and thus illustrates that the Reynolds transport
theorem is a very powerful tool indeed. In Chap. 6 we apply the RTT to
obtain the linear and angular momentum equations for control volumes.

Splitting the surface integral in Eq. 5–17 into two parts—one for the out-
going flow streams (positive) and one for the incoming streams (negative)—
the general conservation of mass relation can also be expressed as

(5–18)

where A represents the area for an inlet or outlet, and the summation signs
are used to emphasize that all the inlets and outlets are to be considered.
Using the definition of mass flow rate, Eq. 5–18 can also be expressed as

(5–19)

There is considerable flexibility in the selection of a control volume when
solving a problem. Several control volume choices may be correct, but some
are more convenient to work with. A control volume should not introduce
any unnecessary complications. The proper choice of a control volume can
make the solution of a seemingly complicated problem rather easy. A simple
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→
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→
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FIGURE 5–8
The conservation of mass equation 
is obtained by replacing B in the
Reynolds transport theorem by 
mass m, and b by 1 (m per unit 
mass ! m/m ! 1).
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V
→
n

A V

m = rVA 

FIGURE 5–9
A control surface should always be

selected normal to flow at all locations
where it crosses the fluid flow to avoid

complications, even though the result
is the same.

rule in selecting a control volume is to make the control surface normal to
flow at all locations where it crosses fluid flow, whenever possible. This
way the dot product V

→
· n→ simply becomes the magnitude of the velocity,

and the integral becomes simply rVA (Fig. 5–9).

Moving or Deforming Control Volumes
Equations 5–17 and 5–18 are also valid for moving or deforming control
volumes provided that the absolute velocity V

→
is replaced by the relative

velocity V
→

r , which is the fluid velocity relative to the control surface (Chap.
4). In the case of a nondeforming control volume, relative velocity is the
fluid velocity observed by a person moving with the control volume and is
expressed as V

→

r ! V
→

" V
→

CV, where V
→

is the fluid velocity and V
→

CV is the
velocity of the control volume, both relative to a fixed point outside. Again
note that this is a vector subtraction.

Some practical problems (such as the injection of medication through the
needle of a syringe by the forced motion of the plunger) involve deforming
control volumes. The conservation of mass relations developed can still be
used for such deforming control volumes provided that the velocity of the
fluid crossing a deforming part of the control surface is expressed relative to
the control surface (that is, the fluid velocity should be expressed relative to
a reference frame attached to the deforming part of the control surface). The
relative velocity in this case at any point on the control surface is expressed
as V

→

r! V
→

" V
→

CS, where V
→

CS is the local velocity of the control surface at that
point relative to a fixed point outside the control volume.

Mass Balance for Steady-Flow Processes
During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (mCV ! constant). Then the con-
servation of mass principle requires that the total amount of mass entering a
control volume equal the total amount of mass leaving it. For a garden hose
nozzle in steady operation, for example, the amount of water entering the
nozzle per unit time is equal to the amount of water leaving it per unit time.

When dealing with steady-flow processes, we are not interested in the
amount of mass that flows in or out of a device over time; instead, we are
interested in the amount of mass flowing per unit time, that is, the mass flow
rate m. . The conservation of mass principle for a general steady-flow system
with multiple inlets and outlets can be expressed in rate form as (Fig. 5–10)

Steady flow: (5–20)

It states that the total rate of mass entering a control volume is equal to the
total rate of mass leaving it.

Many engineering devices such as nozzles, diffusers, turbines, compres-
sors, and pumps involve a single stream (only one inlet and one outlet). For
these cases, we denote the inlet state by the subscript 1 and the outlet state
by the subscript 2, and drop the summation signs. Then Eq. 5–20 reduces,
for single-stream steady-flow systems, to

Steady flow (single stream): (5–21)m
#

1 ! m
#

2  →   r1V1 A1 ! r2V2 A2

a
in

m
#

! a
out

m
#   (kg/s)

!
A

 r(V
→

 (  n
→

) dA

m

CV

˙ 1 = 2 kg/s ṁ2 = 3 kg/s

m3 = m1 + m2 = 5 kg/s˙ ˙ ˙

FIGURE 5–10
Conservation of mass principle 

for a two-inlet–one-outlet 
steady-flow system.

V
u→n

Vn = V cos u

A/cos uA V

m = r(V cos u)(A/cos u) = rVA 

(a) Control surface at an angle to flow

(b) Control surface normal to flow
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Special Case: Incompressible Flow
The conservation of mass relations can be simplified even further when the
fluid is incompressible, which is usually the case for liquids. Canceling the
density from both sides of the general steady-flow relation gives

Steady, incompressible flow: (5–22)

For single-stream steady-flow systems it becomes

Steady, incompressible flow (single stream): (5–23)

It should always be kept in mind that there is no such thing as a “conserva-
tion of volume” principle. Therefore, the volume flow rates into and out of a
steady-flow device may be different. The volume flow rate at the outlet of
an air compressor is much less than that at the inlet even though the mass
flow rate of air through the compressor is constant (Fig. 5–11). This is due
to the higher density of air at the compressor exit. For steady flow of liq-
uids, however, the volume flow rates, as well as the mass flow rates, remain
constant since liquids are essentially incompressible (constant-density) sub-
stances. Water flow through the nozzle of a garden hose is an example of
the latter case.

The conservation of mass principle is based on experimental observations
and requires every bit of mass to be accounted for during a process. If you
can balance your checkbook (by keeping track of deposits and withdrawals,
or by simply observing the “conservation of money” principle), you should
have no difficulty applying the conservation of mass principle to engineer-
ing systems.

EXAMPLE 5–1 Water Flow through a Garden Hose Nozzle

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The
inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle
exit (Fig. 5–12). If it takes 50 s to fill the bucket with water, determine
(a) the volume and mass flow rates of water through the hose, and (b) the
average velocity of water at the nozzle exit.

SOLUTION A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is an incompressible substance. 2 Flow through the
hose is steady. 3 There is no waste of water by splashing.
Properties We take the density of water to be 1000 kg/m3 ! 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

(b) The cross-sectional area of the nozzle exit is

Ae ! pr 2
e ! p(0.4 cm)2 ! 0.5027 cm2 ! 0.5027 # 10"4 m2

 m
#

! rV
#

! (1 kg/L)(0.757 L/s) ! 0.757 kg/s 

 V
#

!
V
$t

!
10 gal

50 s
 a3.7854 L

1 gal
b ! 0.757 L/s 

V
#

1 ! V
#

2 → V1A1 ! V2 A2

a
in

V
#

! a
out

V
#   (m3/s)
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ṁ 1 = 2 kg/s

Air
compressor

ṁ2 = 2 kg/s

V̇2 = 0.8 m3/s

V̇1 = 1.4 m3/s

FIGURE 5–11
During a steady-flow process,
volume flow rates are not necessarily
conserved although mass flow 
rates are.

Nozzle

BucketGarden
hose

FIGURE 5–12
Schematic for Example 5–1.
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The volume flow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes

Discussion It can be shown that the average velocity in the hose is 2.4 m/s.
Therefore, the nozzle increases the water velocity by over six times.

EXAMPLE 5–2 Discharge of Water from a Tank

A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the
atmosphere is initially filled with water. Now the discharge plug near the bot-
tom of the tank is pulled out, and a water jet whose diameter is 0.5 in
streams out (Fig. 5–13). The average velocity of the jet is given by 
V ! , where h is the height of water in the tank measured from the
center of the hole (a variable) and g is the gravitational acceleration. Deter-
mine how long it will take for the water level in the tank to drop to 2 ft from
the bottom.

SOLUTION The plug near the bottom of a water tank is pulled out. The
time it will take for half of the water in the tank to empty is to be deter-
mined.
Assumptions 1 Water is an incompressible substance. 2 The distance
between the bottom of the tank and the center of the hole is negligible com-
pared to the total water height. 3 The gravitational acceleration is 32.2 ft/s2.
Analysis We take the volume occupied by water as the control volume. The
size of the control volume decreases in this case as the water level drops,
and thus this is a variable control volume. (We could also treat this as a
fixed control volume that consists of the interior volume of the tank by disre-
garding the air that replaces the space vacated by the water.) This is obvi-
ously an unsteady-flow problem since the properties (such as the amount of
mass) within the control volume change with time.

The conservation of mass relation for a control volume undergoing any
process is given in the rate form as

(1)

During this process no mass enters the control volume (m
.

in ! 0), and the
mass flow rate of discharged water can be expressed as

(2)

where Ajet ! pD2
jet/4 is the cross-sectional area of the jet, which is constant.

Noting that the density of water is constant, the mass of water in the tank at
any time is

(3)

where Atank ! pD2
tank/4 is the base area of the cylindrical tank. Substituting

Eqs. 2 and 3 into the mass balance relation (Eq. 1) gives

"r22ghAjet !
d(rAtankh)

dt
→ "r22gh(pD2

jet /4) !
r(pD2

tank/4) dh

dt

mCV ! rV ! rAtankh

m
#

out ! (rVA)out ! r22ghAjet

m
#

in " m
#

out !
dmCV

dt

12gh

Ve !
V
#

Ae
!

0.757 L/s
0.5027 # 10"4 m2 a 1 m3

1000 L
b ! 15.1 m/s
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Water

Air

0 Dtank

Djeth2

h0

h

FIGURE 5–13
Schematic for Example 5–2.
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Canceling the densities and other common terms and separating the vari-
ables give

Integrating from t ! 0 at which h ! h0 to t ! t at which h ! h2 gives

Substituting, the time of discharge is determined to be

Therefore, half of the tank will be emptied in 12.6 min after the discharge
hole is unplugged.
Discussion Using the same relation with h2 ! 0 gives t ! 43.1 min for the
discharge of the entire amount of water in the tank. Therefore, emptying the
bottom half of the tank takes much longer than emptying the top half. This
is due to the decrease in the average discharge velocity of water with
decreasing h.

5–3 ! MECHANICAL ENERGY AND EFFICIENCY
Many fluid systems are designed to transport a fluid from one location to
another at a specified flow rate, velocity, and elevation difference, and the
system may generate mechanical work in a turbine or it may consume
mechanical work in a pump or fan during this process. These systems do
not involve the conversion of nuclear, chemical, or thermal energy to
mechanical energy. Also, they do not involve any heat transfer in any signif-
icant amount, and they operate essentially at constant temperature. Such
systems can be analyzed conveniently by considering the mechanical forms
of energy only and the frictional effects that cause the mechanical energy to
be lost (i.e., to be converted to thermal energy that usually cannot be used
for any useful purpose).

The mechanical energy can be defined as the form of energy that can be
converted to mechanical work completely and directly by an ideal mechani-
cal device such as an ideal turbine. Kinetic and potential energies are the
familiar forms of mechanical energy. Thermal energy is not mechanical
energy, however, since it cannot be converted to work directly and com-
pletely (the second law of thermodynamics).

A pump transfers mechanical energy to a fluid by raising its pressure, and
a turbine extracts mechanical energy from a fluid by dropping its pressure.
Therefore, the pressure of a flowing fluid is also associated with its mechan-
ical energy. In fact, the pressure unit Pa is equivalent to Pa ! N/m2 !
N · m/m3 ! J/m3, which is energy per unit volume, and the product Pv or
its equivalent P/r has the unit J/kg, which is energy per unit mass. Note that
pressure itself is not a form of energy. But a pressure force acting on a fluid
through a distance produces work, called flow work, in the amount of P/r
per unit mass. Flow work is expressed in terms of fluid properties, and it is
convenient to view it as part of the energy of a flowing fluid and call it flow

t !
24 ft " 22 ft232.2/2 ft/s2

 a3 # 12 in
0.5 in

b 2

! 757 s ! 12.6 min

!
t

0

 dt ! "
D2

tank

D2
jet22g

 !
h2

h0

 
dh2h

 →  t !
2h0 " 2h22g/2

 aDtank

Djet
b 2

dt ! "
D2

tank

D2
jet

 
dh22gh
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energy. Therefore, the mechanical energy of a flowing fluid can be
expressed on a unit-mass basis as (Fig. 5–14).

where P/r is the flow energy, V2/2 is the kinetic energy, and gz is the poten-
tial energy of the fluid, all per unit mass. Then the mechanical energy
change of a fluid during incompressible flow becomes

(5–24)

Therefore, the mechanical energy of a fluid does not change during flow if
its pressure, density, velocity, and elevation remain constant. In the absence
of any losses, the mechanical energy change represents the mechanical
work supplied to the fluid (if $emech & 0) or extracted from the fluid (if
$emech % 0).

Consider a container of height h filled with water, as shown in Fig. 5–15,
with the reference level selected at the bottom surface. The gage pressure
and the potential energy per unit mass are, respectively, PA ! 0 and peA
! gh at point A at the free surface, and PB ! rgh and peB ! 0 at point B at
the bottom of the container. An ideal hydraulic turbine would produce the
same work per unit mass wturbine ! gh whether it receives water (or any
other fluid with constant density) from the top or from the bottom of the
container. Note that we are also assuming ideal flow (no irreversible losses)
through the pipe leading from the tank to the turbine. Therefore, the total
mechanical energy of water at the bottom is equivalent to that at the top.

The transfer of mechanical energy is usually accomplished by a rotating
shaft, and thus mechanical work is often referred to as shaft work. A pump
or a fan receives shaft work (usually from an electric motor) and transfers it
to the fluid as mechanical energy (less frictional losses). A turbine, on the
other hand, converts the mechanical energy of a fluid to shaft work. In the
absence of any irreversibilities such as friction, mechanical energy can be
converted entirely from one mechanical form to another, and the mechani-
cal efficiency of a device or process can be defined as (Fig. 5–16)

(5–25)

A conversion efficiency of less than 100 percent indicates that conversion is
less than perfect and some losses have occurred during conversion. A

hmech !
Mechanical energy output

Mechanical energy input
!

Emech, out

Emech, in
! 1 "

Emech, loss

Emech, in

$emech !
P2 " P1

r
'

V 2
2 " V 2

1

2
' g(z2 " z1)  (kJ/kg)

emech !
P
r

'
V 2

2
' gz
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FIGURE 5–14
In the absence of any changes in flow

velocity and elevation, the power
produced by an ideal hydraulic turbine
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The mechanical energy of water 
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mechanical efficiency of 97 percent indicates that 3 percent of the mechani-
cal energy input is converted to thermal energy as a result of frictional heat-
ing, and this will manifest itself as a slight rise in the temperature of the
fluid.

In fluid systems, we are usually interested in increasing the pressure,
velocity, and/or elevation of a fluid. This is done by supplying mechanical
energy to the fluid by a pump, a fan, or a compressor (we will refer to all of
them as pumps). Or we are interested in the reverse process of extracting
mechanical energy from a fluid by a turbine and producing mechanical
power in the form of a rotating shaft that can drive a generator or any other
rotary device. The degree of perfection of the conversion process between
the mechanical work supplied or extracted and the mechanical energy of the
fluid is expressed by the pump efficiency and turbine efficiency, defined as

(5–26)

where $E
.

mech, fluid ! E
.

mech, out " E
.

mech, in is the rate of increase in the mechan-
ical energy of the fluid, which is equivalent to the useful pumping power
W
.

pump, u supplied to the fluid, and

(5–27)

where "$E
.

mech, fluid" ! E
.

mech, in " E
.

mech, out is the rate of decrease in the
mechanical energy of the fluid, which is equivalent to the mechanical power
extracted from the fluid by the turbine W

.
turbine, e, and we use the absolute

value sign to avoid negative values for efficiencies. A pump or turbine 
efficiency of 100 percent indicates perfect conversion between the shaft
work and the mechanical energy of the fluid, and this value can be
approached (but never attained) as the frictional effects are minimized.

The mechanical efficiency should not be confused with the motor 
efficiency and the generator efficiency, which are defined as

Motor: (5–28)

and

Generator: (5–29)

A pump is usually packaged together with its motor, and a turbine with its
generator. Therefore, we are usually interested in the combined or overall
efficiency of pump–motor and turbine–generator combinations (Fig. 5–17),
which are defined as

(5–30)

and

(5–31)

All the efficiencies just defined range between 0 and 100 percent. The
lower limit of 0 percent corresponds to the conversion of the entire
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FIGURE 5–17
The overall efficiency of a turbine–
generator is the product of the
efficiency of the turbine and the
efficiency of the generator, and
represents the fraction of the
mechanical energy of the fluid
converted to electric energy.
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mechanical or electric energy input to thermal energy, and the device in
this case functions like a resistance heater. The upper limit of 100 percent
corresponds to the case of perfect conversion with no friction or other irre-
versibilities, and thus no conversion of mechanical or electric energy to
thermal energy.

EXAMPLE 5–3 Performance of a Hydraulic Turbine–Generator

The water in a large lake is to be used to generate electricity by the installa-
tion of a hydraulic turbine–generator at a location where the depth of the
water is 50 m (Fig. 5–18). Water is to be supplied at a rate of 5000 kg/s. If
the electric power generated is measured to be 1862 kW and the generator
efficiency is 95 percent, determine (a) the overall efficiency of the tur-
bine–generator, (b) the mechanical efficiency of the turbine, and (c) the
shaft power supplied by the turbine to the generator.

SOLUTION A hydraulic turbine–generator is to generate electricity from the
water of a lake. The overall efficiency, the turbine efficiency, and the shaft
power are to be determined.
Assumptions 1 The elevation of the lake remains constant. 2 The mechani-
cal energy of water at the turbine exit is negligible.
Properties The density of water can be taken to be r ! 1000 kg/m3.
Analysis (a) We take the bottom of the lake as the reference level for conve-
nience. Then kinetic and potential energies of water are zero, and the
change in its mechanical energy per unit mass becomes

Then the rate at which mechanical energy is supplied to the turbine by the
fluid and the overall efficiency become

(b) Knowing the overall and generator efficiencies, the mechanical efficiency
of the turbine is determined from

(c) The shaft power output is determined from the definition of mechanical
efficiency,

W
#

shaft, out ! hturbine 0$E
#
mech, fluid 0 ! (0.80)(2455 kW) ! 1964 kW

hturbine–gen ! hturbine hgenerator →  hturbine !
hturbine–gen

hgenerator
!

0.76
0.95

! 0.80

hoverall ! hturbine–gen !
W
#

elect, out0$E
#
mech, fluid 0 ! 1862 kW

2455 kW
! 0.76

0$E
#
mech, fluid 0 ! m

#
(emech, in " emech, out) ! (5000 kg/s)(0.491 kJ/kg) ! 2455 kW

emech, in " emech, out !
P
r
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FIGURE 5–18
Schematic for Example 5–3.
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Discussion Note that the lake supplies 2455 kW of mechanical energy to
the turbine, which converts 1964 kW of it to shaft work that drives the gen-
erator, which generates 1862 kW of electric power. There are irreversible
losses through each component.

EXAMPLE 5–4 Conservation of Energy for 
an Oscillating Steel Ball

The motion of a steel ball in a hemispherical bowl of radius h shown in Fig.
5–19 is to be analyzed. The ball is initially held at the highest location at
point A, and then it is released. Obtain relations for the conservation of
energy of the ball for the cases of frictionless and actual motions.

SOLUTION A steel ball is released in a bowl. Relations for the energy bal-
ance are to be obtained.
Assumptions The motion is frictionless, and thus friction between the ball,
the bowl, and the air is negligible.
Analysis When the ball is released, it accelerates under the influence of
gravity, reaches a maximum velocity (and minimum elevation) at point B at
the bottom of the bowl, and moves up toward point C on the opposite side.
In the ideal case of frictionless motion, the ball will oscillate between points
A and C. The actual motion involves the conversion of the kinetic and poten-
tial energies of the ball to each other, together with overcoming resistance to
motion due to friction (doing frictional work). The general energy balance for
any system undergoing any process is

Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

Then the energy balance for the ball for a process from point 1 to point 2
becomes

or

since there is no energy transfer by heat or mass and no change in the inter-
nal energy of the ball (the heat generated by frictional heating is dissipated to

V 2
1

2
' gz1 !

V 2
2

2
' gz2 ' wfriction

"wfriction ! (ke2 ' pe2) " (ke1 ' pe1)

E in " Eout    !     $E system
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FIGURE 5–19
Schematic for Example 5–4.
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the surrounding air). The frictional work term wfriction is often expressed as eloss
to represent the loss (conversion) of mechanical energy into thermal energy.

For the idealized case of frictionless motion, the last relation reduces to

where the value of the constant is C ! gh. That is, when the frictional
effects are negligible, the sum of the kinetic and potential energies of the
ball remains constant.
Discussion This is certainly a more intuitive and convenient form of the
conservation of energy equation for this and other similar processes such as
the swinging motion of the pendulum of a wall clock. The relation obtained
is analogous to the Bernoulli equation derived in Section 5–4.

Most processes encountered in practice involve only certain forms of
energy, and in such cases it is more convenient to work with the simplified
versions of the energy balance. For systems that involve only mechanical
forms of energy and its transfer as shaft work, the conservation of energy
principle can be expressed conveniently as

(5–32)

where Emech, loss represents the conversion of mechanical energy to thermal
energy due to irreversibilities such as friction. For a system in steady 
operation, the mechanical energy balance becomes E

.
mech, in ! E

.
mech, out

' E
.

mech, loss (Fig. 5–20).

5–4 ! THE BERNOULLI EQUATION
The Bernoulli equation is an approximate relation between pressure,
velocity, and elevation, and is valid in regions of steady, incompressible
flow where net frictional forces are negligible (Fig. 5–21). Despite its sim-
plicity, it has proven to be a very powerful tool in fluid mechanics. In this
section, we derive the Bernoulli equation by applying the conservation of
linear momentum principle, and we demonstrate both its usefulness and its
limitations.

The key approximation in the derivation of the Bernoulli equation is that
viscous effects are negligibly small compared to inertial, gravitational, and
pressure effects. Since all fluids have viscosity (there is no such thing as an
“inviscid fluid”), this approximation cannot be valid for an entire flow field
of practical interest. In other words, we cannot apply the Bernoulli equation
everywhere in a flow, no matter how small the fluid’s viscosity. However, it
turns out that the approximation is reasonable in certain regions of many
practical flows. We refer to such regions as inviscid regions of flow, and we
stress that they are not regions where the fluid itself is inviscid or friction-
less, but rather they are regions where net viscous or frictional forces are
negligibly small compared to other forces acting on fluid particles.

Care must be exercised when applying the Bernoulli equation since it is
an approximation that applies only to inviscid regions of flow. In general,
frictional effects are always important very close to solid walls (boundary
layers) and directly downstream of bodies (wakes). Thus, the Bernoulli

Emech, in " Emech, out ! $Emech, system ' Emech, loss

V 2
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! gz1 "

V 2
2

2
! gz2  or  V 2

2
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such problems are conveniently solved
by using a mechanical energy balance.
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approximation is typically useful in flow regions outside of boundary layers
and wakes, where the fluid motion is governed by the combined effects of
pressure and gravity forces.

The motion of a particle and the path it follows are described by the
velocity vector as a function of time and space coordinates and the initial
position of the particle. When the flow is steady (no change with time at a
specified location), all particles that pass through the same point follow the
same path (which is the streamline), and the velocity vectors remain tangent
to the path at every point.

Acceleration of a Fluid Particle
Often it is convenient to describe the motion of a particle in terms of its dis-
tance s along a streamline together with the radius of curvature along the
streamline. The velocity of the particle is related to the distance by V
! ds/dt, which may vary along the streamline. In two-dimensional flow, the
acceleration can be decomposed into two components: streamwise accelera-
tion as along the streamline and normal acceleration an in the direction nor-
mal to the streamline, which is given as an ! V2/R. Note that streamwise
acceleration is due to a change in speed along a streamline, and normal
acceleration is due to a change in direction. For particles that move along a
straight path, an ! 0 since the radius of curvature is infinity and thus there
is no change in direction. The Bernoulli equation results from a force bal-
ance along a streamline.

One may be tempted to think that acceleration is zero in steady flow since
acceleration is the rate of change of velocity with time, and in steady flow
there is no change with time. Well, a garden hose nozzle tells us that this
understanding is not correct. Even in steady flow and thus constant mass
flow rate, water accelerates through the nozzle (Fig. 5–22 as discussed in
Chap. 4). Steady simply means no change with time at a specified location,
but the value of a quantity may change from one location to another. In the
case of a nozzle, the velocity of water remains constant at a specified point,
but it changes from the inlet to the exit (water accelerates along the nozzle).

Mathematically, this can be expressed as follows: We take the velocity V
of a fluid particle to be a function of s and t. Taking the total differential of
V(s, t) and dividing both sides by dt give

(5–33)

In steady flow ∂V/∂t ! 0 and thus V ! V(s), and the acceleration in the s-
direction becomes

(5–34)

where V ! ds/dt if we are following a fluid particle as it moves along a
streamline. Therefore, acceleration in steady flow is due to the change of
velocity with position.

Derivation of the Bernoulli Equation
Consider the motion of a fluid particle in a flow field in steady flow
described in detail in Chap. 4. Applying Newton’s second law (which is

as !
dV
dt

!
)V
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 V ! V 
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FIGURE 5–22
During steady flow, a fluid may not
accelerate in time at a fixed point, but
it may accelerate in space.
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referred to as the conservation of linear momentum relation in fluid
mechanics) in the s-direction on a particle moving along a streamline gives

(5–35)

In regions of flow where net frictional forces are negligible, the significant
forces acting in the s-direction are the pressure (acting on both sides) and
the component of the weight of the particle in the s-direction (Fig. 5–23).
Therefore, Eq. 5–35 becomes

(5–36)

where u is the angle between the normal of the streamline and the vertical z-
axis at that point, m ! rV ! r dA ds is the mass, W ! mg ! rg dA ds is
the weight of the fluid particle, and sin u ! dz/ds. Substituting,

(5–37)

Canceling dA from each term and simplifying,

(5–38)

Noting that V dV ! d(V2) and dividing each term by r gives

(5–39)

Integrating (Fig. 5–24),

Steady flow: (5–40)

since the last two terms are exact differentials. In the case of incompressible
flow, the first term also becomes an exact differential, and its integration
gives

Steady, incompressible flow: (5–41)

This is the famous Bernoulli equation, which is commonly used in fluid
mechanics for steady, incompressible flow along a streamline in inviscid
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regions of flow. The value of the constant can be evaluated at any point on
the streamline where the pressure, density, velocity, and elevation are
known. The Bernoulli equation can also be written between any two points
on the same streamline as

Steady, incompressible flow: (5–42)

The Bernoulli equation is obtained from the conservation of momentum
for a fluid particle moving along a streamline. It can also be obtained from
the first law of thermodynamics applied to a steady-flow system, as shown
in Section 5–7.

The Bernoulli equation was first stated in words by the Swiss mathemati-
cian Daniel Bernoulli (1700–1782) in a text written in 1738 when he was
working in St. Petersburg, Russia. It was later derived in equation form by
his associate Leonhard Euler in 1755. We recognize V2/2 as kinetic energy,
gz as potential energy, and P/r as flow energy, all per unit mass. Therefore,
the Bernoulli equation can be viewed as an expression of mechanical energy
balance and can be stated as follows (Fig. 5–25):

The sum of the kinetic, potential, and flow energies of a fluid particle is
constant along a streamline during steady flow when the compressibility 
and frictional effects are negligible.

The kinetic, potential, and flow energies are the mechanical forms of
energy, as discussed in Section 5–3, and the Bernoulli equation can be
viewed as the “conservation of mechanical energy principle.” This is equiva-
lent to the general conservation of energy principle for systems that do not
involve any conversion of mechanical energy and thermal energy to each
other, and thus the mechanical energy and thermal energy are conserved sep-
arately. The Bernoulli equation states that during steady, incompressible flow
with negligible friction, the various forms of mechanical energy are con-
verted to each other, but their sum remains constant. In other words, there is
no dissipation of mechanical energy during such flows since there is no fric-
tion that converts mechanical energy to sensible thermal (internal) energy.

Recall that energy is transferred to a system as work when a force is
applied to a system through a distance. In the light of Newton’s second law
of motion, the Bernoulli equation can also be viewed as: The work done by
the pressure and gravity forces on the fluid particle is equal to the increase
in the kinetic energy of the particle.

Despite the highly restrictive approximations used in its derivation, the
Bernoulli equation is commonly used in practice since a variety of practical
fluid flow problems can be analyzed to reasonable accuracy with it. This is
because many flows of practical engineering interest are steady (or at least
steady in the mean), compressibility effects are relatively small, and net
frictional forces are negligible in regions of interest in the flow.

Force Balance across Streamlines
It is left as an exercise to show that a force balance in the direction n normal
to the streamline yields the following relation applicable across the stream-
lines for steady, incompressible flow:

(5–43)
P
r

' !  
V 2

R
 dn ' gz ! constant  (across streamlines)

P1

r
'

V 21
2

' gz1 !
P2

r
'

V 22
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' gz2
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FIGURE 5–25
The Bernoulli equation states that the
sum of the kinetic, potential, and flow
energies of a fluid particle is constant
along a streamline during steady flow.
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For flow along a straight line, R → * and thus relation (Eq. 5–44) reduces
to P/r ' gz ! constant or P ! "rgz ' constant, which is an expression
for the variation of hydrostatic pressure with vertical distance for a station-
ary fluid body. Therefore, the variation of pressure with elevation in steady,
incompressible flow along a straight line is the same as that in the stationary
fluid (Fig. 5–26).

Unsteady, Compressible Flow
Similarly, using both terms in the acceleration expression (Eq. 5–33), it can
be shown that the Bernoulli equation for unsteady, compressible flow is

Unsteady, compressible flow: (5–44)

Static, Dynamic, and Stagnation Pressures
The Bernoulli equation states that the sum of the flow, kinetic, and potential
energies of a fluid particle along a streamline is constant. Therefore, the
kinetic and potential energies of the fluid can be converted to flow energy
(and vice versa) during flow, causing the pressure to change. This phenome-
non can be made more visible by multiplying the Bernoulli equation by the
density r,

(5–45)

Each term in this equation has pressure units, and thus each term represents
some kind of pressure:

• P is the static pressure (it does not incorporate any dynamic effects); it
represents the actual thermodynamic pressure of the fluid. This is the
same as the pressure used in thermodynamics and property tables.

• rV2/2 is the dynamic pressure; it represents the pressure rise when the
fluid in motion is brought to a stop isentropically.

• rgz is the hydrostatic pressure, which is not pressure in a real sense
since its value depends on the reference level selected; it accounts for the
elevation effects, i.e., of fluid weight on pressure.

The sum of the static, dynamic, and hydrostatic pressures is called the total
pressure. Therefore, the Bernoulli equation states that the total pressure
along a streamline is constant.

The sum of the static and dynamic pressures is called the stagnation
pressure, and it is expressed as

(5–46)

The stagnation pressure represents the pressure at a point where the fluid is
brought to a complete stop isentropically. The static, dynamic, and stagna-
tion pressures are shown in Fig. 5–27. When static and stagnation pressures
are measured at a specified location, the fluid velocity at that location can
be calculated from

(5–47)V !B2(Pstag " P)

r

Pstag ! P ' r 
V 2

2
  (kPa)

P ' r 
V 2

2
' rgz ! constant (along a streamline)

!  
dP
r

' !  
)V
)t

 ds '
V

2

2
' gz ! constant
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Equation 5–47 is useful in the measurement of flow velocity when a com-
bination of a static pressure tap and a Pitot tube is used, as illustrated in Fig.
5–27. A static pressure tap is simply a small hole drilled into a wall such
that the plane of the hole is parallel to the flow direction. It measures the sta-
tic pressure. A Pitot tube is a small tube with its open end aligned into the
flow so as to sense the full impact pressure of the flowing fluid. It measures
the stagnation pressure. In situations in which the static and stagnation pres-
sure of a flowing liquid are greater than atmospheric pressure, a vertical trans-
parent tube called a piezometer tube (or simply a piezometer) can be
attached to the pressure tap and to the Pitot tube, as sketched in Fig. 5–27.
The liquid rises in the piezometer tube to a column height (head) that is pro-
portional to the pressure being measured. If the pressures to be measured are
below atmospheric, or if measuring pressures in gases, piezometer tubes do
not work. However, the static pressure tap and Pitot tube can still be used, but
they must be connected to some other kind of pressure measurement device
such as a U-tube manometer or a pressure transducer (Chap. 3). Sometimes
it is convenient to integrate static pressure holes on a Pitot probe. The result
is a Pitot-static probe, as shown in Fig. 5–28 and discussed in more detail in
Chap. 8. A Pitot-static probe connected to a pressure transducer or a
manometer measures the dynamic pressure (and thus fluid velocity) directly.

When the static pressure is measured by drilling a hole in the tube wall,
care must be exercised to ensure that the opening of the hole is flush with
the wall surface, with no extrusions before or after the hole (Fig. 5–29).
Otherwise the reading will incorporate some dynamic effects, and thus it
will be in error.

When a stationary body is immersed in a flowing stream, the fluid is
brought to a stop at the nose of the body (the stagnation point). The flow
streamline that extends from far upstream to the stagnation point is called
the stagnation streamline (Fig. 5–30). For a two-dimensional flow in the
xy-plane, the stagnation point is actually a line parallel the z-axis, and the
stagnation streamline is actually a surface that separates fluid that flows
over the body from fluid that flows under the body. In an incompressible
flow, the fluid decelerates nearly isentropically from its free-stream value to
zero at the stagnation point, and the pressure at the stagnation point is thus
the stagnation pressure.

Limitations on the Use of the Bernoulli Equation
The Bernoulli equation (Eq. 5–41) is one of the most frequently used and
misused equations in fluid mechanics. Its versatility, simplicity, and ease of
use make it a very valuable tool for use in analysis, but the same attributes
also make it very tempting to misuse. Therefore, it is important to under-
stand the restrictions on its applicability and observe the limitations on its
use, as explained here:

1. Steady flow The first limitation on the Bernoulli equation is that it is
applicable to steady flow. Therefore, it should not be used during the
transient start-up and shut-down periods, or during periods of change in
the flow conditions. Note that there is an unsteady form of the Bernoulli
equation (Eq. 5–44), discussion of which is beyond the scope of the
present text (see Panton, 1996).
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FIGURE 5–28
Close-up of a Pitot-static probe,
showing the stagnation pressure 
hole and two of the five static
circumferential pressure holes.
Photo by Po-Ya Abel Chuang. Used by permission.
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FIGURE 5–29
Careless drilling of the static pressure
tap may result in an erroneous reading
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FIGURE 5–30
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Courtesy ONERA. Photograph by Werlé.
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2. Frictionless flow Every flow involves some friction, no matter how
small, and frictional effects may or may not be negligible. The situation
is complicated even more by the amount of error that can be tolerated. In
general, frictional effects are negligible for short flow sections with
large cross sections, especially at low flow velocities. Frictional effects
are usually significant in long and narrow flow passages, in the wake
region downstream of an object, and in diverging flow sections such as
diffusers because of the increased possibility of the fluid separating from
the walls in such geometries. Frictional effects are also significant near
solid surfaces, and thus the Bernoulli equation is usually applicable
along a streamline in the core region of the flow, but not along a
streamline close to the surface (Fig. 5–31).

A component that disturbs the streamlined structure of flow and thus
causes considerable mixing and backflow such as a sharp entrance of a
tube or a partially closed valve in a flow section can make the Bernoulli
equation inapplicable.

3. No shaft work The Bernoulli equation was derived from a force
balance on a particle moving along a streamline. Therefore, the
Bernoulli equation is not applicable in a flow section that involves a
pump, turbine, fan, or any other machine or impeller since such devices
destroy the streamlines and carry out energy interactions with the fluid
particles. When the flow section considered involves any of these
devices, the energy equation should be used instead to account for the
shaft work input or output. However, the Bernoulli equation can still be
applied to a flow section prior to or past a machine (assuming, of course,
that the other restrictions on its use are satisfied). In such cases, the
Bernoulli constant changes from upstream to downstream of the device.

4. Incompressible flow One of the assumptions used in the derivation of
the Bernoulli equation is that r ! constant and thus the flow is
incompressible. This condition is satisfied by liquids and also by gases
at Mach numbers less than about 0.3 since compressibility effects and
thus density variations of gases are negligible at such relatively low
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velocities. Note that there is a compressible form of the Bernoulli
equation (Eqs. 5–40 and 5–44).

5. No heat transfer The density of a gas is inversely proportional to
temperature, and thus the Bernoulli equation should not be used for flow
sections that involve significant temperature change such as heating or
cooling sections.

6. Flow along a streamline Strictly speaking, the Bernoulli equation
P/r ' V2/2 ' gz ! C is applicable along a streamline, and the value 
of the constant C, in general, is different for different streamlines. But
when a region of the flow is irrotational, and thus there is no vorticity
in the flow field, the value of the constant C remains the same for all
streamlines, and, therefore, the Bernoulli equation becomes applicable
across streamlines as well (Fig. 5–32). Therefore, we do not need to be
concerned about the streamlines when the flow is irrotational, and we
can apply the Bernoulli equation between any two points in the
irrotational region of the flow (Chap. 10).

We derived the Bernoulli equation by considering two-dimensional flow
in the xz-plane for simplicity, but the equation is valid for general three-
dimensional flow as well, as long as it is applied along the same streamline.
We should always keep in mind the assumptions used in the derivation of
the Bernoulli equation and make sure that they are not violated.

Hydraulic Grade Line (HGL) 
and Energy Grade Line (EGL)
It is often convenient to represent the level of mechanical energy graphically
using heights to facilitate visualization of the various terms of the Bernoulli
equation. This is done by dividing each term of the Bernoulli equation by g
to give

(5–48)

Each term in this equation has the dimension of length and represents some
kind of “head” of a flowing fluid as follows:

• P/rg is the pressure head; it represents the height of a fluid column that
produces the static pressure P.

• V 2/2g is the velocity head; it represents the elevation needed for a fluid 
to reach the velocity V during frictionless free fall.

• z is the elevation head; it represents the potential energy of the fluid.

Also, H is the total head for the flow. Therefore, the Bernoulli equation can
be expressed in terms of heads as: The sum of the pressure, velocity, and
elevation heads along a streamline is constant during steady flow when the
compressibility and frictional effects are negligible (Fig. 5–33).

If a piezometer (measures static pressure) is tapped into a pipe, as shown
in Fig. 5–34, the liquid would rise to a height of P/rg above the pipe center.
The hydraulic grade line (HGL) is obtained by doing this at several loca-
tions along the pipe and drawing a line through the liquid levels in the
piezometers. The vertical distance above the pipe center is a measure of
pressure within the pipe. Similarly, if a Pitot tube (measures static '

P
rg

'
V 2

2g
' z ! H ! constant  (along a streamline)
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dynamic pressure) is tapped into a pipe, the liquid would rise to a height of
P/rg ' V2/2g above the pipe center, or a distance of V2/2g above the HGL.
The energy grade line (EGL) is obtained by doing this at several locations
along the pipe and drawing a line through the liquid levels in the Pitot tubes.

Noting that the fluid also has elevation head z (unless the reference level
is taken to be the centerline of the pipe), the HGL and EGL can be defined
as follows: The line that represents the sum of the static pressure and the
elevation heads, P/rg ' z, is called the hydraulic grade line. The line that
represents the total head of the fluid, P/rg ' V2/2g ' z, is called the
energy grade line. The difference between the heights of EGL and HGL is
equal to the dynamic head, V 2/2g. We note the following about the HGL
and EGL:

• For stationary bodies such as reservoirs or lakes, the EGL and HGL
coincide with the free surface of the liquid. The elevation of the free
surface z in such cases represents both the EGL and the HGL since the
velocity is zero and the static pressure (gage) is zero.

• The EGL is always a distance V2/2g above the HGL. These two lines
approach each other as the velocity decreases, and they diverge as the
velocity increases. The height of the HGL decreases as the velocity
increases, and vice versa.

• In an idealized Bernoulli-type flow, EGL is horizontal and its height
remains constant. This would also be the case for HGL when the flow
velocity is constant (Fig. 5–35).

• For open-channel flow, the HGL coincides with the free surface of the
liquid, and the EGL is a distance V 2/2g above the free surface.

• At a pipe exit, the pressure head is zero (atmospheric pressure) and thus
the HGL coincides with the pipe outlet (location 3 on Fig. 5–34).

• The mechanical energy loss due to frictional effects (conversion to
thermal energy) causes the EGL and HGL to slope downward in the
direction of flow. The slope is a measure of the head loss in the pipe
(discussed in detail in Chap. 8). A component that generates significant
frictional effects such as a valve causes a sudden drop in both EGL and
HGL at that location.

• A steep jump occurs in EGL and HGL whenever mechanical energy is
added to the fluid (by a pump, for example). Likewise, a steep drop
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occurs in EGL and HGL whenever mechanical energy is removed from
the fluid (by a turbine, for example), as shown in Fig. 5–36.

• The pressure (gage) of a fluid is zero at locations where the HGL
intersects the fluid. The pressure in a flow section that lies above the HGL
is negative, and the pressure in a section that lies below the HGL is
positive (Fig. 5–37). Therefore, an accurate drawing of a piping system
and the HGL can be used to determine the regions where the pressure in
the pipe is negative (below the atmospheric pressure).

The last remark enables us to avoid situations in which the pressure drops
below the vapor pressure of the liquid (which causes cavitation, as dis-
cussed in Chap. 2). Proper consideration is necessary in the placement of a
liquid pump to ensure that the suction side pressure does not fall too low,
especially at elevated temperatures where vapor pressure is higher than it is
at low temperatures.

Now we examine Fig. 5–34 more closely. At point 0 (at the liquid surface),
EGL and HGL are even with the liquid surface since there is no flow there.
HGL decreases rapidly as the liquid accelerates into the pipe; however, EGL
decreases very slowly through the well-rounded pipe inlet. EGL declines con-
tinually along the flow direction due to friction and other irreversible losses in
the flow. EGL cannot increase in the flow direction unless energy is supplied
to the fluid. HGL can rise or fall in the flow direction, but can never exceed
EGL. HGL rises in the diffuser section as the velocity decreases, and the sta-
tic pressure recovers somewhat; the total pressure does not recover, however,
and EGL decreases through the diffuser. The difference between EGL and
HGL is V2

1/2g at point 1, and V2
2/2g at point 2. Since V1 & V2, the difference

between the two grade lines is larger at point 1 than at point 2. The downward
slope of both grade lines is larger for the smaller diameter section of pipe
since the frictional head loss is greater. Finally, HGL decays to the liquid sur-
face at the outlet since the pressure there is atmospheric. However, EGL is
still higher than HGL by the amount V2

2/2g since V3 ! V2 at the outlet.

5–5 ! APPLICATIONS OF THE 
BERNOULLI EQUATION

In Section 5–4, we discussed the fundamental aspects of the Bernoulli equa-
tion. In this section, we demonstrate its use in a wide range of applications
through examples.

EXAMPLE 5–5 Spraying Water into the Air

Water is flowing from a hose attached to a water main at 400 kPa gage (Fig.
5–38). A child places his thumb to cover most of the hose outlet, causing a
thin jet of high-speed water to emerge. If the hose is held upward, what is
the maximum height that the jet could achieve?

SOLUTION Water from a hose attached to the water main is sprayed into
the air. The maximum height the water jet can rise is to be determined.
Assumptions 1 The flow exiting into the air is steady, incompressible, and
irrotational (so that the Bernoulli equation is applicable). 2 The water pressure
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in the hose near the outlet is equal to the water main pressure. 3 The surface
tension effects are negligible. 4 The friction between the water and air is neg-
ligible. 5 The irreversibilities that may occur at the outlet of the hose due to
abrupt expansion are negligible.
Properties We take the density of water to be 1000 kg/m3.
Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. The water height will be maximum under the stated
assumptions. The velocity inside the hose is relatively low (V1 # 0) and we
take the hose outlet as the reference level (z1 ! 0). At the top of the water
trajectory V2 ! 0, and atmospheric pressure pertains. Then the Bernoulli
equation simplifies to

Solving for z2 and substituting,

Therefore, the water jet can rise as high as 40.8 m into the sky in this case.
Discussion The result obtained by the Bernoulli equation represents the
upper limit and should be interpreted accordingly. It tells us that the water
cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be
much less than 40.8 m due to irreversible losses that we neglected.

EXAMPLE 5–6 Water Discharge from a Large Tank

A large tank open to the atmosphere is filled with water to a height of 5 m
from the outlet tap (Fig. 5–39). A tap near the bottom of the tank is now
opened, and water flows out from the smooth and rounded outlet. Determine
the water velocity at the outlet.

SOLUTION A tap near the bottom of a tank is opened. The exit velocity of
water from the tank is to be determined.
Assumptions 1 The flow is incompressible and irrotational (except very close
to the walls). 2 The water drains slowly enough that the flow can be approxi-
mated as steady (actually quasi-steady when the tank begins to drain).
Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. We take point 1 to be at the free surface of water so
that P1 ! Patm (open to the atmosphere), V1 # 0 (the tank is large relative to
the outlet), and z1 ! 5 m and z2 ! 0 (we take the reference level at the
center of the outlet). Also, P2 ! Patm (water discharges into the atmosphere).
Then the Bernoulli equation simplifies to

P1

rg
'

V 2
1

2g
 ' z1 !

P2

rg
'

V 2
2

2g
' z2  →    z1 !

V 2
2

2g

 ! 40.8 m 

z2 !
P1 " Patm

rg !
P1, gage

rg !
400 kPa

(1000 kg/m3)(9.81 m/s2)
 a1000 N/m2

1 kPa b a1 kg ( m/s2

1 N b
P1

rg '
V 2

1

2g  ' z1   !
P2

rg '
V

2
2

2g  ' z2   →    
P1

rg !
Patm

rg ' z2
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Solving for V2 and substituting,

The relation V ! is called the Toricelli equation.
Therefore, the water leaves the tank with an initial velocity of 9.9 m/s.

This is the same velocity that would manifest if a solid were dropped a dis-
tance of 5 m in the absence of air friction drag. (What would the velocity be
if the tap were at the bottom of the tank instead of on the side?)
Discussion If the orifice were sharp-edged instead of rounded, then the flow
would be disturbed, and the velocity would be less than 9.9 m/s, especially
near the edges. Care must be exercised when attempting to apply the
Bernoulli equation to situations where abrupt expansions or contractions
occur since the friction and flow disturbance in such cases may not be neg-
ligible.

EXAMPLE 5–7 Siphoning Out Gasoline from a Fuel Tank

During a trip to the beach (Patm ! 1 atm ! 101.3 kPa), a car runs out of
gasoline, and it becomes necessary to siphon gas out of the car of a Good
Samaritan (Fig. 5–40). The siphon is a small-diameter hose, and to start the
siphon it is necessary to insert one siphon end in the full gas tank, fill the
hose with gasoline via suction, and then place the other end in a gas can
below the level of the gas tank. The difference in pressure between point 1
(at the free surface of the gasoline in the tank) and point 2 (at the outlet of
the tube) causes the liquid to flow from the higher to the lower elevation.
Point 2 is located 0.75 m below point 1 in this case, and point 3 is located
2 m above point 1. The siphon diameter is 4 mm, and frictional losses in
the siphon are to be disregarded. Determine (a) the minimum time to with-
draw 4 L of gasoline from the tank to the can and (b) the pressure at point
3. The density of gasoline is 750 kg/m3.

SOLUTION Gasoline is to be siphoned from a tank. The minimum time it
takes to withdraw 4 L of gasoline and the pressure at the highest point in
the system are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Even though the
Bernoulli equation is not valid through the pipe because of frictional losses,
we employ the Bernoulli equation anyway in order to obtain a best-case esti-
mate. 3 The change in the gasoline surface level inside the tank is negligible
compared to elevations z1 and z2 during the siphoning period.
Properties The density of gasoline is given to be 750 kg/m3.
Analysis (a) We take point 1 to be at the free surface of gasoline in the
tank so that P1 ! Patm (open to the atmosphere), V1 # 0 (the tank is large
relative to the tube diameter), and z2 ! 0 (point 2 is taken as the reference
level). Also, P2 ! Patm (gasoline discharges into the atmosphere). Then the
Bernoulli equation simplifies to

Solving for V2 and substituting,

V2 ! 22gz1 ! 22(9.81 m/s2)(0.75 m) ! 3.84 m/s

P1

rg
'

V 2
1

2g
 ' z1 !

P2

rg
'

V 2
2

2g
' z2  →    z1 !

V 2
2

2g

12gz

V2 ! 22gz1 ! 22(9.81 m/s2)(5 m) ! 9.9 m/s
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The cross-sectional area of the tube and the flow rate of gasoline are

Then the time needed to siphon 4 L of gasoline becomes

(b) The pressure at point 3 can be determined by writing the Bernoulli equa-
tion between points 2 and 3. Noting that V2 ! V3 (conservation of mass), z2
! 0, and P2 ! Patm,

Solving for P3 and substituting,

Discussion The siphoning time is determined by neglecting frictional
effects, and thus this is the minimum time required. In reality, the time will
be longer than 53.1 s because of friction between the gasoline and the tube
surface. Also, the pressure at point 3 is below the atmospheric pressure. If
the elevation difference between points 1 and 3 is too high, the pressure at
point 3 may drop below the vapor pressure of gasoline at the gasoline tem-
perature, and some gasoline may evaporate (cavitate). The vapor then may
form a pocket at the top and halt the flow of gasoline.

EXAMPLE 5–8 Velocity Measurement by a Pitot Tube

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as
shown in Fig. 5–41, to measure static and stagnation (static ' dynamic)
pressures. For the indicated water column heights, determine the velocity at
the center of the pipe.

SOLUTION The static and stagnation pressures in a horizontal pipe are
measured. The velocity at the center of the pipe is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Points 1 and 2 are
close enough together that the irreversible energy loss between these two
points is negligible, and thus we can use the Bernoulli equation.
Analysis We take points 1 and 2 along the centerline of the pipe, with point
1 directly under the piezometer and point 2 at the tip of the Pitot tube. This
is a steady flow with straight and parallel streamlines, and the gage pres-
sures at points 1 and 2 can be expressed as

 P2 ! rg(h1 ' h2 ' h3)

 P1 ! rg(h1 ' h2) 

 ! 81.1 kPa 

 ! 101.3 kPa " (750 kg/m3)(9.81 m/s2)(2.75 m)a 1 N
1 kg (  m/s2b a 1 kPa

1000 N/m2b  

 P3 ! Patm " rgz3 

P2

rg
'

V 2
2

2g
' z2   !

P3

rg
'

V 2
3

2g
' z3  →   Patm

rg
!

P3

rg
' z3

$t !
V

V
# !

4 L
0.0753 L/s

! 53.1 s

 V
#

! V2 A ! (3.84 m/s)(1.96 # 10"5 m2) ! 7.53 # 10"5 m3/s ! 0.0753 L/s

 A ! pD2/4 ! p(5 # 10"3 m)2/4 ! 1.96 # 10"5 m2 
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Noting that point 2 is a stagnation point and thus V2 ! 0 and z1 ! z2, the
application of the Bernoulli equation between points 1 and 2 gives

Substituting the P1 and P2 expressions gives

Solving for V1 and substituting,

Discussion Note that to determine the flow velocity, all we need is to mea-
sure the height of the excess fluid column in the Pitot tube.

EXAMPLE 5–9 The Rise of the Ocean Due to a Hurricane

A hurricane is a tropical storm formed over the ocean by low atmospheric
pressures. As a hurricane approaches land, inordinate ocean swells (very
high tides) accompany the hurricane. A Class-5 hurricane features winds in
excess of 155 mph, although the wind velocity at the center “eye” is very
low.

Figure 5–42 depicts a hurricane hovering over the ocean swell below. The
atmospheric pressure 200 mi from the eye is 30.0 in Hg (at point 1, gener-
ally normal for the ocean) and the winds are calm. The hurricane atmo-
spheric pressure at the eye of the storm is 22.0 in Hg. Estimate the ocean
swell at (a) the eye of the hurricane at point 3 and (b) point 2, where the
wind velocity is 155 mph. Take the density of seawater and mercury to be
64 lbm/ft3 and 848 lbm/ft3, respectively, and the density of air at normal
sea-level temperature and pressure to be 0.076 lbm/ft3.

SOLUTION A hurricane is moving over the ocean. The amount of ocean
swell at the eye and at active regions of the hurricane are to be determined.
Assumptions 1 The airflow within the hurricane is steady, incompressible,
and irrotational (so that the Bernoulli equation is applicable). (This is cer-
tainly a very questionable assumption for a highly turbulent flow, but it is jus-
tified in the solution.) 2 The effect of water drifted into the air is negligible.
Properties The densities of air at normal conditions, seawater, and mercury
are given to be 0.076 lbm/ft3, 64 lbm/ft3, and 848 lbm/ft3, respectively.
Analysis (a) Reduced atmospheric pressure over the water causes the water
to rise. Thus, decreased pressure at point 2 relative to point 1 causes the
ocean water to rise at point 2. The same is true at point 3, where the storm air
velocity is negligible. The pressure difference given in terms of the mercury
column height can be expressed in terms of the seawater column height by

$P ! (rgh)Hg ! (rgh)sw →  hsw !
rHg

rsw
 hHg

V1 ! 22gh3 ! 22(9.81 m/s2)(0.12 m) ! 1.53 m/s

V 2
1

2g !
P2 " P1

rg !
rg(h1 ' h2 ' h3) " rg(h1 ' h2)

rg ! h3

P1

rg
'

V 2
1

2g
' z1 !

P2

rg
'

V 2
2

2g
  ' z2  →   

V 2
1

2g
!

P2 " P1

rg
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FIGURE 5–42
Schematic for Example 5–9. The
vertical scale is greatly exaggerated.
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Then the pressure difference between points 1 and 3 in terms of the seawa-
ter column height becomes

which is equivalent to the storm surge at the eye of the hurricane since the
wind velocity there is negligible and there are no dynamic effects.

(b) To determine the additional rise of ocean water at point 2 due to the high
winds at that point, we write the Bernoulli equation between points A and B,
which are on top of the points 2 and 3, respectively. Noting that VB # 0 (the
eye region of the hurricane is relatively calm) and zA ! zB (both points are
on the same horizontal line), the Bernoulli equation simplifies to

Substituting,

where r is the density of air in the hurricane. Noting that the density of an
ideal gas at constant temperature is proportional to absolute pressure and
the density of air at the normal atmospheric pressure of 14.7 psia # 30 in
Hg is 0.076 lbm/ft3, the density of air in the hurricane is

Using the relation developed above in part (a), the seawater column height
equivalent to 803 ft of air column height is determined to be

Therefore, the pressure at point 2 is 0.70 ft seawater column lower than the
pressure at point 3 due to the high wind velocities, causing the ocean to rise
an additional 0.70 ft. Then the total storm surge at point 2 becomes

h2 ! h1 ' hdynamic ! 8.83 ' 0.70 ! 9.53 ft

Discussion This problem involves highly turbulent flow and the intense
breakdown of the streamlines, and thus the applicability of the Bernoulli
equation in part (b) is questionable. Furthermore, the flow in the eye of the
storm is not irrotational, and the Bernoulli equation constant changes across
streamlines (see Chap. 10). The Bernoulli analysis can be thought of as the
limiting, ideal case, and shows that the rise of seawater due to high-velocity
winds cannot be more than 0.70 ft.

The wind power of hurricanes is not the only cause of damage to coastal
areas. Ocean flooding and erosion from excessive tides is just as serious, as
are high waves generated by the storm turbulence and energy.

hdynamic !
rair

rsw
 hair ! a0.056 lbm/ft3

64 lbm/ft3 b (803 ft) ! 0.70 ft

rair !
Pair

Patm air
 ratm air ! a22 in Hg

30 in Hg
b (0.076 lbm/ft3) ! 0.056 lbm/ft3

PB " PA

rg !
V 2

A

2g !
(155 mph)2

2(32.2 ft/s2)
 a1.4667 ft/s

1 mph b 2
! 803 ft

PA

rg
'

V 2
A

2g
' zA !

PB

rg
'

V 2
B

2g
   ' zB  →   

PB " PA

rg
!

V 2
A

2g

h1 !
rHg

rsw
 hHg ! a848 lbm/ft3

64 lbm/ft3 b3(30 " 22) in Hg4a 1 ft
12 in

b ! 8.83 ft
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M O M E N T U M  A N A LY S I S  
O F  F L O W  S Y S T E M S

When dealing with engineering problems, it is desirable to obtain
fast and accurate solutions at minimal cost. Most engineering
problems, including those associated with fluid flow, can be ana-

lyzed using one of three basic approaches: differential, experimental, and
control volume. In differential approaches, the problem is formulated accu-
rately using differential quantities, but the solution of the resulting differen-
tial equations is difficult, usually requiring the use of numerical methods
with extensive computer codes. Experimental approaches complemented
with dimensional analysis are highly accurate, but they are typically time-
consuming and expensive. The finite control volume approach described in
this chapter is remarkably fast and simple and usually gives answers that are
sufficiently accurate for most engineering purposes. Therefore, despite the
approximations involved, the basic finite control volume analysis performed
with a paper and pencil has always been an indispensable tool for engineers.

In Chap. 5, the control volume mass and energy analysis of fluid flow
systems was presented. In this chapter, we present the finite control volume
momentum analysis of fluid flow problems. First we give an overview of
Newton’s laws and the conservation relations for linear and angular momen-
tum. Then using the Reynolds transport theorem, we develop the linear
momentum and angular momentum equations for control volumes and use
them to determine the forces and torques associated with fluid flow.

227

CHAPTER

6
OBJECTIVES
When you finish reading this chapter, you
should be able to

! Identify the various kinds of
forces and moments acting on 
a control volume

! Use control volume analysis to
determine the forces associated
with fluid flow

! Use control volume analysis to
determine the moments caused
by fluid flow and the torque
transmitted
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6–1 ! NEWTON’S LAWS AND CONSERVATION 
OF MOMENTUM

Newton’s laws are relations between motions of bodies and the forces act-
ing on them. Newton’s first law states that a body at rest remains at rest,
and a body in motion remains in motion at the same velocity in a straight
path when the net force acting on it is zero. Therefore, a body tends to pre-
serve its state of inertia. Newton’s second law states that the acceleration of
a body is proportional to the net force acting on it and is inversely propor-
tional to its mass. Newton’s third law states that when a body exerts a force
on a second body, the second body exerts an equal and opposite force on
the first. Therefore, the direction of an exposed reaction force depends on
the body taken as the system.

For a rigid body of mass m, Newton’s second law is expressed as

Newton’s second law: (6–1)

where F
→

is the net force acting on the body and a→ is the acceleration of the
body under the influence of F

→
.

The product of the mass and the velocity of a body is called the linear
momentum or just the momentum of the body. The momentum of a rigid
body of mass m moving with a velocity V

→
is mV

→
(Fig. 6–1). Then Newton’s

second law expressed in Eq. 6–1 can also be stated as the rate of change of
the momentum of a body is equal to the net force acting on the body (Fig.
6–2). This statement is more in line with Newton’s original statement of the
second law, and it is more appropriate for use in fluid mechanics when
studying the forces generated as a result of velocity changes of fluid
streams. Therefore, in fluid mechanics, Newton’s second law is usually
referred to as the linear momentum equation.

The momentum of a system remains constant when the net force acting
on it is zero, and thus the momentum of such systems is conserved. This is
known as the conservation of momentum principle. This principle has
proven to be a very useful tool when analyzing collisions such as those
between balls; between balls and rackets, bats, or clubs; and between atoms
or subatomic particles; and explosions such as those that occur in rockets,
missiles, and guns. The momentum of a loaded rifle, for example, must be
zero after shooting since it is zero before shooting, and thus the rifle must
have a momentum equal to that of the bullet in the opposite direction so that
the vector sum of the two is zero.

Note that force, acceleration, velocity, and momentum are vector quanti-
ties, and as such they have direction as well as magnitude. Also, momentum
is a constant multiple of velocity, and thus the direction of momentum is the
direction of velocity. Any vector equation can be written in scalar form for a
specified direction using magnitudes, e.g., Fx ! max ! d(mVx)/dt in the x-
direction.

The counterpart of Newton’s second law for rotating rigid bodies is
expressed as M

→
! Ia→, where M

→
is the net moment or torque applied on the

body, I is the moment of inertia of the body about the axis of rotation, and a→

is the angular acceleration. It can also be expressed in terms of the rate of
change of angular momentum dH

→
/dt as

F
→

! ma
→

! m  
dV

→

dt
!

d(mV
→

)
dt

V

mV

m

m

→

→

FIGURE 6–1
Linear momentum is the product of
mass and velocity, and its direction 
is the direction of velocity.

Net forceNet force

Rate of changeRate of change
of momentumof momentum

→
F = ma= ma = m= m→ VVd

dtdt dtdt
=

d(m m  )
→ →

FIGURE 6–2
Newton’s second law is also expressed
as the rate of change of the momentum
of a body is equal to the net force
acting on it.
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Angular momentum equation: (6–2)

where v→ is the angular velocity. For a rigid body rotating about a fixed x-axis,
the angular momentum equation can be written in scalar form as

Angular momentum about x-axis: (6–3)

The angular momentum equation can be stated as the rate of change of
the angular momentum of a body is equal to the net torque acting on it
(Fig. 6–3).

The total angular momentum of a rotating body remains constant when
the net torque acting on it is zero, and thus the angular momentum of such
systems is conserved. This is known as the conservation of angular momen-
tum principle and is expressed as Iv ! constant. Many interesting phenom-
ena such as ice skaters spinning faster when they bring their arms close to
their bodies and divers rotating faster when they curl after the jump can be
explained easily with the help of the conservation of angular momentum
principle (in both cases, the moment of inertia I is decreased and thus the
angular velocity v is increased as the outer parts of the body are brought
closer to the axis of rotation).

6–2 ! CHOOSING A CONTROL VOLUME
We now briefly discuss how to wisely select a control volume. A control
volume can be selected as any arbitrary region in space through which fluid
flows, and its bounding control surface can be fixed, moving, and even
deforming during flow. The application of a basic conservation law is sim-
ply a systematic procedure for bookkeeping or accounting of the quantity
under consideration, and thus it is extremely important that the boundaries
of the control volume are well defined during an analysis. Also, the flow
rate of any quantity into or out of a control volume depends on the flow
velocity relative to the control surface, and thus it is essential to know if the
control volume remains at rest during flow or if it moves.

Many flow systems involve stationary hardware firmly fixed to a station-
ary surface, and such systems are best analyzed using fixed control volumes.
When determining the reaction force acting on a tripod holding the nozzle
of a hose, for example, a natural choice for the control volume is one that
passes perpendicularly through the nozzle exit flow and through the bottom
of the tripod legs (Fig. 6–4a). This is a fixed control volume, and the water
velocity relative to a fixed point on the ground is the same as the water
velocity relative to the nozzle exit plane.

When analyzing flow systems that are moving or deforming, it is usually
more convenient to allow the control volume to move or deform. When
determining the thrust developed by the jet engine of an airplane cruising at
constant velocity, for example, a wise choice of control volume is one that
encloses the airplane and cuts through the nozzle exit plane (Fig. 6–4b). The
control volume in this case moves with velocity V

→

CV, which is identical to
the cruising velocity of the airplane relative to a fixed point on earth. When
determining the flow rate of exhaust gases leaving the nozzle, the proper

Mx ! Ix  
dvx

dt
!

dHx

dt

M
→

! Ia
→

! I  
dv

→

dt
!

d(Iv
→

)
dt

!
dH

→

dt

α d(I     )
M = I= I     = I= I

d
dtdt dtdt

=
ω ω dHdH

dtdt
ω ω 

=

Net torqueNet torque

Rate of changeRate of change
of angular momentumof angular momentum

→ →
→ → →

FIGURE 6–3
The rate of change of the angular
momentum of a body is equal to 

the net torque acting on it.
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velocity to use is the velocity of the exhaust gases relative to the nozzle exit
plane, that is, the relative velocity V

→

r. Since the entire control volume moves
at velocity V

→

CV, the relative velocity becomes V
→

r ! V
→

" V
→

CV, where V
→

is
the absolute velocity of the exhaust gases, i.e., the velocity relative to a
fixed point on earth. Note that V

→

r is the fluid velocity expressed relative to a
coordinate system moving with the control volume. Also, this is a vector
equation, and velocities in opposite directions have opposite signs. For
example, if the airplane is cruising at 500 km/h to the left, and the velocity
of the exhaust gases is 800 km/h to the right relative to the ground, the
velocity of the exhaust gases relative to the nozzle exit is

That is, the exhaust gases leave the nozzle at 1300 km/h to the right relative
to the nozzle exit (in the direction opposite to that of the airplane); this is
the velocity that should be used when evaluating the outflow of exhaust
gases through the control surface (Fig. 6–4b). Note that the exhaust gases
would appear motionless to an observer on the ground if the relative veloc-
ity were equal in magnitude to the airplane velocity.

When analyzing the purging of exhaust gases from a reciprocating inter-
nal combustion engine, a wise choice for the control volume is one that
comprises the space between the top of the piston and the cylinder head
(Fig. 6–4c). This is a deforming control volume, since part of the control
surface moves relative to other parts. The relative velocity for an inlet or
outlet on the deforming part of a control surface (there are no such inlets
or outlets in Fig. 6–4c) is then given by V

→

r ! V
→

" V
→

CS where V
→

is the
absolute fluid velocity and V

→

CS is the control surface velocity, both relative
to a fixed point outside the control volume. Note that V

→

CS ! V
→

CV for mov-
ing but nondeforming control volumes, and V

→

CS ! V
→

CV ! 0 for fixed ones.

6–3 ! FORCES ACTING ON A CONTROL VOLUME
The forces acting on a control volume consist of body forces that act
throughout the entire body of the control volume (such as gravity, electric,
and magnetic forces) and surface forces that act on the control surface (such
as pressure and viscous forces and reaction forces at points of contact).

In control volume analysis, the sum of all forces acting on the control vol-
ume at a particular instant in time is represented by ! F

→
and is expressed as

Total force acting on control volume: (6–4)

Body forces act on each volumetric portion of the control volume. The body
force acting on a differential element of fluid of volume dV within the con-
trol volume is shown in Fig. 6–5, and we must perform a volume integral to
account for the net body force on the entire control volume. Surface forces
act on each portion of the control surface. A differential surface element of
area dA and unit outward normal n→ on the control surface is shown in Fig.
6–5, along with the surface force acting on it. We must perform an area
integral to obtain the net surface force acting on the entire control surface.
As sketched, the surface force may act in a direction independent of that of
the outward normal vector.

a F
→

! a F
→

body # a F
→

surface

V
→

r ! V
→

" V
→

CV ! 800i
→

" ("500i
→
) ! 1300i

→
 km/h

V

V

(a)

(b)

(c)

CV

V

V

V

CV

r

r
Moving control volume

Deforming
control volume

Fixed control volume

x

x

y

VCS

→

→

→

→

→

→

FIGURE 6–4
Examples of (a) fixed, (b) moving,
and (c) deforming control volumes.

cen72367_ch06.qxd  12/1/04  6:21 PM  Page 230



231
CHAPTER 6

The most common body force is that of gravity, which exerts a down-
ward force on every differential element of the control volume. While other
body forces, such as electric and magnetic forces, may be important in some
analyses, we consider only gravitational forces here.

The differential body force dF
→

body ! dF
→
gravity acting on the small fluid ele-

ment shown in Fig. 6–6 is simply its weight,

Gravitational force acting on a fluid element: (6–5)

where r is the average density of the element and g→ is the gravitational vec-
tor. In Cartesian coordinates we adopt the convention that g→ acts in the neg-
ative z-direction, as in Fig. 6–6, so that

Gravitational vector in Cartesian coordinates: (6–6)

Note that the coordinate axes in Fig. 6–6 have been rotated from their usual
orientation so that the gravity vector acts downward in the "z-direction. On
earth at sea level, the gravitational constant g is equal to 9.807 m/s2. Since
gravity is the only body force being considered, integration of Eq. 6–5
yields

Total body force acting on control volume: (6–7)

Surface forces are not as simple to analyze since they consist of both nor-
mal and tangential components. Furthermore, while the physical force act-
ing on a surface is independent of orientation of the coordinate axes, the
description of the force in terms of its coordinate components changes with
orientation (Fig. 6–7). In addition, we are rarely fortunate enough to have
each of the control surfaces aligned with one of the coordinate axes. While
not desiring to delve too deeply into tensor algebra, we are forced to define
a second-order tensor called the stress tensor sij in order to adequately
describe the surface stresses at a point in the flow,

Stress tensor in Cartesian coordinates: (6–8)

The diagonal components of the stress tensor, sxx, syy, and szz, are called
normal stresses; they are composed of pressure (which always acts
inwardly normal) and viscous stresses. Viscous stresses are discussed in
more detail in Chap. 9. The off-diagonal components, sxy, szx, etc., are
called shear stresses; since pressure can act only normal to a surface, shear
stresses are composed entirely of viscous stresses.

When the face is not parallel to one of the coordinate axes, mathematical
laws for axes rotation and tensors can be used to calculate the normal and
tangential components acting at the face. In addition, an alternate notation
called tensor notation is convenient when working with tensors but is usu-
ally reserved for graduate studies. (For a more in-depth analysis of tensors
and tensor notation see, for example, Kundu, 1990.)

In Eq. 6–8, sij is defined as the stress (force per unit area) in the j-direction
acting on a face whose normal is in the i-direction. Note that i and j are
merely indices of the tensor and are not the same as unit vectors i

→
and j

→
. For

example, sxy is defined as positive for the stress pointing in the y-direction

sij ! £sxx

syx

szx

sxy

syy

szy

sxz

syz

szz

≥

a F
→

body ! "
CV

 rg
→
 dV ! mCVg

→

g
→

! " gk
→

dF
→

gravity ! rg
→
 dV

body

Control volume (CV)

Control surface (CS)

n

dF
surfacedF

dA

dV

→

→

→

FIGURE 6–5
The total force acting on a control

volume is composed of body forces
and surface forces; body force is

shown on a differential volume
element, and surface force is shown 

on a differential surface element.

g

dFbody = dFgravity = rg dV
z, k

y, j

x, i

dy

dz

dx

→

→→→

→

→

→

dV,r

FIGURE 6–6
The gravitational force acting on a

differential volume element of fluid is 
equal to its weight; the axes have been

rotated so that the gravity vector acts
downward in the negative z-direction.
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 

on a face whose outward normal is in the x-direction. This component of the
stress tensor, along with the other eight components, is shown in Fig. 6–8
for the case of a differential fluid element aligned with the axes in Cartesian
coordinates. All the components in Fig. 6–8 are shown on positive faces
(right, top, and front) and in their positive orientation by definition. Positive
stress components on the opposing faces of the fluid element (not shown)
point in exactly opposite directions.

The dot product of a second-order tensor and a vector yields a second
vector; this operation is often called the contracted product or the inner
product of a tensor and a vector. In our case, it turns out that the inner
product of the stress tensor sij and the unit outward normal vector n→ of a
differential surface element yields a vector whose magnitude is the force per
unit area acting on the surface element and whose direction is the direction
of the surface force itself. Mathematically we write

Surface force acting on a differential surface element: (6–9)

Finally, we integrate Eq. 6–9 over the entire control surface,

Total surface force acting on control surface: (6–10)

Substitution of Eqs. 6–7 and 6–10 into Eq. 6–4 yields

(6–11)

This equation turns out to be quite useful in the derivation of the differen-
tial form of conservation of linear momentum, as discussed in Chap. 9. For
practical control volume analysis, however, it is rare that we need to use Eq.
6–11, especially the cumbersome surface integral that it contains.

A careful selection of the control volume enables us to write the total
force acting on the control volume, ! F

→
, as the sum of more readily avail-

able quantities like weight, pressure, and reaction forces. We recommend
the following for control volume analysis:

Total force: (6–12)

total force body force surface forces

The first term on the right-hand side of Eq. 6–12 is the body force weight,
since gravity is the only body force we are considering. The other three
terms combine to form the net surface force; they are pressure forces, vis-
cous forces, and “other” forces acting on the control surface. ! F

→
other is com-

posed of reaction forces required to turn the flow; forces at bolts, cables,
struts, or walls through which the control surface cuts; etc.

All these surface forces arise as the control volume is isolated from its
surroundings for analysis, and the effect of any detached object is accounted
for by a force at that location. This is similar to drawing a free-body dia-
gram in your statics and dynamics classes. We should choose the control
volume such that forces that are not of interest remain internal, and thus
they do not complicate the analysis. A well-chosen control volume exposes

a F
→

! a F
→

gravity # a F
→

pressure # a F
→

viscous # a F
→

other

a F
→

! a F
→

body # a F
→

surface ! "
CV

rg
→
 dV # "

CS

 sij $ n
→
 dA

a F
→

surface ! "
CS

 sij $ n
→
 dA

dF
→

surface ! sij $ n
→
 dA

Control
surface

y

x

(a)

(b)

dFsurface

dFsurface, y

dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

Control
surface

y

x

dFsurface

dFsurface, y
dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

→

→

→

→

FIGURE 6–7
When coordinate axes are rotated (a)
to (b), the components of the surface
force change, even though the force
itself remains the same; only two
dimensions are shown here.
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only the forces that are to be determined (such as reaction forces) and a
minimum number of other forces.

Only external forces are considered in the analysis. The internal forces
(such as the pressure force between a fluid and the inner surfaces of the
flow section) are not considered in a control volume analysis unless they are
exposed by passing the control surface through that area.

A common simplication in the application of Newton’s laws of motion is
to subtract the atmospheric pressure and work with gage pressures. This is
because atmospheric pressure acts in all directions, and its effect cancels out
in every direction (Fig. 6–9). This means we can also ignore the pressure
forces at outlet sections where the fluid is discharged to the atmosphere
since the discharge pressures in such cases will be very near atmospheric
pressure at subsonic velocities.

As an example of how to wisely choose a control volume, consider con-
trol volume analysis of water flowing steadily through a faucet with a par-
tially closed gate valve spigot (Fig. 6–10). It is desired to calculate the net
force on the flange to ensure that the flange bolts are strong enough. There
are many possible choices for the control volume. Some engineers restrict
their control volumes to the fluid itself, as indicated by CV A (the colored
control volume). With this control volume, there are pressure forces that
vary along the control surface, there are viscous forces along the pipe wall
and at locations inside the valve, and there is a body force, namely, the
weight of the water in the control volume. Fortunately, to calculate the net
force on the flange, we do not need to integrate the pressure and viscous
stresses all along the control surface. Instead, we can lump the unknown
pressure and viscous forces together into one reaction force, representing
the net force of the walls on the water. This force, plus the weight of the
faucet and the water, is equal to the net force on the flange. (We must be
very careful with our signs, of course.)

When choosing a control volume, you are not limited to the fluid alone.
Often it is more convenient to slice the control surface through solid objects
such as walls, struts, or bolts as illustrated by CV B (the gray control vol-
ume) in Fig. 6–10. A control volume may even surround an entire object,
like the one shown here. Control volume B is a wise choice because we are
not concerned with any details of the flow or even the geometry inside the
control volume. For the case of CV B, we assign a net reaction force acting
at the portions of the control surface that slice through the flange. Then, the
only other things we need to know are the gage pressure of the water at
the flange (the inlet to the control volume) and the weights of the water and
the faucet assembly. The pressure everywhere else along the control surface
is atmospheric (zero gage pressure) and cancels out. This problem is revis-
ited in Section 6–4, Example 6–7.

6–4 ! THE LINEAR MOMENTUM EQUATION
Newton’s second law for a system of mass m subjected to a net force F

→
is

expressed as

(6–13)a F
→

! ma
→

! m 
dV

→

dt
!

d
dt

 (mV
→

)

dy

y

x
z

dz

dx

sxz

sxx

sxy

syz

syy

syx

szy
szx

szz

FIGURE 6–8
Components of the stress tensor in
Cartesian coordinates on the right,

top, and front faces.
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P1

W

Patm

Patm

P1 (gage)

With atmospheric
pressure considered

With atmospheric
pressure cancelled out

FR

W

FIGURE 6–9
Atmospheric pressure acts in all

directions, and thus it can be ignored
when performing force balances since

its effect cancels out in every direction.

Wfaucet

Wwater

CV B

Out

Spigot

In

Bolts

x

z

CV A

FIGURE 6–10
Cross section through a faucet

assembly, illustrating the importance
of choosing a control volume wisely;

CV B is much easier to work with 
than CV A.
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where mV
→

is the linear momentum of the system. Noting that both the den-
sity and velocity may change from point to point within the system, New-
ton’s second law can be expressed more generally as

(6–14)

where dm ! rdV is the mass of a differential volume element dV, and 
rV

→
dV is its momentum. Therefore, Newton’s second law can be stated as

the sum of all external forces acting on a system is equal to the time rate of
change of linear momentum of the system. This statement is valid for a
coordinate system that is at rest or moves with a constant velocity, called an
inertial coordinate system or inertial reference frame. Accelerating systems
such as aircraft during takeoff are best analyzed using noninertial (or accel-
erating) coordinate systems fixed to the aircraft. Note that Eq. 6–14 is a
vector relation, and thus the quantities F

→
and V

→
have direction as well as

magnitude.
Equation 6–14 is for a given mass of a solid or fluid and is of limited use

in fluid mechanics since most flow systems are analyzed using control vol-
umes. The Reynolds transport theorem developed in Section 4–5 provides
the necessary tools to shift from the system formulation to the control vol-
ume formulation. Setting b ! V

→
and thus B ! mV

→
, the Reynolds transport

theorem can be expressed for linear momentum as (Fig. 6–11)

(6–15)

But the left-hand side of this equation is, from Eq. 6–13, equal to !F
→

. Sub-
stituting, the general form of the linear momentum equation that applies to
fixed, moving, or deforming control volumes is obtained to be

General: (6–16)

which can be stated as

Here V
→

r ! V
→

" V
→

CS is the fluid velocity relative to the control surface (for
use in mass flow rate calculations at all locations where the fluid crosses the
control surface), and V

→
is the fluid velocity as viewed from an inertial refer-

ence frame. The product r(V
→

r · n→) dA represents the mass flow rate through
area element dA into or out of the control volume.

For a fixed control volume (no motion or deformation of control volume),
V
→

r ! V
→

and the linear momentum equation becomes

Fixed CV: (6–17)

Note that the momentum equation is a vector equation, and thus each term
should be treated as a vector. Also, the components of this equation can be
resolved along orthogonal coordinates (such as x, y, and z in the Cartesian

a F
→

!
d
dt

 "
CV

 rV
→

 dV # "
CS

 rV
→

(V
→

$ n
→
) dA

£The sum of all
external forces
acting on a CV

≥ ! £ The time rate of change
of the linear momentum
of the contents of the CV

≥ # £ The net flow rate of
linear momentum out of the
control surface by mass flow

≥
a F

→
!

d
dt

 "
CV

 rV
→

 dV # "
CS

 rV
→

(V
→

r $ n
→
) dA

d(mV
→

)sys

dt
!

d
dt

 "
CV

 rV
→

 dV # "
CS

 rV
→

 (V
→

r $ n
→
) dA

a F
→

!
d
dt"

sys

 rV
→

 dV
= +rb dV

B = mV

dBsys

dt
V

d

dt
CV
" rb(  r · n ) dA

CS
"

= +rV dV
d(mV )sys

dt
V

d

dt
CV
" rV(  r · n ) dA

CS
"

b = V b = V

→→

→ →

→
→ → → →

→

FIGURE 6–11
The linear momentum equation 
is obtained by replacing B in the
Reynolds transport theorem by the
momentum mV

→
, and b by the 

momentum per unit mass V
→

.
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coordinate system) for convenience. The force F
→

in most cases consists of
weights, pressure forces, and reaction forces (Fig. 6–12). The momentum
equation is commonly used to calculate the forces (usually on support sys-
tems or connectors) induced by the flow.

Special Cases
During steady flow, the amount of momentum within the control volume
remains constant, and thus the time rate of change of linear momentum of the
contents of the control volume (the second term of Eq. 6–16) is zero. It gives

Steady flow: (6–18)

Most momentum problems considered in this text are steady.
While Eq. 6–17 is exact for fixed control volumes, it is not always conve-

nient when solving practical engineering problems because of the integrals.
Instead, as we did for conservation of mass, we would like to rewrite Eq.
6–17 in terms of average velocities and mass flow rates through inlets and
outlets. In other words, our desire is to rewrite the equation in algebraic
rather than integral form. In many practical applications, fluid crosses the
boundaries of the control volume at one or more inlets and one or more out-
lets, and carries with it some momentum into or out of the control volume.
For simplicity, we always draw our control surface such that it slices normal
to the inflow or outflow velocity at each such inlet or outlet (Fig. 6–13).

The mass flow rate m. into or out of the control volume across an inlet or
outlet at which r is nearly constant is

Mass flow rate across an inlet or outlet: (6–19)

Comparing Eq. 6–19 to Eq. 6–17, we notice an extra velocity in the control
surface integral of Eq. 6–17. If V

→
were uniform (V

→
! V

→

avg) across the inlet
or outlet, we could simply take it outside the integral. Then we could write
the rate of inflow or outflow of momentum through the inlet or outlet in
simple algebraic form,

Momentum flow rate across a uniform inlet or outlet:

(6–20)

The uniform flow approximation is reasonable at some inlets and outlets,
e.g., the well-rounded entrance to a pipe, the flow at the entrance to a wind
tunnel test section, and a slice through a water jet moving at nearly uniform
speed through air (Fig. 6–14). At each such inlet or outlet, Eq. 6–20 can be
applied directly.

Momentum-Flux Correction Factor, B
Unfortunately, the velocity across most inlets and outlets of practical engi-
neering interest is not uniform. Nevertheless, it turns out that we can still
convert the control surface integral of Eq. 6–17 into algebraic form, but a

"
Ac

 rV
→

(V
→

$ n
→
) dAc ! rVavg  AcV

→
avg ! m

#
V
→

avg

m
#

! "
Ac

 r(V
→

$ n
→
) dAc ! rVavg Ac

a F
→

! "
CS

 rV
→

 (V
→

r $ n
→
) dA

FR1

FR2P2,gageA2 P1,gageA1

A2

An 180° elbow supported by the ground

(Pressure
force)

CS(Reaction
force)

(Reaction force)

A1

W (Weight)

FIGURE 6–12
In most flow systems, the force F

→

consists of weights, pressure forces,
and reaction forces. Gage pressures

are used here since atmospheric
pressure cancels out on all sides 

of the control surface.

Vavg,4m4,⋅

m3,⋅ Vavg,3
→

→Vavg,5m5,⋅ →

→

→

Vavg,1m1,⋅

Vavg,2m2,⋅

In

In

Out

Out

Out

Fixed
control
volume

FIGURE 6–13
In a typical engineering problem,

the control volume may contain 
many inlets and outlets; at each inlet

or outlet we define the mass flow 
rate m. and the average velocity V

→

avg.
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