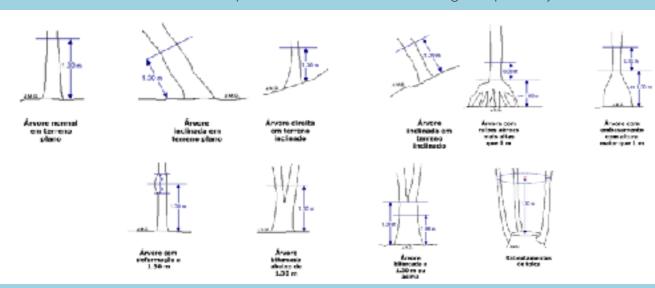


DIÂMETRO À ALTURA DO PEITO

O tipo de medição mais frequente é o diâmetro à altura do peito tomando-se como altura do peito a altura de 1.30 m a partir do solo.

As razões pela preferência da medição do diâmetro a esta altura são:

- a facilidade com que a operação de medição é realizada comparativamente à medição a outras alturas como a base da árvore
- o facto da influência das raízes na forma da árvore estar bastante reduzida a 1.30 m do solo


As razões da importância do diâmetro à altura do peito (d) são as seguintes:

- É uma variável a que facilmente se tem acesso, podendo assim ser medida em todas as árvores das parcelas de inventário
- Em comparação com outras variáveis da árvore, as medições de diâmetro são as mais fiáveis
- Os erros de medição e as suas causas são reconhecíveis e podem ser limitadas a um valor mínimo através de instrumentos e métodos de medição adequados e através de uma execução cuidada das operações de medição

- É a base para o cálculo de outras variáveis como a área seccional à altura do peito, a chamada área basal da árvore (g), que é obtida através da fórmula $g = \pi/4 * d^2$
- O diâmetro à altura do peito afecta o volume quadraticamente uma vez que o volume da árvore é o produto da área basal, altura (h) e factor forma (f): v = g * h * f
- Pelo contrário, a altura e o factor forma entram apenas linearmente na expressão do volume
- A distribuição de diâmetros (nº de árvores em cada classe de diâmetros) de um determinado povoamento ou floresta é um importante resultado de um inventário, pois fornece uma valiosa informação sobre a sua estrutura, constituindo uma base importante para decisões económicas e de planeamento
- A partir dos diâmetros à altura do peito procede-se ao cálculo da área basal do povoamento e à estimação do volume do povoamento
- A área basal é, além de tudo, um importante parâmetro para a caracterização da densidade de um povoamento

Regras para a medição de diâmetros

- Qualquer que seja o instrumento utilizado para esta medição, há que ter especial atenção para que a medição seja feita exactamente a 1.30m ou a uma distância racional deste ponto sempre que surjam irregularidades no fuste
- Em qualquer caso, antes da medição, deverá ser retirada a casca solta, líquenes ou fetos que estejam presentes no tronco no local de medição escolhido
- Os casos em que a altura de medição não seja 1.30 m do solo deverão ser devidamente assinalados na ficha de campo ou noutro instrumento de registo que esteja a utilizar

INSTRUMENTOS DE MEDIÇÃO DE DIÂMETROS

Os aparelhos usados para a determinação do diâmetro das árvores são chamados dendrómetros, sendo os mais usuais

- A **suta** de braços paralelos
- A fita de diâmetros

Para a medição de diâmetros a alturas superiores temos:

- A suta finlandesa
- O relascópio de espelhos de Bitterlich
- O telerelascópio de Bitterlich

Sutas

- A suta consiste numa barra graduada e dois braços paralelos, um fixo e outro móvel, perpendiculares à barra
- São geralmente usadas quando o diâmetro das árvores não excede os 60 cm
- Geralmente são de aço ou de liga de alumínio
- As sutas:
 - devem ser leves, mas ao mesmo tempo robustas e estáveis face às condições climatéricas
 - devem apresentar ambos os braços devem estar no mesmo plano e perpendiculares à barra graduada no momento de medição, quando a pressão é aplicada na direcção do tronco. O braço móvel deve deslizar facilmente
- Existem também as chamadas sutas digitais que possibilitam a leitura e armazenamento automático dos diâmetros (ver DIGITECH BT)

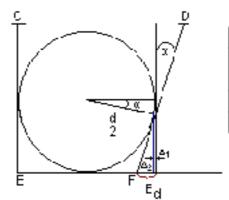
Fitas de diâmetros

- As fitas de diâmetro são fitas métricas que apresentam duas graduações, uma em cm e outra em cm/π. Assumindo uma secção circular, esta última corresponde ao diâmetro
- No início, a fita de diâmetros tem geralmente um espigão para fixação à árvore, o que facilita grandemente a medição
- As fitas de diâmetros devem ser de um material tal que o comprimento e as graduações não sejam afectados pelas condições climatéricas

Erros associados à determinação do d

Para uma abordagem sistemática do tipo de erros que podem ocorrer na determinação dos diâmetros, faz-se a seguinte classificação:

- Erros decorrentes das características do objecto a medir
- Erros dos instrumentos
- Erros de medição

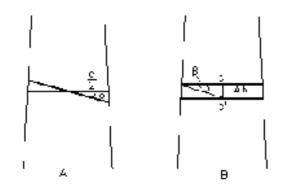

Erros relativos ao objecto

O problema da irregularidade da secção transversal do fuste:

- Apesar da secção transversal do fuste a 1.30m se aproximar da forma circular, muitas vezes é mais larga numa direcção que na outra ou pode ter outro tipo de excentricidades
- No entanto, em termos de cálculo da área basal, assume-se que esta secção transversal é circular
- Deste modo, o objectivo da medição do diâmetro de uma árvore é obter o diâmetro de um círculo com a mesma área seccional que a árvore.
- Normalmente a medição de dois diâmetros cruzados (fazendo ângulos rectos entre si) fornece uma adequada precisão e estimativas não enviesadas para árvores individuais de secção elíptica
- A estimativa da área basal de uma árvore baseada na medição do perímetro é satisfatória, mas ligeiramente enviesada, pois em árvores não verdadeiramente circulares a área basal será sobrestimada
- Ao estimar a área basal de um grande número de árvores a partir de uma única medição de diâmetro em cada árvore as áreas basais sobrestimadas numas árvores são compensadas pelas áreas basais subestimadas de outras
- Nestes casos uma única medição de diâmetro é satisfatória, devendo a orientação desse diâmetro ser aleatória em relação a qualquer padrão de orientação das irregularidades do perfil das árvores
- Por esta razão, em parcelas circulares os diâmetros devem ser medidos com o braço da suta virado para o centro da parcela.

Erros dos instrumentos - suta

- O erro mais frequente deste instrumento é causado pelo desvio do braço móvel em relação ao ângulo recto, criando erros sistemáticos negativos ou positivos no diâmetro medido
- Por exemplo, um desvio do braço móvel de 1º em relação ao ângulo recto causa um erro sistemático negativo da área basal próximo de 2%
- Para minimizar este erro, a barra graduada deve ficar bem encostada ao tronco.

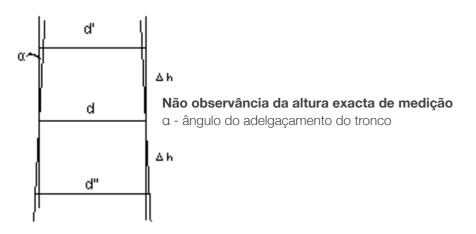

		α			
dap(cm)	g(m²)	1°(1.8%)	2°(3.4%)	5'(8.6%)	10°(17.6%)
15	0.018	0.00032	0.00060	0.00152	0.00311
20	0.031	0.00056	0.00107	0.00270	0.00553
40	0.126	0.00227	0.00427	0.01081	0.02212
50	0.196	0.00353	0.00668	0.01689	0.03456

Erros negativos em **área basal** (m²) causados pelo desvio do braço da suta

		α		
dap(cm)	g(m²)	3° (0.25%)	5° (0.75%)	6° (1%)
15	0.018	0.00004	0.00013	0.00018
20	0.031	0.00008	0.00024	0.00031
40	0.126	0.00031	0.00094	0.00126
50	0.196	0.00049	0.00147	0.00196

Inclinação da suta (A)

A barra graduada toca na árvore no local de medição correcto mas desvia-se do plano horizontal um ângulo α. Uma inclinação superior a 1% é considerada grave



Inclinação da suta (B)

A barra graduada toca na árvore no local de medição correcto e no plano correcto, mas os braços da suta apontam para baixo ou para cima desviando-se um ângulo β

Deste modo o diâmetro que está realmente a ser medido é superior (se os braços apontam para baixo) ou inferior (se os braços apontam para cima)

No fundo este erro é equivalente ao erro resultante da não observância da altura exacta de medição

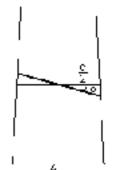
altura de medição (m)	diametro (cm)	% g
1.20	50.60	+2.40
1.25	50.30	+1.20
1.28	50.12	+0.48
1.29	50.06	+0.24
1.30	50.00	0

Erros positivos para diferentes **alturas** de medição em Pseudotsuga

Pressão excessiva de contacto da suta sobre o tronco

A força exercida pelos braços da suta sobre o tronco pode atingir um máximo de 12 kg e resulta numa compressão da casca, podendo resultar em erros negativos consideráveis

A magnitude do erro depende do operador e da resistência da casca contra a compressão (função da espécie, da idade)


A suta deve ser colocada de modo ao braço móvel encostar ao tronco sem penetrar na casca

De entre todos os erros referidos este é o mais difícil de controlar

Erros de medição – fita de diâmetros

Inclinação da fita (A)

A fita é colocada de tal modo que em vez de um círculo se mede uma elipse, estando metade acima e a outra metade abaixo do correcto plano de medição

Não observância da altura exacta de medição

Estes erros são da mesma magnitude dos da suta

Pressões de contacto da fita de diâmetros sobre o tronco

A força com que a fita pode ser apertada à mão contra o tronco atinge um máximo de apenas 2 kg. Pelo contrário, existe o perigo da fita não ser suficientemente ajustada ao tronco, o que pode causar um erro positivo

Um erro positivo também pode ser causado por pequenos lançamentos de vegetação, líquenes, casca solta ou irregularidades no tronco.

A fita de diâmetros versus a suta

Vantagens da fita

- Trata-se de um instrumento muito mais cómodo para transportar e que se utiliza facilmente, mesmo quando as árvores são muito grossas
- É o instrumento apropriado sempre que se procede a estudos de crescimento que impliquem a medição periódica das mesma árvores, assegurando um maior grau de consistência

Desvantagens da fita

- É menos durável, não é tão rápida e fácil de manusear e necessita de maior cuidado para assegurar que a fita não está torcida ou descaída
- Teoricamente as medições com a fita são enviesadas e correspondem a sobrestimações de área basal, excepto no caso de secções perfeitamente circulares (o círculo é a figura que, para a mesma área, tem o menor perímetro)
- Testes de campo sugerem que este erro é da mesma ordem de grandeza que o causado pela pressão dos braços da suta no tronco

Variáveis relacionadas com o d

Há duas variáveis relacionadas com o d, ambas de grande importância:

• Perímetro ou circunferência à altura do peito (c) $\, \, \, c = \pi \, \, \, d \,$

• Área basal ou área seccional (g) $g = \pi \frac{d^2}{4}$

ESTE MANUAL

2025. SUTA E FITA DE DIÂMETROS Instrumentos de medição de diâmetros.

Barreiro, S. & Tomé, M.

FORCHANGE - CEF - ISA - UL

DOCUMENTOS

Tomé, M. (2014). Inventário Florestal. Apontamentos de apoio às aulas teóticas. Textos Pedagógicos TP1/2014. Universidade de Lisboa, Instituto Superior de Agronomia, ForChange.

OUTROS RECURSOS

Fita de diâmetros. MedeDAPFita.mp4 (vídeo)

Suta. MedeDAPSuta.mp4 (vídeo)