Exemplos de combinações lineares de vetores

- $(2,4,-2) = 2(1,2,-1) = 2(1,0,0) + 4(0,1,0) 2(0,0,1) = 2e_1 + 4e_2 2e_3.$
- ▶ O vetor nulo $\vec{0} \in \mathbb{R}^n$ é sempre CL de qualquer conjunto de m vetores $v_1, \ldots, v_m \in \mathbb{R}^n$,

$$\vec{0} = 0 v_1 + 0 v_2 + \cdots + 0 v_m$$

e cada um dos vetores v_i é também sempre CL dos m vetores do conjunto:

$$v_1 = 1 v_1 + 0 v_2 + \cdots + 0 v_m,$$

 $v_2 = 0 v_1 + 1 v_2 + \cdots + 0 v_m,$
 \vdots
 $v_m = 0 v_1 + 0 v_2 + \cdots + 1 v_m.$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

101

Como determinar combinações lineares?

Vejamos agora num exemplo como podemos escrever um dado vetor como CL de um conjunto de vetores (caso seja possível).

Exemplo

Sejam $v_1=(2,2,1)$, $v_2=(2,3,1)$ e b=(2,5,1). Queremos determinar escalares $\alpha_1,\alpha_2\in\mathbb{R}$ (caso existam) tais que $b=\alpha_1v_1+\alpha_2v_2$.

Ora,

$$b = \alpha_{1}v_{1} + \alpha_{2}v_{2} \Leftrightarrow \begin{bmatrix} 2\\5\\1 \end{bmatrix} = \alpha_{1} \begin{bmatrix} 2\\2\\1 \end{bmatrix} + \alpha_{2} \begin{bmatrix} 2\\3\\1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2\\5\\1 \end{bmatrix} = \begin{bmatrix} 2\alpha_{1} + 2\alpha_{2}\\2\alpha_{1} + 3\alpha_{2}\\\alpha_{1} + \alpha_{2} \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} 2\alpha_{1} + 2\alpha_{2} = 2\\2\alpha_{1} + 3\alpha_{2} = 5 & -- \rightarrow [v_{1} \ v_{2} \mid b].\\\alpha_{1} + \alpha_{2} = 1 \end{cases}$$

Logo (α_1, α_2) é solução do sistema cuja matriz ampliada é $[v_1 \ v_2 \mid b]!$

Como determinar combinações lineares?

lacktriangle Aplicando a fase descendente do método de Gauss a $[v_1 \ v_2 \mid b]$, obtém-se

$$[v_1 \ v_2 \mid b] = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 3 & 5 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- ightharpoonup Como o sistema é possível podemos escrever b como CL de v_1 e v_2 .
- Para determinarmos os coeficientes α_1 e α_2 da CL aplicamos a fase ascendente:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{--} \begin{cases} \alpha_1 & = -2 \\ \alpha_2 & = 3 \end{cases}$$

Assim,
$$b = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = -2v_1 + 3v_2$$

Veremos no próximo slide que uma abordagem semelhante pode ser aplicada no caso geral para verificar se um vetor pode ser escrito como CL de um conjunto de vetores e determinar os coeficientes dessa CL, caso seja possível.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

103

Combinações lineares via sistemas lineares

Teorema

Sejam v_1, v_2, \ldots, v_n e b vetores de \mathbb{R}^m e $A_{m \times n} = [v_1 \ v_2 \ \cdots \ v_n]$.

Têm-se as seguintes equivalências:

- (i) $b = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n$.
- (ii) $(\alpha_1, \alpha_2, \dots, \alpha_n)$ é solução do sistema Ax = b, isto é, do sistema cuja matriz ampliada é $[v_1 \ v_2 \ \cdots \ v_n \mid b]$.

Dem: Vamos considerar n=2. A demonstração no caso geral é análoga. Recordemos da demonstração do slide 83 que podemos escrever $v_1=Ae_1$ e $v_2=Ae_2$ com e=(1,0) e $e_2=(0,1)$. Tem-se,

$$b = \alpha_1 v_1 + \alpha_2 v_2 \quad \Leftrightarrow \quad b = \alpha_1 A e_1 + \alpha_2 A e_2 \Leftrightarrow b = \alpha_1 A \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 A \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\Leftrightarrow \quad b = A \begin{bmatrix} \alpha_1 \\ 0 \end{bmatrix} + A \begin{bmatrix} 0 \\ \alpha_2 \end{bmatrix} \Leftrightarrow b = A \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}.$$

Logo (α_1, α_2) é solução do sistema Ax = b. \square

Corolário

Sejam $v_1, v_2, \ldots, v_n, b \in \mathbb{R}^m$ e $A = [v_1 \ v_2 \ \cdots \ v_n]$. Tem-se:

- ▶ Se Ax = b for IMP, b não é CL de v_1, v_2, \dots, v_n .
- ▶ Se Ax = b for PD, $b \in CL$ de $v_1, v_2, ..., v_n$ de uma única forma.
- ▶ Se Ax = b for PI, $b \in CL$ de $v_1, v_2, ..., v_n$ de infinitas maneiras distintas.

Exercícios

Considere os vetores $v_1 = (2, 2, 1), v_2 = (2, 3, 1)$ e $v_3 = (0, 1, 0)$.

- Escreva (4, 6, 2) como CL de v_1 , v_2 e v_3 de duas formas distintas.
- Mostre que (0,0,1) não é CL de v_1 , v_2 e v_3 .

Vamos estar interessados no próximo slide em obter todos os vetores que se podem escrever como combinação linear de um conjunto finito de vetores.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

105

Espaço gerado

Espaço gerado por um conjunto de vetores

Sejam $v_1, v_2, \ldots, v_n \in \mathbb{R}^m$. Chama-se espaço gerado por v_1, \ldots, v_n , denotado $\langle v_1, \ldots, v_n \rangle$, ao subconjunto dos vetores de \mathbb{R}^m que são CL de v_1, \ldots, v_n , isto é,

$$\langle v_1, \dots, v_n \rangle = \{ b \in \mathbb{R}^m : b \in \mathsf{CL} \ \mathsf{de} \ v_1, \dots, v_n \}$$

$$= \{ \alpha_1 v_1 + \dots + \alpha_n v_n : \alpha_1, \dots, \alpha_n \in \mathbb{R} \}.$$

Alguns exemplos

- $ightharpoonup \langle \vec{0} \rangle = \{\vec{0}\}$ (subespaço minimal).
- $\langle \vec{v} \rangle = \{ \alpha \, v : \alpha \in \mathbb{R} \}$ com $v \in \mathbb{R}^n$, $v \neq \vec{0}$, define a reta de \mathbb{R}^n que passa na origem com vetor diretor v.
- lacktriangle Considerando $e_1=(1,0)$ e $e_2=(0,1)$, obtém-se

$$\langle e_1, e_2 \rangle = \{ \alpha_1(1,0) + \alpha_2(0,1) : \alpha_1, \alpha_2 \in \mathbb{R} \}$$

= $\{ (\alpha_1, \alpha_2) : \alpha_1, \alpha_2 \in \mathbb{R} \} = \mathbb{R}^2$ (subespaço maximal).

lacktriangle Mais geralmente, considerando $e_1, e_2, \ldots, e_n \in \mathbb{R}^n$, $\langle e_1, e_2, \ldots, e_n \rangle = \mathbb{R}^n$.

Espaço das colunas de uma matriz

Chama-se espaço das colunas de uma matriz $A_{m \times n}$ ao conjunto,

$$C(A) = \{b \in \mathbb{R}^m : Ax = b \text{ \'e poss\'el}\}.$$

Observação

Denotando $A = [v_1 \ v_2 \ \cdots \ v_n]$ conclui-se pelo corolário do slide 105 que um vetor b é CL dos vetores v_1, \ldots, v_n se e só se o sistema Ax = b for possível (PD ou PI), isto é,

$$\langle v_1,\ldots,v_n\rangle=\mathcal{C}(A).$$

Por outras palavras, o espaço das colunas de uma matriz A corresponde ao espaço gerado pelos vetores que constituem as colunas de A.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

107

Exemplo

Consideremos $v_1 = (2, 2, 1)$ e $v_2 = (2, 3, 1)$ do slide 102 e $A = [v_1 \ v_2]$. Queremos determinar todos os vetores que se podem escrever como CL de v_1 e v_2 , isto é, queremos determinar $\langle v_1, v_2 \rangle$. Ora tem-se,

$$\langle v_1, v_2 \rangle = \mathcal{C}(A) = \{ b \in \mathbb{R}^3 : Ax = b \text{ \'e possível} \}.$$

Aplicando a fase descendente do método de Gauss à matriz [A|b] vem,

$$[A|b] = \left[egin{array}{ccc|c} 2 & 2 & b_1 \ 2 & 3 & b_2 \ 1 & 1 & b_3 \ \end{array}
ight]
ightarrow \cdots
ightarrow \left[egin{array}{ccc|c} 1 & 1 & b_3 \ 0 & 1 & b_2 - 2b_3 \ 0 & 0 & b_1 - 2b_3 \ \end{array}
ight] = [A'|b'],$$

donde resulta que Ax = b é possível se e só se $b_1 - 2b_3 = 0$ e portanto,

$$\langle v_1, v_2 \rangle = \mathcal{C}(A) = \{(b_1, b_2, b_3) : b_1 - 2b_3 = 0\}.$$

Logo $b = (b_1, b_2, b_3)$ é CL de v_1 e v_2 se e só se verificar a equação $b_1 - 2b_3 = 0$. Por outras palavras, os vetores que se podem escrever como CL de v_1 e v_2 definem o plano de equação cartesiana $x_1 + 0x_2 - 2x_3 = 0$, que passa na origem e tem vetor normal (1, 0, -2).

O mesmo tipo de procedimento pode ser aplicado para determinar o espaço gerado/espaço das colunas no caso geral, como veremos a seguir.

Algoritmo

Input: $v_1, \ldots, v_n \in \mathbb{R}^m$ e $A_{m \times n} = [v_1 \cdots v_n].$

Objectivo: Determinar $\langle v_1, \ldots, v_n \rangle = \mathcal{C}(A)$.

Aplica-se a fase descendente do método de Gauss a [A|b] com $b=(b_1,\ldots,b_m)$ vetor genérico. Seja [A'|b'] obtida a partir de [A|b] com A' em escada. Tem-se:

Se A' não possui linhas nulas, não há restrições a impor ao vetor b e portanto obtém-se

$$\langle v_1,\ldots,v_n\rangle=\mathcal{C}(A)=\mathbb{R}^m.$$

 \triangleright Se A' possui linhas nulas, há restrições a impor ao vetor b e obtém-se,

$$\langle v_1,\ldots,v_n\rangle=\mathcal{C}(A)=\big\{(b_1,\ldots,b_m):b'_{i_1}=0,\ b'_{i_2}=0,\ \cdots,b'_{i_k}=0\big\},$$

onde $b'_{i_1}, b'_{i_2}, \ldots, b'_{i_k}$ são as componentes do vetor b' associadas às linhas nulas da matriz em escada A'.

Neste caso $\langle v_1, \ldots, v_n \rangle = \mathcal{C}(A)$ é determinado por um sistema linear homogéneo, que designamos por sistema de equações definidoras.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

109

Exemplos

Exercício na aula

Aplicando o algoritmo do slide anterior determine os subespaços gerados, $U = \langle (1,1,0), (1,0,1), (0,1,1), (1,1,1) \rangle$ e $V = \langle (2,2,3), (4,4,6) \rangle$.

No caso do subespaço U tem-se, denotando $v_1=(1,1,0)$, $v_2=(1,0,1)$, $v_3=(0,1,1)$, $v_4=(1,1,1)$ e $A=[v_1\ v_2\ v_3\ v_4]$,

$$U = \langle v_1, v_2, v_3, v_4 \rangle = \mathcal{C}(A) = \{b = (b_1, b_2, b_3) : Ax = b \text{ \'e poss\'el}\} \subset \mathbb{R}^3.$$

Aplicando a fase descendente do método de eliminação de Gauss a [A|b] vem,

$$[A|b] = \begin{bmatrix} 1 & 1 & 0 & 1 & b_{1} \\ 1 & 0 & 1 & 1 & b_{2} \\ 0 & 1 & 1 & 1 & b_{3} \end{bmatrix} \stackrel{L_{2}-L_{1}}{\longrightarrow} \begin{bmatrix} 1 & 1 & 0 & 1 & b_{1} \\ 0 & -1 & 1 & 1 & b_{2}-b_{1} \\ 0 & 1 & 1 & 1 & b_{3} \end{bmatrix}$$

$$\stackrel{L_{3}+L_{2}}{\longrightarrow} \begin{bmatrix} 1 & 1 & 0 & 1 & b_{1} \\ 0 & -1 & 1 & 1 & b_{2}-b_{1} \\ 0 & 0 & 2 & 1 & b_{3}+b_{2}-b_{1} \end{bmatrix} = [A'|b'].$$

Como A' não tem linhas nulas, não há restrições a impor a $b=(b_1,b_2,b_3)$ para o sistema ser possível (1º caso do algoritmo do slide 109). Logo $U=\mathbb{R}^3$, isto é, v_1,v_3,v_3,v_4 geram o subespaço maximal de \mathbb{R}^3 .

Exemplos (cont.)

Consideremos agora subespaço gerado V do exercício do slide anterior.

Tem-se, denotando $v_1 = (2, 2, 3), v_2 = (4, 4, 6) e A = [v_1 \ v_2],$

$$V = \langle v_1, v_2 \rangle = C(A) = \{b = (b_1, b_2, b_3) : Ax = b \text{ \'e poss\'el}\}.$$

Aplicando a fase descendente à matriz [A|b] vem,

$$[A|b] = \begin{bmatrix} 2 & 4 & b_1 \\ 2 & 4 & b_2 \\ 3 & 6 & b_3 \end{bmatrix} \xrightarrow{L_3 - \frac{3}{2}L_1} \begin{bmatrix} 2 & 2 & b_1 \\ 0 & 0 & b_2 - b_1 \\ 0 & 0 & b_3 - \frac{3}{2}b_1 \end{bmatrix} = [A'|b'].$$

O sistema Ax = b é possível se e só se a 2^{2} e 3^{2} componentes do vetor b',

que estão associadas às linhas nulas da matriz em escada A', forem nulas, isto é, se e só se $b_2 - b_1 = 0$ e $b_3 - \frac{3}{2}b_1 = 0$ (2^{Q} caso do algoritmo do slide 109), isto é, $b_2 = b_1$ e $b_3 = \frac{3}{2}b_1$. Logo,

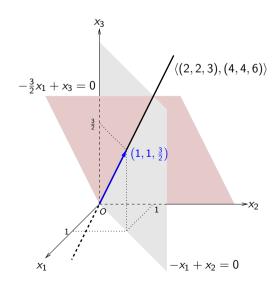
$$egin{array}{lll} V=\mathcal{C}(A) &=& \left\{ (b_1,b_2,b_3) \in \mathbb{R}^3 \ : \ b_2=b_1, \ b_3=rac{3}{2}b_1
ight\} \ &=& \left\{ \left(b_1,b_1,rac{3}{2}b_1
ight) \ : \ b_1 \in \mathbb{R} \
ight\} \ &=& \left\{ b_1 \left(1,1,rac{3}{2}
ight) \ : \ b_1 \in \mathbb{R} \
ight\} = \left\langle \left(1,1,rac{3}{2}
ight)
ight
angle . \end{array}$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

Exemplos (concl.)

Geometricamente, $V = \langle (2,2,3), (4,4,6) \rangle$ corresponde à reta de \mathbb{R}^3 que passa na origem com vetor diretor $(1,1,\frac{3}{2})$, obtida como interseção dos planos $-x_1+x_2=0$ e $-\frac{3}{2}x_1+x_3=0$:

$$\begin{cases} -x_1 + x_2 = 0 \\ -\frac{3}{2}x_1 + x_3 = 0 \end{cases}$$



111

O espaço das colunas e o espaço gerado são subespaços vetoriais

Pelo algoritmo do slide 109, o espaço das colunas de uma matriz do tipo $m \times n$ ou coincide com \mathbb{R}^m e nessa altura é o subespaço vetorial maximal ou pode ser definido por um sistema linear homogéneo e nessa altura coincide com o espaço nulo de uma matriz que é subespaço vetorial. Logo tem-se o seguinte resultado.

Teorema

Para toda a matriz A do tipo $m \times n$, C(A) é subespaço vetorial de \mathbb{R}^m .

Daqui resulta imediatamente o seguinte corolário (porquê?).

Corolário

O espaço gerado por um conjunto (finito) de vetores de \mathbb{R}^m é um subespaço vetorial de \mathbb{R}^m .

Exemplo do slide 110 revisitado

Pela resolução do exercício do slide 110 tem-se,

$$V = \left\langle (2,2,3), (4,4,6) \right\rangle = \mathcal{C}\left(\left[\begin{array}{ccc} 2 & 4 \\ 2 & 4 \\ 3 & 6 \end{array} \right] \right) = \mathcal{N}\left(\left[\begin{array}{ccc} -1 & 1 & 0 \\ -\frac{3}{2} & 0 & 1 \end{array} \right] \right).$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

113

Independência linear

Definição de independência linear

Sejam $v_1, \ldots, v_n \in \mathbb{R}^m$.

• $\{v_1, \ldots, v_n\}$ diz-se linearmente independente (l.i.) se

$$\forall \alpha_1, \ldots, \alpha_n \in \mathbb{R} : \alpha_1 v_1 + \cdots + \alpha_n v_n = \vec{0} \Rightarrow \alpha_1 = \cdots = \alpha_n = 0,$$

isto é, se a combinação linear com todos os coeficientes nulos,

$$0v_1 + 0v_2 + \cdots + 0v_n = \vec{0},$$

for a **única** forma de escrever o vetor nulo como CL de v_1, \ldots, v_n .

Caso contrário $\{v_1, \ldots, v_n\}$ diz-se linearmente dependente (l.d.).

Por outras palavras, $\{v_1, \ldots, v_n\}$ é linearmente dependente se existem coeficientes não todos nulos $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tais que,

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = \vec{0}.$$