Integer Linear Programming

2018/19

```
\(\operatorname{Max} \quad Z=4 x_{1}+6 x_{2}\)
s.t. \(\quad 0.5 x_{1} \leq 2\)
    \(2 x_{1}+20 x_{2} \leq 70\)
    \(97.5 x_{1}+136.5 x_{2} \leq 682.5\)
    \(x_{1}, \quad x_{2} \quad\) are integers(5)
    \(x_{1}, \quad x_{2} \quad \geq 0\)
(3)
\(97.5 x_{1}+136.5 x_{2} \leq 682.5\)
\(x_{1}, \quad x_{2} \quad\) are integers(5)
\(x_{1}, \quad x_{2} \quad \geq 0\)
(6)
```


Feasible region - set of white points

D IP model

$$
\begin{array}{lll}
\text { s.t. } & 0.5 x_{1} & \leq 2 \\
2 x_{1}+20 x_{2} & \leq 70 \\
97.5 x_{1}+136.5 x_{2} & \leq 682.5 \\
x_{1}, \quad x_{2} & \text { are int.(4) } \\
x_{1}, \quad x_{2} & \geq 0
\end{array}
$$

Feasible region - set of white points

```
\ IP model
```


Feasible region - set of white points

```
\ IP model
```


$$
\begin{array}{lll}
\text { s.t. } & 0.5 x_{1} & \leq 2 \\
2 x_{1}+20 x_{2} & \leq 70 \\
97.5 x_{1}+136.5 x_{2} & \leq 682.5 \quad(4) \\
& x_{1}, \quad x_{2} & \text { are int.(5) } \\
& x_{1}, \quad x_{2} & \geq 0
\end{array}
$$

Feasible region - set of white points

```
D IP model
```


Feasible region - set of white points

```
\ IP model
```


Feasible region - set of white points

```
\ IP model
```


Relaxing constraints (5) - linear relaxation

```
\ IP model
```


Vertex	$Z=4 x_{1}+6 x_{2}$
$A=(0,0)$	0
$B=(0,3.5)$	14
$C=(2.44,3.26)$	29.3 (optimal solution)
$D=(4,2.14)$	28.8
$E=(4,0)$	24

Coming back to the IP model

\triangleright IP model

Optimal solution $x_{1}=4, x_{2}=2$ with the objective value of 28 $((4,2)$ is not a vertex of the linear relaxation).

Constraints Hiring rangers

D IP model

$$
x_{j}= \begin{cases}1 & \text { if a ranger is placed in district } j \\ 0 & \text { otherwise }\end{cases}
$$

$x_{1}+x_{2}+x_{3}$ is the number of rangers that protect district 1

Constraints Sheet cutting planning

D IP model
$x_{j}=$ number of $48 \mathrm{~cm} \times 96 \mathrm{~cm}$ sheets assigned to cutting
pattern P_{j}
$2 x_{1}$ is the number of sheets of type 2 obtained with cutting pattern P_{1}

Constraints Project selection

$$
x_{j}= \begin{cases}1 & \text { if project } j \text { is selected } \\ 0 & \text { otherwise }\end{cases}
$$

If project 1 is selected then project 6 is selected

$$
\begin{aligned}
& x_{1} \leq x_{6} \\
& \quad x_{1}=1 \Rightarrow x_{6} \geq 1 \\
& x_{1}=0 \Rightarrow x_{6} \geq 0 \Rightarrow \overbrace{6}=1 \text { or } x_{6}=0
\end{aligned} x_{6}=1
$$

If project 6 is selected then project 1 is selected

$$
\begin{aligned}
& x_{1} \leq x_{6} \text { does not guarantee this! } \\
& \qquad x_{6}=1 \Rightarrow x_{1} \leq 1 \Rightarrow x_{1}=1 \text { or } x_{1}=0
\end{aligned}
$$

Constraints Project selection

If project 6 is selected then project 1 is selected

$$
\begin{aligned}
& x_{6} \leq x_{1} \\
& \qquad \begin{array}{l}
x_{6}=1 \Rightarrow x_{1} \geq 1 \Rightarrow x_{1}=1 \\
\\
x_{6}=0 \Rightarrow x_{1} \geq 0 \Rightarrow x_{1}=1 \text { or } x_{1}=0
\end{array}
\end{aligned}
$$

Project 1 is selected if and only if project 6 is selected.

$$
x_{6} \leq x_{1} \text { and } x_{6} \geq x_{1} \Leftrightarrow x_{6}=x_{1}
$$

Constraints Project selection

$$
x_{j}= \begin{cases}1 & \text { if project } j \text { is selected } \\ 0 & \text { otherwise }\end{cases}
$$

If project 2 is selected then projects 4 and 5 must both be selected

$$
\begin{aligned}
& x_{2} \leq x_{4} \\
& x_{2} \leq x_{5}
\end{aligned} \quad \begin{aligned}
& \quad x_{2}=1 \Rightarrow x_{4}=1 \\
& \quad x_{2}=1 \Rightarrow x_{5}=1 \\
& \\
& x_{2}=0 \Rightarrow x_{4}=0 \text { or } x_{4}=1 \\
& \\
& x_{2}=0 \Rightarrow x_{5}=0 \text { or } x_{5}=1
\end{aligned}
$$

Constraints Project selection

$$
x_{j}= \begin{cases}1 & \text { if project } j \text { is selected } \\ 0 & \text { otherwise }\end{cases}
$$

If projects 1 and 2 are both selected then 6 must be selected

$$
\begin{aligned}
& x_{1}+x_{2}-1 \leq x_{6} \\
& x_{1} \\
&=x_{2}=1 \Rightarrow x_{6}=1 \\
& x_{1}=0 \text { and } x_{2}=1 \Rightarrow x_{6}=0 \text { or } x_{6}=1 \\
& x_{1}=1 \text { and } x_{2}=0 \Rightarrow x_{6}=0 \text { or } x_{6}=1 \\
& x_{1}=x_{2}=0 \Rightarrow x_{6}=0 \text { or } x_{6}=1
\end{aligned}
$$

