# Applied Operations Research 

Solving applications of Integer Linear Programming with

Excel (One Resolution)

## 1. Hiring rangers

(a) Indicate the districts that a ranger can protect.

| Districts | Districts where the rangers can be placed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 3 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| 4 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 6 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 7 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 8 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 9 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 11 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 1: Districts that a ranger can protect.
(b) Formulate and solve the problem.

The decision variables are as follows:

$$
x_{j}= \begin{cases}1 & \text { if a ranger is placed in district } j \\ 0 & \text { otherwise }\end{cases}
$$

The model is the following:

$$
\begin{equation*}
\min Z=\sum_{j=1}^{11} x_{j} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3} \quad \geq 1 \\
& x_{1}+x_{2}+x_{3} \quad+x_{5}+x_{6} \geq 1 \\
& x_{1}+x_{2}+x_{3}+x_{4} \quad+x_{6}+x_{7} \quad+x_{11} \geq 1 \\
& x_{3}+x_{4} \quad+x_{7}+x_{8} \geq 1 \\
& \begin{array}{llllll}
x_{2} & & +x_{5} & +x_{6} & & \\
& & & & \geq 1 \\
x_{2} & +x_{3} & +x_{5} & +x_{6} & +x_{7} & +x_{9}
\end{array} \\
& \begin{array}{cllll}
x_{3} & +x_{4} & +x_{6} & +x_{7} & +x_{8}
\end{array}+x_{11} \geq 1 \\
& x_{4} \quad+x_{7} \quad+x_{8} \quad+x_{10} \quad+x_{11} \geq 1 \\
& x_{5} \quad+x_{6} \quad+x_{9} \quad+x_{10} \quad+x_{11} \geq 1 \\
& x_{8} \quad+x_{9} \quad+x_{10} \quad+x_{11} \geq 1 \\
& \begin{array}{c}
x_{3} \\
x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad x_{6}+\quad x_{8}+\quad x_{9}+\quad x_{10}+\quad x_{11} \geq 1 \\
x_{7}, \quad x_{8}, \quad x_{9}, \quad x_{10}, \quad x_{11} \quad \in\{0,1\} .
\end{array}
\end{aligned}
$$

Expression (11) minimizes the number of rangers hired. All constraints bebore the last ensure that each district is protected. The last constraints state the nature of the variables.

The optimal solution is obtained with three rangers, placed in districts 2,3 and 11 .

## 2. Sheet cutting planning

Formulate this problem as an IP model and solve the model.

| Sheet of |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| paper | $P_{1}$ | $P_{2}$ | $P_{3}$ | $P_{4}$ | $P_{5}$ | $P_{6}$ | $P_{7}$ | $P_{8}$ | $P_{9}$ | $P_{10}$ | $P_{11}$ | $P_{12}$ | $P_{13}$ | $P_{14}$ | $P_{15}$ | $P_{16}$ |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 2 | 1 | 0 | 2 | 1 | 0 | 3 | 2 | 1 | 0 | 5 | 4 | 3 | 2 | 1 | 0 |
| 3 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 1 | 3 | 0 | 1 | 3 | 0 | 2 | 3 | 5 | 0 | 1 | 3 | 5 | 6 | 8 |

Table 2: Possible cutting patterns on a $48 \mathrm{~cm} \times 96 \mathrm{~cm}$ sheet.

The decision variables are as follows:
$x_{j}-$ number of $48 \mathrm{~cm} \times 96 \mathrm{~cm}$ sheets assigned to cutting pattern $P_{j}, j=1, \ldots, 16$.

$$
\min Z=\sum_{i=1}^{16} x_{i}
$$

subject to


The first expression minimizes the number of $48 \mathrm{~cm} \times 96 \mathrm{~cm}$ sheets used. All constraints before the last ensure that the characteristics of the order are satisfied. The last constraints state the integer requirements on the variables.

The optimal number of $48 \mathrm{~cm} \times 96 \mathrm{~cm}$ sheets used is 1088 . The optimal values of the variables are displayed in Table 3.

| Number of $48 \mathrm{~cm} \times 96 \mathrm{~cm}$ sheets |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ | $P_{2}$ | $P_{3}$ | $P_{4}$ | $P_{5}$ | $P_{6}$ | $P_{7}$ | $P_{8}$ | $P_{9}$ | $P_{10}$ | $P_{11}$ | $P_{12}$ | $P_{13}$ | $P_{14}$ | $P_{15}$ | $P_{16}$ |
| 642 | 4 | 154 | 1 | 0 | 249 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 33 |

Table 3: Optimal solution.

## 3. Project selection

(a) What is the optimal solution for this problem?
$x_{1}=x_{2}=x_{3}=x_{5}=1$ and the remaining variables are equal to zero, with the objective function value of 22 .
(b) Formulate constraints and find the optimal solutions for the following conditions:
i. Exactly two projects out of projects $2,3,4$ and 5 must be selected.

$$
x_{2}+x_{3}+x_{4}+x_{5}=2 .
$$

The optimal solution is $x_{2}=x_{3}=1$ and $x_{1}=x_{4}=x_{5}=x_{6}=0$, with the objective function value of 21 .
ii. Project 1 may be selected if and only if project 6 is selected.

$$
x_{1}=x_{6} .
$$

$x_{2}=x_{3}=x_{4}=x_{5}=1$ and $x_{1}=x_{6}=0$, with the objective function value of 21.
iii. If project 2 is selected, projects 4 and 5 must both be selected.

$$
\begin{aligned}
& x_{2} \leq x_{4} \\
& x_{2} \leq x_{5}
\end{aligned}
$$

$x_{2}=x_{3}=x_{4}=x_{5}=1$ and $x_{1}=x_{6}=0$, with the objective function value of 21.
iv. If project 1 and 2 are both selected, 6 must be selected.

$$
x_{1}+x_{2}-1 \leq x_{6}
$$

$x_{2}=x_{3}=x_{4}=x_{5}=1$ and $x_{1}=x_{6}=0$, with the objective function value of 21.

