INSTITUTO SUPERIOR DE AGRONOMIA

Applied Operations Research - Integer Programming and Network Models - 2018/19

Exam 1 ${ }^{\text {st }}$ Call

1. Consider the following integer linear programming problem, further denoted by (IP):

$$
\begin{gathered}
\max z=9 x_{1}+7 x_{2}+5 x_{3}+2 x_{4} \\
\left\{\begin{array}{cccc}
5 x_{1} & + & 4 x_{2} & + \\
x_{1}, & x_{2}, & x_{3}, & x_{4} \in \in \quad 2 x_{3}+ \\
\{0,1\}
\end{array}\right.
\end{gathered}
$$

The Figure below shows the branch-and-bound for solving (IP). Information concerning the linear programming relaxation solution of each subproblem is displayed near the corresponding node, where z_{i} is subproblem i optimal solution value.

a) Display an optimal solution for (IP).
b) Complete Node 3. Justify your answer.
c) Nodes 7 and 8 are obtained by adding which constraint to (IP)? In each case, specify the constraint.
d) Determine a solution to node 9 .
e) At the end of node 4 , can you conclude that the resulting solution $x_{2}=x_{3}=1 ; x_{1}=$ $x_{4}=0$ is optimal for (IP)? Justify your answer.
2. A company wishes to assign three customers, C_{1}, C_{2} and C_{3}, to two warehouses, W_{1} and W_{2}. The assignment costs, the warehouse capacities and the customer demands are given in the following table.

	W_{1}	W_{2}	Demand
C_{1}	2	8	18
C_{2}	5	3	15
C_{3}	7	3	14
Capacity	30	20	

The following integer programming model translates the problem that the company would like to solve.

$$
\begin{aligned}
& \min Z=2 x_{11}+8 x_{12}+5 x_{21}+3 x_{22}+7 x_{31}+3 x_{32} \\
& \text { s.t. } x_{11}+x_{12} \quad=1 \quad \text { (2) } \\
& x_{21}+x_{22}=1 \\
& x_{31}+x_{32}=1 \\
& 18 x_{11}+15 x_{21}+14 x_{31} \leq 30 \\
& 18 x_{12}+15 x_{22}+14 x_{32} \leq 20 \\
& x_{11}, \quad x_{12}, \quad x_{21}, \quad x_{22}, \quad x_{31}, \quad x_{32} \in\{0,1\}(7)
\end{aligned}
$$

a) What can be the meaning of decision variables $x_{i j}(i=1, \ldots, 3, j=1,2)$, objective function (1) and constraints (2) to (6)?
b) Find a feasible solution for the problem and give the corresponding assignment cost.

