Applied Operations Research - Integer Programming and Network Models - 2018/19

Exam 1st Call

1. Consider the following integer linear programming problem, further denoted by (IP):

$$\max z = 9x_1 + 7x_2 + 5x_3 + 2x_4$$

$$\begin{cases} 5x_1 + 4x_2 + 3x_3 + 2x_4 \le 7\\ x_1, x_2, x_3, x_4 \in \{0, 1\} \end{cases}$$

The Figure below shows the branch-and-bound for solving (IP). Information concerning the linear programming relaxation solution of each subproblem is displayed near the corresponding node, where z_i is subproblem *i* optimal solution value.

- a) Display an optimal solution for (IP).
- b) Complete Node 3. Justify your answer.
- c) Nodes 7 and 8 are obtained by adding which constraint to (IP)? In each case, specify the constraint.
- d) Determine a solution to node 9.
- e) At the end of node 4, can you conclude that the resulting solution $x_2 = x_3 = 1; x_1 = x_4 = 0$ is optimal for (IP)? Justify your answer.
- 2. A company wishes to assign three customers, C_1 , C_2 and C_3 , to two warehouses, W_1 and W_2 . The assignment costs, the warehouse capacities and the customer demands are given in the following table.

	W_1	W_2	Demand
C_1	2	8	18
C_2	5	3	15
C_3	7	3	14
Capacity	30	20	

The following integer programming model translates the problem that the company would like to solve.

s.t. $x_{11} + x_{12} = 1$ (2 $x_{21} + x_{22} = 1$ (3	2)
$x_{21} + x_{22} = 1 \qquad (3$	
	3)
$x_{31} + x_{32} = 1 \qquad (4)$	1)
$18x_{11} + 15x_{21} + 14x_{31} \le 30 (5)$	5)
$18x_{12} + 15x_{22} + 14x_{32} \le 20 (6)$	3)
$x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, x_{32} \in \{0, 1\}$	7)

- a) What can be the meaning of decision variables x_{ij} (i = 1, ..., 3, j = 1, 2), objective function (1) and constraints (2) to (6)?
- b) Find a feasible solution for the problem and give the corresponding assignment cost.