Whole stand models for even-aged stands and diameter distribution models

Margarida Tomé, Susana Barreiro Instituto Superior de Agronomia Universidade de Lisboa

Summary

- Whole stand models for even-aged stands
\rightarrow State variables
\rightarrow Control variables
- Stand density and stocking
- Stand density measures:
- Stand density index (SDI)
- Crown competition factor (CCF)
- Relative spacing (Wilson factor)
- Spacing factor (Sf)
- Crown cover (CC)
\rightarrow Growth and calculus modules
- Site productivity
- Silvicultural treatments and thinning
- Whole stand models - diameter distribution
\rightarrow Modelling diameter distributions
\rightarrow PDF functions (Weibull and Johnson's SB)
\rightarrow The PBRAVO Model

Whole stand models for even-aged stands

Whole stand models - state variables

■ In whole stand models the state variables are all defined at stand level:
\rightarrow Dominant height (hdom)
\rightarrow Number of trees per ha (N)
\rightarrow Basal area (G)
\rightarrow Volume (V) and merchantable volumes (Vdi or Vhi)
Principal
variables

Derived variables
\rightarrow Biomass (W) and biomass per tree component $(\mathrm{Wr}, \mathrm{Ww}, \mathrm{Wb}, \mathrm{Wbr}, \mathrm{Wl})$

■ hdom, N and G are almost always principal variables, volume may be derived or not

Whole stand models - control variables

- The most important control variables are
\rightarrow Site productivity (climate and soil), very often expressed as site index
\rightarrow Genetics
\rightarrow Application of fertilizers
\rightarrow Stocking control, either initial stand density and thinnings
\rightarrow Other silvicultural techniques (weeding, pruning, irrigation, etc)

- Selection of quantitative measures of stand density is therefore an important step in forest models development and/or application

Stocking and stand density

■ Although stocking and stand density are terms that are often applied interchangeably in forestry use, the two terms are not synonymous
\rightarrow Stand density denotes a quantitative measurement of the stand
\rightarrow Stocking:

- Stocking refers to the adequacy of a given stand density to meet some management objective (Bickford et al. 1957)
- Stands may be referred to as "understocked", "fully-stocked", or overstocked
- A stand that is "overstocked" for one management objective could be "understocked" for another

Quantifying stand density

■ Stand density is a quantitative term describing the degree of stem crowding within a stocked area and it can be expressed in:
\rightarrow Absolute measures of density are determined directly from a given stand without reference to any other stand
\rightarrow Basal area
\rightarrow Number of trees per ha
\rightarrow Relative density is based on a selected standard density, usually the "fullystocked" stand or the open-grown trees (the extremes)
\rightarrow Stand density índex (SDI)
\rightarrow Crown competition factor (CCF)
\rightarrow Other stand density measures

- Relative spacing (FW)
- Spacing factor (SF)
- Percent crown cover (CC)

Quantifying stand density

■ Stand density index (SDI) - Relative stand density measures
\rightarrow SDI evaluates stand density by comparing it with the maximum density for a stand with the same quadratic mean $\mathrm{dbh}(\mathrm{dg})$ - limiting situation or self-thinning line
\rightarrow For any given $d g$ there is a limit to the number of trees per unit that can be carried
\rightarrow Reineke (1933) noted that for a variety of species the slope of the limiting line was approximately -1.6 on the log-log scale

Quantifying stand density

■ Stand density index (SDI) - Relative stand density measures

\square SDI is based on the evaluation of the difference between the number of trees in the stand and the maximum number of trees it could sustain according to the self-thinning line

- SDI assumes that an understocked stand is located in a $\log \mathrm{N}$-logdg line parallel to the self-thinning line but with a smaller intercept

Quantifying stand density

■ Stand density index (SDI) - Relative stand density measures

- The intercept for a stand can be obtained as

$$
\begin{aligned}
& \ln N=k-1.870 \ln d g \\
& k=\ln N+1.870 \ln d g
\end{aligned}
$$

■ The index is "normalized" by using the $\mathrm{dg}=25$ as a basis for comparison

$$
\ln \mathrm{SDI}=\mathrm{k}-1.870 \quad \ln \quad 25
$$

Quantifying stand density

■ Stand density index (SDI) - Relative stand density measures

The expression for SDI in a particular stand is then obtained:

$$
\begin{gathered}
\log S D I=-1.870 \log 25+k \\
+ \\
k=\ln N+1.870 \ln d g
\end{gathered}
$$

$$
1
$$

$$
\ln S D I=-1.870 \ln 25+\ln N+1.870 \ln d g
$$

$$
1
$$

$$
S D I=N\left(\frac{d g}{25}\right)^{1.870}
$$

Quantifying stand density

- Crown competition factor (CCF) - Relative stand density measures
\rightarrow CCF reflects the relationship between the area available for the average tree of the stand and the maximum area that the tree could use if it was growing in open space (open-grown tree)
\rightarrow The computation of CCF requires the study of the relationship between crown width of an open-grown tree $\left(\mathrm{cw}_{\mathrm{og}}\right)$ and its dbh (d_{og}), usually linear:

$$
c w_{o g}=b_{0}+b_{1} d_{o g}
$$ ocupies the area $\mathrm{ca}_{\mathrm{og}}$:

$$
c a_{o g}=\pi \frac{c w_{o g}^{2}}{4}=\pi \frac{\left(b_{0}+b_{1} d_{o g}\right)^{2}}{4}
$$

\rightarrow CCF is then computed as the sum of the $\mathrm{ca}_{\mathrm{og}}$ values for all the trees in the stand, expressed as a percentage of the plot area:

$$
C C F=\frac{100}{A_{p}} \sum_{i=1}^{N} c a_{o g_{i}}
$$

Quantifying stand density

■ Relative spacing (Rs)
\rightarrow RS is a stand density measure that relates the mean distance between trees with the dominant height
\rightarrow It is based on the assumption that the stand density must decrease as the stand develops (the dominant height increases)

$$
R s=\frac{\text { average distance between trees }}{h d o m}
$$

\rightarrow Assuming that the trees are regularly spaced, the area available per tree is:

Quantifying stand density

- Relative spacing (Rs), Wilson factor (Fw)
\Rightarrow Assuming that the trees are regularly spaced, the area available per tree is:

Area per tree $=\frac{10000}{N} \longrightarrow$ dist $_{\text {mean }}=\sqrt{\frac{10000}{N}}$
\rightarrow The relative spacing can be written in the form usually known as wilson factor

$$
\mathrm{F} w=\frac{\sqrt{1000 / N}}{h d o m}=\frac{100}{h d o m \sqrt{N}}
$$

Quantifying stand density

- Spacing factor (Sf)
$\rightarrow \mathrm{Sf}$ is a stand density measure that relates the average distance between trees to the crown width of the average tree:
$S f=\frac{\text { average distance between trees }}{C W_{\text {mean }}}$
\rightarrow If a regularly spaced stand is assumed, Sf comes as:

$$
S t=\frac{100}{C w_{\text {mean }} \sqrt{N}}
$$

Quantifying stand density

- Crown cover(Cc)
\rightarrow Crown cover (Cc) is a stand density measure that computes the percentage of area covered with crowns :

$$
\mathrm{Cc}=\frac{\sum_{\text {all trees }}^{\sum \text { crown area }}}{\text { Plot area }} 100
$$

Whole stand models for even-aged stands (WSM-eas)

- Site productivity
\rightarrow A system of site index curves is the most common way to express site productivity in WSM-eas
\rightarrow In species in which age is difficult to determine:
- Site index may be assessed with a site prediction equation
- Site productivity may be included in the several sub-models through climatic and soil variables

Whole stand models for even-aged stands (WSM-eas)

- Growth modules

\rightarrow Growth modules refer to principal variables, the ones whose growth is predicted by the model:

- Direct prediction of growth

$$
\begin{aligned}
& i_{x 1-2}=f\left(S, t_{1}, t_{2}, S D_{1}\right) \\
& x_{2}=x_{1}+i_{x 1-2}
\end{aligned}
$$

- Direct prediction of future value
$S D 2=f\left(S, t_{1}, t_{2}, S D_{1}\right)$
$X_{2}=f\left(S, t_{1}, t_{2}, X_{1}, S D_{1}, S D_{2}\right.$, other stand variables)

\rightarrow Notation

- $S=$ site index or site variables (climate and soil)
- $t_{i}=$ stand age at time t_{i}
- $X_{i}=$ principal stand variable X at time t_{i}
- $S D_{i}=$ stand density measure at time t_{i}
- $i_{X 1-2}=$ growth of variable X in the period between t_{1} and t_{2}
- $Y_{i}=$ derived stand variable Y at time t_{i}

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module Growth: hdom $_{2}=f\left(t_{1}, t_{2}\right.$, hdom $_{1}$, Rain $)$

	JM	\checkmark	$\times \checkmark$	$f_{x} \quad=(\$$	\$B\$4+\$B\$5*\$A	48)* ${ }^{\text {(B5 }}$	\$B\$4+	\$5*\$4\$48	$)^{\wedge}((A 54 / A$	A55)^(\$B\$						
4	A	B	c	D	E	F	G	H	1	J	K	L	M	N	-	P
45	Planted Stand															
46																
47	Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature			$\begin{aligned} & \text { Site } \\ & \text { Index } \end{aligned}$	Number of Trees at Planting	Rotation	$\begin{array}{\|c\|} \text { Top } \\ \text { Diameter } \end{array}$					
48	114	550	7.00	650.00	15.50			21.8	1250	0	6.20					
49																
50																
51	Inicialization		Prediction / Growth		Calculus											
52																
53	t	hdom	Nst	N	G	Vu	Vb	Vs	dg	Vdi	Ww	W	Wb	Wbr	Wa	Wr
54	1	2.5	1234	1234	0.6	0.5	0.2	0.0	2.5	0.0	0.2	0.5	0.0	0.2	0.9	0.2
55	2	= $\$$ B $\$ 4+$ \$	1217	1217	2.5	5.7	1.6	0.3	5.1	2.3	2.2	1.6	0.4	1.0	5.2	1.3
56	3	9.4	1201	1201	4.8	16.2	4.1	0.5	7.2	$\frac{11.5}{}$	7.1	2.6	1.1	2.0	12.8	3.2
57	4	12.1	1185	1185	7.1	30.2	7.3	0.9	8.7	$\frac{11.5}{25.0}$	$\frac{14.1}{}$	3.6	2.0	3.0	22.7	5.6
58	5	14.3	1170	1170	9.2	46.2	10.7	1.2	10.0	40.6	$\underline{22.6}$	4.4	3.1	3.9	34.0	8.5
59	6	16.2	1154	1154	11.2	63.3	14.3	1.4	11.1	57.4	31.9	5.1	4.3	4.7	46.1	11.5
60	7	17.9	1139	1139	13.1	80.7	17.8	1.7	12.1	74.5	41.7	5.7	5.5	5.5	58.5	14.6
61	8	19.3	1124	1124	14.8	98.1	21.3	2.0	12.9	91.8	51.8	6.2	6.8	6.2	$\frac{71.1}{}$	17.7
62	9	20.6	1109	1109	16.3	115.3	24.6	2.2	13.7	108.8	61.9	6.6	8.1	6.9	83.5	20.8

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module Growth: $N s t_{2}=f\left(t_{1}, t_{2}, N s t_{1}, N P L\right.$, rotation $)$

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module Growth: $G_{2}=f\left(t_{1}, t_{2}, N s t_{1}, N s t_{2}, G_{2}\right.$, rotation, Rain, altitude)

4 A

5 Planted Stand
46

Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature
47	114	550	7.00	650.00

| Site
 Index | Number
 of Trees
 at
 Planting |
| ---: | ---: | ---: | ---: | Rotation \quad| Top |
| :---: |
| Diameter |

51

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module Growth: $V u_{2}=f\left(t_{1}, t_{2}\right.$, hdom ${ }_{1}$, hdom $\left.{ }_{2}, G_{1}, G_{2}, V u_{1}\right)$

su	M	-	$\times \checkmark$													
4	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P
45	Planted Stand															
46																
47	Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature			Site Index	Number of Trees at Planting	Rotation	Top Diameter					
48	114	550	7.00	650.00	15.50			21.8	1250	0	6.20					
49																
50																
51	Inicialization		Prediction / Growth		Calculus											
52																
53	t	hdom	Nst	N	G	Vu	Vb	Vs	dg	Vdi	Ww	WI	Wb	Wbr	Wa	Wr
54	1	2.5	1234	1234	0.6	0.5	0.2	0.0	2.5	0.0	0.2	0.5	0.0	0.2	0.9	0.2
55	2	6.3	1217	1217	2.5	=F54*($(\mathrm{A}$ d	1.6	0.3	5.1	2.3	2.2	1.6	0.4	1.0	5.2	1.3
56	3	9.4	1201	1201	4.8	16.2	4.1	0.5	$\frac{7.2}{8}$	$\frac{11.5}{}$	$\frac{7.1}{14}$	2.6	1.1	2.0	$\underline{12.8}$	3.2
57	4	12.1	1185	1185	7.1	30.2	7.3	0.9	8.7	25.0	14.1	3.6	2.0	3.0	22.7	5.6
58	5	14.3	1170	1170	9.2	46.2	10.7	1.2	10.0	40.6	$\underline{22.6}$	4.4	3.1	3.9	34.0	8.5
59	6	16.2	1154	1154	11.2	63.3	14.3	1.4	11.1	57.4	31.9	5.1	4.3	4.7	46.1	11.5
60	7	17.9	1139	1139	13.1	80.7	17.8	1.7	$\frac{11.1}{12.1}$	$\frac{74.5}{91.8}$	$\frac{41.7}{51.8}$	5.7	5.5	5.5	$\frac{58.5}{71.1}$	14.6
61	8	19.3	1124	1124	14.8	98.1	21.3	2.0	12.9	91.8	51.8	6.2	6.8	6.2	71.1	17.7

-Whole stand models for even-aged stands (GLOBULUS 3.0)

C. sIMfLOR - Portuguese Forest Simulators

Whole stand models for even-aged stands (WSM-eas)

- Calculus module
\rightarrow Calculus modules refer to derived variables, the ones that are computed from other variables at the same point in time:

Computed variable:
$Y_{2}=f\left(S, t_{2}, S D_{2}\right.$, other stand variables)
\rightarrow Notation

- $S=$ site index or site variables (climate and soil)
- $t_{i}=$ stand age at time t_{i}
- $X_{i}=$ principal stand variable X at time t_{i}
- $S D_{i}=$ stand density measure at time t_{i}
- $i_{X 1-2}=$ growth of variable X in the period between t_{1} and t_{2}
- $Y_{i}=$ derived stand variable Y at time t_{i}

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module calculus: Vdi = (Vu, Vs, dg, Altitude, S, NPL, top_diameter)

	JM	\checkmark	$\times \checkmark$																
4	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
45	Planted Stand																		
46																			
47	Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature			Site Index	Number of Trees at Planting	Rotation	Top Diameter								
48	114	550	7.00	650.00	15.50			21.8	1250	0	6.20								
49																			
50																			
51	Inicialization		Prediction / Growth		Calculus														
52																			
53	t	hdom	Nst	N	G	Vu	Vb	Vs	dg	Vdi	Ww	WI	Wb	Wbr	Wa	Wr			
54	1	2.5	1234	1234	0.6	0.5	0.2	0.0	2.5	0.0	0.2	0.5	0.0	0.2	0.9	0.2			
55	2	6.3	1217	1217	2.5	5.7	1.6	0.3	5.1	2.3	2.2	1.6	0.4	1.0	5.2	1.3			
56	3	9.4	1201	1201	4.8	16.2	4.1	0.5	7.2	$\frac{11.5}{}$	7.1	2.6	1.1	2.0	$\frac{5.2}{12.8}$	3.2			
57	4	12.1	1185	1185	7.1	30.2	7.3	0.9	8.7	25.0	14.1	3.6	2.0	3.0	22.7	5.6			
58	5	14.3	1170	1170	9.2	46.2	10.7	1.2	10.0	40.6	$\underline{22.6}$	4.4	3.1	3.9	34.0	8.5			
59	6	16.2	1154	1154	11.2	63.3	14.3	1.4	11.1	=(F59-H5)	$\frac{31.9}{41.7}$	5.1	4.3	4.7	46.1	$\frac{11.5}{14.6}$			
60	7	17.9	1139	1139	13.1	80.7	17.8	1.7	12.1	74.5	41.7	5.7	5.5	5.5	58.5	14.6			
61	8	19.3	1124	1124	14.8	98.1	21.3	2.0	$\frac{12.9}{13.7}$	91.8	$\frac{51.8}{61.9}$	6.2	6.8	6.2	71.1	17.7			
62	9	20.6	1109	1109	16.3	115.3	24.6	2.2	13.7	108.8	61.9	6.6	8.1	6.9	83.5	20.8			
63	10	21.8	1095	1095	17.8	132.1	27.8	2.4	14.4	125.5	71.9	7.0	9.4	7.5	95.7	23.8			
64	11	22.9	1080	1080	19.1	148.5	30.9	2.6	15.0	141.7	81.7	7.3	10.6	8.1	107.7	26.8			
65	12	23.8	1066	1066	20.4	164.3	33.9	2.8	15.6	157.4	91.3	7.5	11.9	8.6	119.3	29.7			

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module calculus: Vdi = (Vu, Vs, dg, Altitude, S, NPL, top_diameter)

	JM	\checkmark	$\times \checkmark$																
4	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
45	Planted Stand																		
46																			
47	Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature			Site Index	Number of Trees at Planting	Rotation	Top Diameter								
48	114	550	7.00	650.00	15.50			21.8	1250	0	6.20								
49																			
50																			
51	Inicialization		Prediction / Growth		Calculus														
52																			
53	t	hdom	Nst	N	G	Vu	Vb	Vs	dg	Vdi	Ww	WI	Wb	Wbr	Wa	Wr			
54	1	2.5	1234	1234	0.6	0.5	0.2	0.0	2.5	0.0	0.2	0.5	0.0	0.2	0.9	0.2			
55	2	6.3	1217	1217	2.5	5.7	1.6	0.3	5.1	2.3	2.2	1.6	0.4	1.0	5.2	1.3			
56	3	9.4	1201	1201	4.8	16.2	4.1	0.5	7.2	$\frac{11.5}{}$	7.1	2.6	1.1	2.0	$\frac{5.2}{12.8}$	3.2			
57	4	12.1	1185	1185	7.1	30.2	7.3	0.9	8.7	25.0	14.1	3.6	2.0	3.0	22.7	5.6			
58	5	14.3	1170	1170	9.2	46.2	10.7	1.2	10.0	40.6	$\underline{22.6}$	4.4	3.1	3.9	34.0	8.5			
59	6	16.2	1154	1154	11.2	63.3	14.3	1.4	11.1	=(F59-H5)	$\frac{31.9}{41.7}$	5.1	4.3	4.7	46.1	$\frac{11.5}{14.6}$			
60	7	17.9	1139	1139	13.1	80.7	17.8	1.7	12.1	74.5	41.7	5.7	5.5	5.5	58.5	14.6			
61	8	19.3	1124	1124	14.8	98.1	21.3	2.0	$\frac{12.9}{13.7}$	91.8	$\frac{51.8}{61.9}$	6.2	6.8	6.2	71.1	17.7			
62	9	20.6	1109	1109	16.3	115.3	24.6	2.2	13.7	108.8	61.9	6.6	8.1	6.9	83.5	20.8			
63	10	21.8	1095	1095	17.8	132.1	27.8	2.4	14.4	125.5	71.9	7.0	9.4	7.5	95.7	23.8			
64	11	22.9	1080	1080	19.1	148.5	30.9	2.6	15.0	141.7	81.7	7.3	10.6	8.1	107.7	26.8			
65	12	23.8	1066	1066	20.4	164.3	33.9	2.8	15.6	157.4	91.3	7.5	11.9	8.6	119.3	29.7			

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module calculus: Ww = (t, hdom, G, Nst, S, rotation)

	M	-	$\times \checkmark$													
4	A	B	c	D	E	F	G	H	1	J	K	L	M	N	0	P
45	Planted Stand															
46																
47	Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature			Site Index	Number of Trees at Planting	Rotation	Top Diameter					
48	114	550	7.00	650.00	15.50			21.8 \|	1250	,	6.20					
49																
50																
51	Inicialization		Prediction / Growth		Calculus											
5																
53	t	hdom	Nst	N	G	Vu	Vb	Vs	dg	Vdi	Ww	WI	Wb	Wbr	Wa	Wr
54	1	2.5	1234	1234	0.6	0.5	0.2	0.0	2.5	0.0	0.2	0.5	0.0	0.2	0.9	0.2
55	2	6.3	1217	1217	2.5	5.7	1.6	0.3	5.1	2.3	2.2	1.6	0.4	1.0	5.2	1.3
56	3	9.4	1201	1201	4.8	16.2	4.1	0.5	7.2	$\frac{11.5}{}$	7.1	2.6	1.1	$\frac{1.0}{3.0}$	$\underline{12.8}$	$\frac{3.2}{5.6}$
57	4	12.1	1185	1185	7.1	30.2	7.3	0.9	8.7	25.0	$\frac{14.1}{}$	3.6	2.0	3.0	22.7	5.6
58	5	14.3	1170	1170	9.2	46.2	10.7	1.2	10.0	40.6	22.6	4.4	3.1	3.9	34.0	8.5
59	6	16.2	1154	1154	11.2	63.3	14.3	1.4	11.1	57.4	= B\$34*SE	5.1	4.3	$\frac{3.7}{5.5}$	46.1	11.5
60	7	17.9	1139	1139	13.1	80.7	17.8	1.7	$\underline{12.1}$	74.5	41.7	5.7	5.5	$\frac{5.7}{6.5}$	58.5	$\frac{14.6}{17.7}$
61	8	19.3	1124	1124	14.8	98.1	21.3	2.0	12.9	91.8	51.8	6.2	6.8	6.2	71.1	17.7

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module inicialization: hdom $=\mathrm{f}(\mathrm{t}$, Rain, S$)$

SU	m	\checkmark	$\times \checkmark$													
4	A	B	c	D	E	F	G	H	1	」	K	L	M	N	\bigcirc	P
45	Planted Stand															
46																
47	Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature			$\begin{aligned} & \text { Site } \\ & \text { Index } \end{aligned}$	Number of Trees at Planting	Rotation	$\begin{array}{\|c\|} \text { Top } \\ \text { Diameter } \end{array}$					
48	114	550	7.00	650.00	15.50			21.81	1250	0	6.20					
49																
50																
51	Inicialization		Prediction / Growth		Calculus											
52																
53	t	hdom	Nst	N	G	Vu	Vb	Vs	dg	Vdi	Ww	WI	Wb	Wbr	Wa	Wr
54	1	=(\$B\$4+\$	1234	1234	0.6	0.5	0.2	0.0	2.5	0.0	0.2	0.5	0.0	0.2	0.9	0.2
55	2	6.3	1217	1217	2.5	5.7	1.6	0.3	5.1	2.3	2.2	1.6	0.4	1.0	5.2	1.3
56	3	9.4	1201	1201	4.8	16.2	4.1	0.5	7.2	$\frac{11.5}{}$	7.1	2.6	1.1	2.0	12.8	3.2
57	4	12.1	1185	1185	7.1	30.2	7.3	0.9	8.7	25.0	$\frac{14.1}{}$	3.6	2.0	3.0	22.7	5.6
58	5	14.3	1170	1170	9.2	46.2	10.7	1.2	10.0	40.6	22.6	4.4	3.1	3.9	34.0	8.5
59	6	16.2	1154	1154	11.2	63.3	14.3	1.4	11.1	57.4	31.9	5.1	4.3	4.7	46.1	11.5
60	7	17.9	1139	1139	13.1	80.7	17.8	1.7	$\frac{11.1}{12.1}$	74.5	$\frac{31.7}{51.8}$	5.7	5.5	5.5	$\frac{58.5}{71.1}$	14.6
61	8	19.3	1124	1124	14.8	98.1	21.3	2.0	12.9	91.8	51.8	6.2	6.8	6.2	71.1	17.7

-Whole stand models for even-aged stands (GLOBULUS 3.0)

- Module inicialization: $G=f(t$, Nst, Rain, Altitude, S, NPL, rotation)

	um	$\checkmark \quad \vdots$	$\times \quad$	$\begin{aligned} & =\left(\$ \mathrm{~B} \$ 15+\$ \mathrm{~B} \$ 16^{*} \$ \mathrm{~A} \$ 48\right)^{*} \mathrm{EXP}\left(-\left(\$ \mathrm{H} \$ 15+\$ \mathrm{H} \$ 16^{*} \$ \mathrm{H} \$ 48+\$ \mathrm{H} \$ 17^{*} 100 /\left(\$ \mathrm{H} \$ 48^{*} \mathrm{SQRT}(\$ 1 \$ 48)\right)+\$ \mathrm{H} \$ 18^{*} \$ \mathrm{~J} \$ 48\right)^{*}(1 / \mathrm{A} 54)^{\wedge}(\$ \mathrm{E} \$ 15+\$ \mathrm{E} \$ 16 /(1-(\$)\right. \\ & \mathrm{C} 4 / 1000)) \end{aligned}$												
4	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P
45	Planted Stand															
46																
47	Number of Days with Rain	Altitude	Number of Days with Frost	Rain	Mean Temperature			Site Index	Number of Trees at Planting	Rotation	Top Diameter					
48	114	550	7.00	650.00	15.50			21.8	1250	0	6.20					
49																
50																
51	Inicialization		Prediction / Growth		Calculus											
52																
53	t	hdom	Nst	N	G	Vu	Vb	Vs	dg	Vdi	Ww	WI	Wb	Wbr	Wa	Wr
54	1	2.5	1234	1234	=(\$B\$15+\$B\$	0.5	0.2	0.0	2.5	0.0	0.2	0.5	0.0	0.2	0.9	0.2
55	2	6.3	1217	1217	2.5	5.7	1.6	0.3	5.1	2.3	2.2	1.6	0.4	1.0	5.2	1.3
56	3	9.4	1201	1201	4.8	16.2	4.1	0.5	7.2	11.5	7.1	2.6	1.1	2.0	$\frac{5.2}{12.8}$	3.2
57	4	12.1	1185	1185	7.1	30.2	7.3	0.9	8.7	25.0	$\underline{14.1}$	3.6	$\underline{2.0}$	3.0	22.7	5.6
58	5	14.3	1170	1170	9.2	46.2	10.7	1.2	$\frac{10.0}{11.1}$	40.6	$\frac{14.1}{22.6}$	4.4	3.1	3.9	34.0	8.5
59	6	16.2	1154	1154	11.2	63.3	14.3	1.4	$\underline{11.1}$	57.4	$\frac{31.9}{41.7}$	5.1	4.3	4.7	46.1	11.5
60	7	17.9	1139	1139	13.1	80.7	17.8	1.7	$\underline{12.1}$	74.5	41.7	5.7	5.5	$\frac{5.7}{6.2}$	58.5	14.6
61	8	19.3	1124	1124	14.8	98.1	21.3	2.0	12.9	91.8	51.8	6.2	6.8	6.2	71.1	17.7
62	9	20.6	1109	1109	16.3	115.3	24.6	2.2	13.7	108.8	61.9	6.6	8.1	6.9	83.5	20.8
63	10	21.8	1095	1095	17.8	132.1	27.8	2.4	14.4	125.5	71.9	7.0	9.4	7.5	95.7	23.8
64	11	22.9	1080	1080	19.1	148.5	30.9	2.6	15.0	141.7	81.7	7.3	10.6	8.1	107.7	26.8
65	12	23.8	1066	1066	20.4	164.3	33.9	2.8	1.56	1.574	91.3	75	11.9	86	119.3	297

Whole stand models for even-aged stands (WSM-eas)

■ Stand response to silvicultural treatments
\rightarrow Including stand response to silvicultural treatments into the forest models is crucial for the selection of the most efficient management
\Rightarrow In spite of this importance, there is no established theory and the study of such models is usually made through examples
\rightarrow Some examples from Burkhart and Tomé (2012) are presented here as an illustration

Whole stand models for even-aged stands (WSM-eas)

- Stand response to thinning
\rightarrow Pienaar and Shiver (1986)

$$
\ln G=b_{0}+b_{1} \frac{1}{t}+b_{2} \ln N+b_{3} \ln h_{d o m}+b_{4} \frac{\ln N}{t}+b_{5} \frac{\ln h_{d o m}}{t}+b_{6} \frac{N_{t} t_{t}}{N_{\text {at }} t}
$$

- $\mathrm{t}_{\mathrm{t}}=$ plantation age at last thinning
- $N=$ present number of trees per unit area
- $N_{t}=$ number of trees removed in last thinning
- $\mathrm{N}_{\mathrm{at}}=$ number of trees remaining after last thinning
- G = basal area per unit area
- $\mathrm{t}=$ plantation age
- hdom = dominant height

Whole stand models for even-aged stands (WSM-eas)

- Stand response to thinning
\rightarrow Pienaar and Shiver (1986)
- The term $\left(N_{t} t_{t} / N_{a t} t\right)$ modifies the basal area of unthinned plantations of given age, stems per unit area, and average dominant height to predict the basal area for comparable thinned plantations
- In the non-logarithmic form of the prediction equation, it is a multiplicative modifier theoretically between 0 and 1
- For any given age, t, the earlier a thinning of given intensity ($N_{t} / N_{a t}$) occurs, the larger (closer to 1) the modifier will be
- If thinnings of different intensities occur the same time ago, so that $\left(t_{t} / t\right)$ and $N_{a t}$ are the same, then the modifier will be larger for the less intensive thinning.

Whole stand models for even-aged stands (WSM-eas)

- Stand response to thinning
\rightarrow Pienaar and Shiver (1986)
- A basal area projection equation was derived from the prediction equation

$$
\begin{aligned}
\ln G_{2} & =\ln G_{1}+b_{1}\left(\frac{1}{t_{2}}-\frac{1}{t_{1}}\right)+b_{2}\left(t_{2}-t_{1}\right)+b_{3}\left(1-\frac{t_{1}}{t_{2}}\right)+b_{4}\left(\frac{1}{t_{2}^{2}}-\frac{1}{t_{1} t_{2}}\right) \\
& +b_{5} \ln N_{1}\left(\frac{1}{t_{2}}-\frac{1}{t_{1}}\right)+b_{6} \ln h_{\text {dom } 1}\left(\frac{1}{t_{2}}-\frac{1}{t_{1}}\right)+b_{7}\left(\frac{N_{t} t_{t}}{N_{a t} t_{2}}-\frac{N_{t} t_{t}}{N_{a t} t_{1}}\right)
\end{aligned}
$$

Whole stand models
with
diameter distributions

Diameter distribution models

- The idea behind diameter distribution models is:
\rightarrow To start by simulating the growth of some variables (principal variables):
- dominant height
- number of trees per ha
- stand basal area estimation
- some variables characterizing the diameter distribution such as the minimum diameter, some percentile of the diameter distribution or the variance of diameters (depending on the pdf used for diameter distribution)

Diameter distribution models

■ The idea behind diameter distribution models is:
\rightarrow to estimate the distribution of trees by diameter classes (diameter distribution)
\Rightarrow Usually the simulation of diameter distribution implies the need to predict other variables, namely minimum diameter and some percentile in the upper part of the distribution
\rightarrow to estimate stand volume (total and merchantable) from the diameter distribution, by using tree volume equations

Diameter distribution models

- Diameter distributions of a permanent plot over time

Diameter distribution models

- Diameter distribution in relative frequencies
\rightarrow The diameter distributions may be expressed in terms of relative frequencies by expressing the frequency each diameter class (N_{i}) relative to the total number of trees per ha (N)
- Diameter distribution in cumulative relative frequencies
\rightarrow The cumulative relative frequency of a diameter distribution leads to the empirical distribution function

Modelling diameter distributions

- A typical diameter distribution for pure, even-aged stands is unimodal and slightly skewed

■ Skewness coefficient $\left(\beta_{1}\right)$ is used to measure the symmetry of a distribution

> symmetric $\beta_{1}=0$
assymetric (positive)
$\mathrm{B}_{1}>0$

assymetric (negative)
$\mathrm{B}_{1}<0$

Modelling diameter distributions

■ Diameter distributions for pure, even-aged stands can also be more or less flat
\square Kurtosis coefficient $\left(\beta_{2}\right)$ is used to measure flatness or peakdness of a distribution
normal
$\mathrm{B}_{2}=\mathbf{3}$

flat
$\mathrm{B}_{2}<3$

peaked
$\mathrm{B}_{2}>3$

Modelling diameter distributions

■ Diameter distributions can be modelled by a variety of mathematical functions from the probability density functions (pdfs) type

- Probability density functions express the relative likelihood for a random variable to take on a given value

■ The probability density function is non-negative everywhere, and its integral over the entire space is equal to one

- The probability that the random variable takes a value $<x$ is equal to the integral of the pdf from the start to x

Probability density functions (pdfs)

- A pdf is described by a mathematical expression that contains parameters
- The values of the parameters give a different shape to the pdf

■ For instance, a Normal distribution, the most well know pdf, has the following expression

$$
f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

that includes two parameters, the mean (μ) and the standard deviation (σ), and is designated by $N(\mu, \sigma)$

Probability density functions (pdfs)

- Integrating the pdf produces the cumulative distribution function that, for the Normal distribution is

$$
F(x ; \mu, \sigma)=\operatorname{Prob}(X<=x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
$$

■ The Normal distribution is not appropriate to model diameter distributions because of its symmetry

Probability density functions (pdfs)

- The normal distribution is symmetric around the mean (μ)

Probability density functions (pdfs)

- Other pdfs, that can take different values for the pair (β_{1}, β_{2}), have been used for diameter distribution modelling
$\left(\beta_{1}, \beta_{2}\right)$ values for the pdfs most used for diameter distribution modeling and for a set of eucalyptus permanent plots

Estimators for β_{1} and β_{2} :

$$
\begin{aligned}
& \sqrt{b_{1}}=\sqrt{n} \frac{m_{3}}{m_{2}^{3 / 2}} \\
& b_{2}=n \frac{m_{4}}{m_{2}^{2}} \\
& m_{j}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{j}}{n}, \quad j=2,3,4 \\
& n \text {-number of observations }
\end{aligned}
$$

Weibull pdf

■ The Weibull, one of the most used pdfs in diameter distribution modelling, is a three-parameter pdf

$$
\begin{aligned}
f(x) & =\frac{c}{b}\left(\frac{x-a}{b}\right)^{c-1} \exp \left[-\left(\frac{x-a}{b}\right)^{c}\right] \quad(a<=x<\infty) \\
& =0 \text { otherwise }
\end{aligned}
$$

a - location parameter (related to the $\mathrm{d}_{\text {min }}$)
b-scale parameter (>0)
c - shape parameter (>0; if c>1 implies a inverse J shape; if $c=3.6$ is close to Normal; $c<3.6$ is right skewed; if c>3.6 is left skewed)
$a+b$ is close to percentile $63 \%\left(P_{63}\right)$ of the distribution

Weibull pdf

- Integrating the pdf produces the cumulative distribution function for the Weibull distribution

$$
\begin{aligned}
F(x) & =1-\exp \left[-\left(\frac{x-a}{b}\right)^{c}\right] \quad(a<=x<\infty) \\
& =0 \text { otherwise }
\end{aligned}
$$

- The Weibull distribution has the advantage of having a closed integral form which makes it very tractable

Weibull distribution - examples

The Johnson's SB system of pdfs

■ The system of random variables generated by

$$
\begin{aligned}
& Z=\gamma+\delta \ln \left(\frac{X-\varepsilon}{\varepsilon+\lambda-X}\right) \\
& \varepsilon<X<\varepsilon+\lambda \\
& -\infty<\gamma<\infty \\
& -\infty<\varepsilon<\infty \\
& \lambda>0
\end{aligned}
$$

is called the Johnson's SB system of distributions

■ It is very flexible and can take several shapes

Johnson's SB system - examples

Diameter distributions

To characterize a plot:

1. Total enumeration

Tree Number	DBH (cm)	g $(\mathrm{m} 2)$
1	25.4	0.05067
2	25.4	0.05067
3	26.4	0.05474
4	25.2	0.04988
5	24.1	0.04562
6	21.5	0.03631
7	21.1	0.03497
8	22.1	0.03836
9	19.6	0.03017
10	18.2	0.02602
11	17.1	0.02297
12	14.5	0.01651
13	14.6	0.01674
14	23.5	0.04337
15	24.1	0.04562
16	30.6	0.07354
17	26.0	0.05309
18	23.2	0.04227
19	22.7	0.04047
20	22.7	0.04047
21	25.7	0.05187
22	24.2	0.046
23	11.1	0.00968
	$\mathrm{~g}=$	0.92
$\mathrm{G}=$	18.39999	

Diameter distributions

Diameter distributions

Diameter distributions

\checkmark How are volume and biomass calculated?
\checkmark Stand volume is estimated from the simulated diameter distribution using a methodology similar to the one used in stand table projection

dcentral	N	h	v	V	
(cm)	(ha^{-1})	(m)	(árvore)	$\left(m^{3} h^{-1}\right)$	
5.0	120	1.4	0.003848	0.5	
10.0	539	4.6	0.021739	11.7	$=(0.021739) 539$
15.0	214	6.8	0.060050	12.8	
20.0	5	8.4	0.119334	0.6	
25.0	0	0.0	0.000000	0.0	
30.0	0	0.0	0.000000	0.0	
35.0	0	0.0	0.000000	0.0	
	878			25.6	

Diameter distributions

\checkmark How are volume and biomass calculated?
\checkmark Stand volume is estimated from the simulated diameter distribution using a methodology similar to the one used in stand table projection
\checkmark Predicting the height and volume of the average tree of each d class, it is possible to estimate volume per d class by multiplying tree volume by the number of trees per ha
\checkmark Stand volume is estimated by summing up these values

Diameter distributions

PBRAVO

\checkmark Estimate accumulated probabilities of trees to occur below each dbh class using the Weibull parameters $a=2.6, b=9.0, c=3.2$ and the stand density of 878

classe d	dcentral (cm)	dsup (cm)	$\begin{gathered} \text { Weibull } \\ P(d<=d \text { sup }) \end{gathered}$	
[2.5, 7.5]	5	7.5	0.137	$F(12.5)$
]7.5, 12.5]	10	12.5	$0.751 \rightarrow$	$F(12.5)=1-\mathrm{e}$
]12.5, 17.5]	15	17.5	0.994	
]17.5, 22.5]	20	22.5	1.000	
]22.5, 27.5]	25	27.5	1.000	Weibull function to estimates the
]27.5, 32.5]	30	32.5	1.000	accumulated frequency of trees per
]32.5, 37.5]	35	37.5	1.000	

Diameter distributions

\checkmark Multiplying the accumulated probabilities by N and making the differences between consecutive d classes one obtains the diameter distribution and the respective G

dcentral (cm)	Weibull $P(d<=$ dsup $)$
--	0.137
10	0.751
15	0.994
20	1.000
25	1.000
30	1.000
35	1.000

Nacum (ha ${ }^{-1}$)	$\begin{gathered} \mathrm{N} \\ \left(h a^{-1}\right) \end{gathered}$	$\begin{gathered} G \\ \left(m^{2} h a^{-1}\right) \end{gathered}$
120	120	0.2
659	539	4.2
873	214	3.8
878	5	0.2
878	0	0.0
878	0	0.0
878	0	0.0
Stand	878	8.4

Diameter distributions

PBRAVO

\checkmark Predicting the height and volume of the average tree of each d class, we estimate volume per d class by multiplying tree volume by the number of trees per ha.

dcentral (cm)	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{ha}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$	V (árvore)	$\begin{gathered} \mathrm{V} \\ \left(m^{3} h a^{-1}\right) \end{gathered}$	
5.0	120	1.4	0.003848	0.5	
10.0	539	4.6	0.021739	11.7	$\rightarrow=(0.021739) 539$
15.0	214	6.8	0.060050	12.8	Stand volume is estimated by summing up these values
20.0	5	8.4	0.119334	0.6	
25.0	0	0.0	0.000000	0.0	
30.0	0	0.0	0.000000	0.0	
35.0	0	0.0	0.000000	0.0	
	878			25.6	

PBRAVO Model

1）Copy the folder PBRAVO from the memory stick
2）Go to PBRAVOXPBRAVO－FPFP
3）Click on the setup（NOT on the SETUP1）
4）After installing the setup，click on the Pbravo application

（ $0^{\text {pb}} 1$	06／07／2001 00：33	JPG File
4 Pbravo	16／07／2001 18：26	Cabinet File
4 Pbravo	16／07／2001 19：25	Application
4 Pbravo	29／06／2001 00：27	Icon
退 setup	25／03／1999 23：00	Application
蠋 SETUP	17／07／2001 00：27	SAS Output
糮 SETUP1	26／03／1999 00：00	Application

Read the PBRAVO＿Model．pdf Class Materials \PowerPoints

(4) Pbravo-vs 2.0

Opções do Modelo Simulação Ajuda Sair

PBRAVO Model

The model can run for:

- stands that have hdom measured-> fill hdom value
- stands with no hdom measured -> fill site index class
- unthinned stands - young stands (projections are not so good for unthinned old stands)
- For young stands, the user has to provide either the number of standing trees ($\mathrm{ha}{ }^{-1}$) or the number of trees planted (ha^{-1}). In the latest case a mortality model is applied to express the death of trees due to competition in early stages of stand development
- The model runs in 5-year time-steps, stopping at each step allowing to (re-)define the management for the next 5years period

PBRAVO Model

- For older stands (already thinned), the user has to provide:

The number of trees by diameter class

The dbh class value represents the midpoint of the diameter class

The stand variables to calculate the Weibull parameters (a, b, c)

If the stand has trees with dbh greater than 67.5 cm these should be grouped under the 65 class

Class 5 includes not only the trees with dbh

Whole stand models

- GLOBULUS 3.0
- MODISPINASTER
- PBRAVO
- Other at your choice (in the literature)
\square Possible topics for the assignments:
\checkmark Choose a model
\checkmark Describe its state and control variables
\checkmark Describe its modules and how silvicultural treatments are taken in to account
\checkmark Make a simulation run with the models and present the results
- Bibliographic review on how:
- silvicultural tretments are covered in growth models
\checkmark Thinnings
\checkmark Fertilizations
\checkmark...

