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Abstract 

Effective model evaluation is not a single, simple procedure, but comprises several interrelated steps that cannot be 
separated from each other or from the purpose and process of model construction. We draw attention to several 
statistical and graphical procedures that may assist in model calibration and evaluation, with special emphasis on 
those useful in forest growth modelling. We propose a five-step framework to examine logic and bio-logic, statistical 
properties, characteristics of errors, residuals, and sensitivity analyses. Empirical evaluations may be made with data 
used in fitting the model, and with additional data not previously used. We emphasize that the validity of conclusions 
drawn from all these assessments depends on the validity of assumptions underlying both the model and the 
evaluation. These principles should be kept in mind throughout model construction and evaluation. © 1997 Elsevier 
Science B.V. 
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1. Introduction 

Model evaluation is an important part of  model 
building, and some examination of  the model 
should be made at every stage of  model design, 
fitting and implementation. A thorough evalua- 
tion of  a model involves several steps, including 
two which are often called verification and valida- 
tion. 
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In forest growth modelling, verification and 
validation usually denote qualitative and quanti- 
tative tests of  the model, respectively. However, 
there are some objections to these terms (e.g. 
Oreskes et al., 1994): 
1. They are value-loaded, and it is preferable to 

use neutral language to assess model perfor- 
mance. 

2. The same terms are used in other branches of  
mathematics and logic to denote other mean- 
ings: a model is valid if the logic is correct, and 
verified if it is 'true'. 
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3. Verity implies truth, but it is impossible to 
prove a model 'true' (except in the special case 
of a closed system). The only truth that can be 
established in a growth model is (e.g. in the 
context of Goulding (1979)) that the model is a 
faithful representation of what the modeller 
intended. Similarly, the only sense of validity 
that can be demonstrated for an empirical 
model is the 'reasonableness' of the statistical 
assumptions. 

Thus it is appropriate to avoid the terms verifi- 
cation and validation, and to use alternatives. We 
use the term model evaluation to encompass both 
these aspects. Thorough model evaluation com- 
prises several steps, each of which may involve 
qualitative and quantitative aspects. Some steps 
involve examination of the structure and proper- 
ties of a model, with or without supplementary 
data, to confirm that it has no internal inconsis- 
tencies and is biologically realistic. Others require 
comparisons with additional data to quantify the 
performance of the model, and have become 
known in some forestry literature as benchmark- 
ing (cf. surveyor's reference mark). Ideally, bench- 
mark tests should involve data which are in some 
sense unlike the data used to fit the model, but 
useful insights can also be obtained with the 
calibration data. 

These tests cannot prove a model to be 'cor- 
rect', but may be used in attempts to falsify 
inferences made from the model. The quality of a 
model can only be evaluated in relative terms, and 
its predictive ability always remains open to ques- 
tion. However, the failure of several attempts to 
falsify a model should increase its credibility and 
build user confidence. This is the role of model 
evaluation. Thus, model evaluation should be an 
on-going procedure which commences during 
model design and continues throughout model 
construction and for as long as the model remains 
in use. 

Soares et al. (1995) and Vanclay (1994) recently 
reviewed ways to evaluate forest growth models. 
Here, we give a brief overview of the framework 
they suggest, and offer some new insights. We 
stress that model evaluation should not be a mere 
mechanical procedure to examine a model's tech- 
nical credentials, but should also involve philo- 

sophical considerations by modellers and model 
users. 

2. Procedures  for eva luat ing  growth  mode l s  

Model evaluation should try to reveal any er- 
rors and deficiencies in the model, in part, by 
establishing (Vanclay, 1994): 
- whether the equations used adequately repre- 

sent the processes involved; 
- if the equations have been combined correctly 

in the model; 
- whether the numerical constants obtained in 

fitting the model are the 'best' estimates; 
- whether the model provides realistic predic- 

tions throughout the likely range of applica- 
tion; 

- if the model satisfies specified accuracy require- 
ments; 

- how sensitive model predictions are to errors in 
estimated coefficients and input variables. 
An evaluation requires more than a decision 

regarding the acceptability of a model for a 
defined use. It should provide as much informa- 
tion as possible about the model's behaviour and 
predictive ability, to allow users to decide if it is 
adequate for their intended uses. It should also 
reveal where future data collection and model 
revision efforts may be most useful. 

Evaluation should not be a mere afterthought 
to model construction, but should be considered 
at every stage of model design and construction, 
when component functions are formulated and 
fitted to data, and when these components are 
assembled to provide the completed model. Here 
we deal primarily with regression techniques, but 
recognise that other approaches may also be used 
in modelling. Model evaluation includes both the- 
oretical and empirical issues, and is dealt with in 
standard texts on applied regression analysis (e.g. 
Gilchrist, 1984; Ratkowsky, 1990). Key aspects 
may be grouped under several interrelated head- 
ings (with some selected examples): 
1. Examine the model and its components in 

terms of logic structure and from theoretical 
and biological views (e.g. Hamilton, 1990; 
Oderwald and Hans, 1993; Siev/inen and Burk, 
1993; Zhang et al., 1993) to see if they are: 



J.K. Vanclay, J.P. Skovsgaard / Ecological Modelling 98 (1997) 1-12 3 

o parsimonious; 
o biologically realistic; 
o consistent with existing theories of forest 

growth; 
o predict sensible responses to management 

actions. 
2. Ascertain the statistical properties of the model 

in relation to data (e.g. Bates and Watts, 1988; 
Ratkowsky, 1983; Seber and Wild, 1989), in- 
cluding: 
o nature of the error term (i.e. additive or 

multiplicative, independence, etc.); 
o estimation properties of parameters in model 

functions. 
3. Characterize errors (e.g. Power, 1993; Reynolds, 

1984; Reynolds and Chung, 1986) in terms of: 
o accuracy; 
o nature of residuals (distribution, dependen- 

cies on initial stand conditions and length of 
projection); 

o confidence intervals and critical errors; 
o contributions by each model component to 

total error. 
4. Test, using statistical approaches (e.g. 

D'Agostino and Stephens, 1986; Gregoire and 
Reynolds, 1988; Mayer and Butler, 1993; Power, 
1993; Reynolds et al., 1988) for: 
o bias and precision of the model and its 

components; 
o goodness-of-fit of predicted size distribu- 

tions; 
o patterns in, and distribution of residuals; 
o correlations over time and between compo- 

nents. 
5. Conduct sensitivity analyses to determine (e.g. 

Botkin, 1993; Gertner, 1987; J~rgensen, 1986; 
Mowrer, 1991; Van Henten and Van Straten, 
1991): 
o how model components influence predic- 

tions; 
o how inputs to the model influence predic- 

tions; 
o how errors propagate through the model. 

These analyses need not be sequential, but all 
relevant aspects should be examined in each 
model component and in the assembled model. 
Each of these steps could involve both graphical 
analyses as well as statistical indices. 

2.1. Logical and biological consistency 

Each model component and the model as a 
whole should be logically consistent and biologi- 
cally realistic. Many model properties can be ex- 
amined for consistency, e.g. (after Oderwald and 
Hans, 1993): 
1. Do variables included in, and omitted from the 

model agree with expectations? 
2. Do the sign and magnitude of coefficients 

agree with expectations? 
3. Are extrapolations outside the range of the 

development data reasonable? 
4. Are transformations of model predictions rea- 

sonable (e.g. do model forecasts of future di- 
ameters also provide reasonable estimates of 
diameter increments, future volumes, mean in- 
crement curves, etc.)? 

5. Are any contradictions present within the 
model? 

6. Do derivatives, limits, maxima, minima, in- 
flections, etc. agree with expectations? 

Although these questions seem appropriate, in 
some respects they avoid the real issue, namely, 
what constitutes a 'reasonable expectation'. 
Clearly, these questions introduce a subjective 
element, and reflect our previous observation that 
model quality can only be evaluated in relative 
terms. Fortunately, these decisions are not with- 
out precedent, and most models can be contrasted 
with empirical studies. 

Matrix plots of simulated stand development 
trajectories showing a range of property-time and 
property-property relationships (Leary, 1988, 
1997) may offer useful insights into model be- 
haviour, and may provide an efficient way to 
reveal discrepancies in model predictions. Care is 
required in resolving an apparent discrepancy be- 
tween model predictions and expectation: it may 
be the expectations, and not the model, that is 
wrong! 

Parameter estimates and model forecasts should 
agree with both empirical data and current under- 
standing of growth processes. Experienced 
foresters and other experts may indicate areas 
where model predictions are deficient. Several re- 
searchers have advocated formalizing this proce- 
dure as a Turing test in which experts are asked to 
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discriminate between simulated and real world 
data, but this does not provide a good basis for 
comparison. If the real and simulated data are 
sufficiently alike to offer a realistic test, they 
should be amenable to statistical testing which 
avoids potential difficulties with personal bias. 
Conversely, if the data are unsuited to statistical 
testing, it is likely that they will contain certain 
identifiable features which may make the distinc- 
tion easy. 

Simulations at extremes of stand condition may 
be particularly revealing. Such simulations may 
encompass not only the upper and lower limits of 
site quality and stand density represented in the 
data, but also alternative stand structures (e.g. 
even- vs. uneven-aged, pure vs. mixed, thinned vs. 
unthinned, pruned vs. unpruned, etc.). 

Optimization studies may provide a discrimi- 
nating test of a model, since optimizers seem 
remarkably efficient at exploiting seemingly minor 
quirks in models to arrive at unrealistic solutions 
(e.g. Monserud, 1989). Thus, optimization studies 
coupled with expert insights may provide a good 
basis for model evaluation. However, a model 
should not be rejected simply because it behaves 
in a counter-intuitive fashion; it may be our pre- 
conceptions that are wrong. Thus, discrepancies 
should cause a critical reappraisal of the model, 
the data, and of preconceptions. 

2.2. Statistical properties 

With linear regression models, Y = Xb + e, it is 
usually assumed that the random errors ei are 
additive, independent and identically normally 
distributed with zero mean and constant, but 
unknown variance (e~,~N(O, tr2)). Departures 
from these assumptions may result in parameter 
estimates with undesirable statistical properties. 
Several transformations and weighting techniques 
may be used where data do not satisfy these 
assumptions, but some problems may remain (e.g. 
multiplicative errors in models with additive terms 
that preclude logarithmic transformations). 

In forestry applications, several measurements 
are often taken from each sampling unit (e.g. 
measurements on a single tree, trees on a plot, or 
re-measures of a plot). These repeated measure- 

ments are not statistically independent, and ordi- 
nary least squares techniques may underestimate 
the variance of parameters, leading to the accep- 
tance of more complex models than would other- 
wise be indicated. Several suggestions have been 
given to deal with this problem of longitudinal 
data (see for example West (1995) and Gregoire et 
al. (1995)). 

Parameter estimates of non-linear growth mod- 
els may not possess the same desirable statistical 
properties as their linear counterparts (i.e. unbi- 
ased, normally-distributed, minimum variance es- 
timators). However, non-linear models which are 
'close-to-linear' approach these properties asymp- 
totically, and many models may be reparameter- 
ized so that they behave in a close-to-linear 
fashion (Ratkowsky, 1983, 1990). 

In the standard regression model, the explana- 
tory variables are assumed to be free of error. 
This assumption is rarely tenable in forest growth 
models, where there is joint variation in the vari- 
ates, and this means that derived relationships 
could be grossly in error. It is possible to correct 
for this (e.g. Seber and Wild, 1989; Weisberg, 
1985), but the procedures may be tedious. Failure 
to account for the nature of the response variable 
will lead to inflated estimates of variance, but the 
effect can be minimized by ensuring a large range 
of each explanatory variable relative to its error. 

Most forest growth models are constructed 
from several equations independently fitted to 
data. Simultaneous estimation of all model com- 
ponents minimizes overall model errors and pro- 
vides a variance-covariance matrix for the model 
as a whole (e.g. Gallant, 1987; Seber and Wild, 
1989), but few forest growth models have been 
constructed in this way (e.g. Furnival and Wilson, 
1971; Garcia, 1984; Leary, 1970). 

The standard regression assumptions are ideals 
that real situations (models and data in conjunc- 
tion) may approach without ever exactly attain- 
ing. Fortunately, least-squares techniques tend to 
be relatively robust in practice (at least for 
parameter estimation, if not for assessing preci- 
sion). Irrespective of this, evaluation of a model, 
before and after fitting to data, should include the 
appraisal of the statistical properties of the model 
and the data. 



J.K. Vanclay, J.P. Skovsgaard / Ecological Modelling 98 (1997) 1-12 5 

2.3. Characterizing model error 

One of the most efficient ways to examine model 
performance is to plot residuals or standardized 
residuals for all possible combinations of tree and 
stand variables to detect possible autocorrelation 
and other dependencies. Such plots may be inter- 
preted visually, but formal tests are also available 
(e.g. Draper and Smith, 1981; Weisberg, 1985). 

Two simple criteria, in conjunction, provide a 
summary of the overall model performance: aver- 
age model bias (Y.(yl- fii)/N) and mean absolute 
difference (Y IY i -  P,I/N) (e.g. Burk, 1986). Average 
model bias measures the expected error when 
several observations are to be combined by to- 
tailing or averaging, and mean absolute difference 
measures the average error associated with a single 
prediction. Error dependencies on projection 
length or initial forest condition can be shown 
graphically. Regression analysis and principal 
component analysis may help to detect possible 
dependencies. These techniques apply equally 
when checking the model against data used for 
model calibration, and when testing the model with 
additional data. 

The error structure and the contribution of each 
model component to total error may be more 
revealing than a mere evaluation of total model 
performance. Thus, a map of variance components 
of the model may help to identify weaknesses and 
define priorities for future research (e.g. Hann, 
1980; Gertner et al., 1995). 

2.4. Statistical tests 

Many statistical tests of model performance 
have been suggested, but no single criterion can 
incorporate all aspects of model evaluation, and it 
is desirable to use several simple tests to examine 
different facets of model behaviour. 

One simple but efficient technique is based on 
linear regression of observed vs. predicted data. 
Some useful insights into the quality of predic- 
tions may be given by R 2 and the slope and 
intercept of the fitted line, and a good test for bias 
is the simultaneous F-test for slope = 1 and inter- 
cept= 0 (e.g. Dent and Blackie, 1979; Mayer and 
Butler, 1993; Mayer et al., 1994). 

Another useful technique is to compare predic- 
tions directly with observed data using a statistic 
analogous to R 2, and sometimes called modelling 
efficiency: 

2(y i - -  ~i) 2 
E F =  1 

ECv,- ) 2 

This statistic provides a simple index of perfor- 
mance on a relative scale, where 1 indicates a 
'perfect' fit, 0 reveals that the model is no better 
than a simple average, and negative values indi- 
cate a poor model indeed. 

In addition to overall appraisals, it is desirable 
to partition data (e.g., by age, site index or stand 
density), and examine model performance in each 
of several strata (e.g. Mayer and Butler, 1993). 
The most revealing insights may be obtained by 
devising strata based on a knowledge of the bio- 
logical system, as well as model and data charac- 
teristics. However, the absence of inadequacies in 
any particular stratification does not imply that 
weaknesses will not be found in an alternative 
stratification. Nor does consistency with empirical 
data confirm the quality of a model, since several 
alternative model formulations may have equal 
merit (e.g. Kincaid, 1996). 

2.5. Sensitivity analyses 

A sensitivity analysis should reveal how model 
predictions depend upon inputs, parameters, rela- 
tionships and submodels. Commonly, sensitivity 
analyses focus on parameters which, when per- 
turbed, cause the greatest fluctuations in model 
predictions. These studies may reveal model com- 
ponents with low and high sensitivity, both of 
which are of interest. Insensitive components may 
contribute little towards model predictions and 
could be targets for omission from the model 
during model revisions. Conversely, it is useful to 
know about model components with high sensitiv- 
ity, because these may have the greatest impact on 
model predictions. All model parameters and in- 
puts should be estimated accurately, but particu- 
lar care is required with the most sensitive 
variables. 
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In theory, the sensitivity of model parameters 
can be examined analytically (e.g. by taking 
derivatives), but in practice this may be compli- 
cated by the interaction of various model compo- 
nents and feedback loops. Thus sensitivity 
analyses are often carried out as simulation stud- 
ies in which the parameters or components are 
changed to observe corresponding effect on pre- 
dicted outputs. In practice, meaningful sensitivity 
studies are difficult, as the estimate of sensitivity 
depends both on the values of the inputs and the 
model parameters, so that many simulations may 
be necessary to complete the picture. This may be 
a tedious undertaking, especially where there are 
many parameters. Results of sensitivity tests may 
reveal parameters critical to model predictions, 
and parameters which may be redundant. Knowl- 
edge of sensitive parameters may guide applica- 
tions (especially extrapolations) and the planning 
of model enhancements. 

t 

The implications of functional relationships and 
submodels should also be examined. The decision 
to use a particular relationship (e.g., in process 
models, the decision to use the Michaelis-Menten 
rather than the exponential equation) may have 
an influence on model outcomes, and the implica- 
tions of such decisions for model predictions 
should be examined. 

Similarly, it is important that users have a 
knowledge of the model's sensitivity to inputs. 
Studies of error propagation (Gertner, 1987; 
Mowrer, 1991) may reveal model limitations, and 
are particularly useful in offering insights into the 
interaction of errors in the input data and in the 
simulation, but can only be used when the model 
under consideration is completely defined by a set 
of empirical equations. 

One application of stochastic simulation studies 
is to investigate the 'quality' of predictions. Vari- 
ance approximation provides an efficient alterna- 
tive to such studies, and enables the variance of 
predictions to be estimated deterministically. It 
also enables the variance of the input data to be 
incorporated into the analysis. Mowrer and 
Frayer (1986) and Gertner (1987) used a simple 
first-order Taylor series to estimate the errors 
propagated through growth and yield projections. 

3. Empirical data for model evaluation 

Several aspects of model evaluation relate to 
comparisons with empirical data, and these com- 
parisons may be more rigorous when made with 
data not used in fitting the model (benchmark 
tests). Thus it has become customary in the evalu- 
ation of forest growth models to reserve some 
data to provide an 'independent' benchmark test 
of the model (e.g. Snee, 1977; West, 1981; Shirley, 
1987). 

This raises several questions about the merits of 
setting data aside for such tests, about the nature 
and amount of data used for such comparisons, 
and about the nature of the population of inter- 
est. In effect, this involves a compromise between 
the best possible parameter estimates (using all 
the data for calibration) and the best possible 
overall impression of precision (reserving some 
data for testing). Two options seem to offer the 
best of both worlds: 
1. Fit the model using some data, test it against 

the remainder, and then recalibrate using the 
full data set. 

2. Use re-sampling techniques such as cross-vali- 
dation. 

3.1. Partitioning data 

The most rigorous test of a model requires 
independent data, ideally from controlled and 
replicated trials measured over a long period. 
Unfortunately, such data may not be available, 
and the only 'independent' data readily available 
may relate to other regions or species. These, 
however, may not reflect the population of inter- 
est, and it is not always clear how to interpret the 
results of tests with such data. Thus, growth 
modellers often have to decide whether it is 
worthwhile splitting data into two subsets, one for 
development, and the other for testing the model. 
This is not a trivial decision, especially when data 
are scarce. Setting some data aside may provide 
for a better test of the model, but may result in 
inferior parameter estimates. 

The role of an independent or benchmark test 
cannot be divorced from the nature of the model. 
If the model fitting exercise is intended to reveal 
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possible causal parameters, then the costs of 
benchmarking may be greater than the benefits 
(e.g. in medical epidemiology, Hirsch, 1991). Par- 
titioning data to allow benchmarking may help to 
reduce type I errors (i.e. falsely rejecting the null 
hypothesis, and thus e.g. including irrelevant vari- 
ables in the model), but fewer data for calibration 
mean a reduction in the precision of parameter 
estimates, and an increase in type II errors (i.e. 
falsely accepting the null hypothesis, and thus, 
e.g. incorrectly concluding that a variable con- 
tributes little and should be omitted from the 
model). However, if empirical data are used to 
calibrate a model deliberately formulated to re- 
present biological processes, then the goal is a 
different one: namely to accurately estimate 
parameters rather than to identify possible ex- 
planatory variables. In this latter case, benchmark 
data may serve a more useful role in illustrating 
the robustness of the model. Clearly, an assess- 
ment of the utility of independent benchmark 
data cannot be divorced from the purpose of the 
model. 

If  a decision is made to partition a data set, the 
modeller must avoid the temptation to weaken the 
tests, for example, by reducing the number of data 
available for testing, despite a desire to find the 
model acceptable. The outcome of benchmark 
tests can be influenced by the selection of data: 
'like' data will provide a more optimistic result 
than comparisons with 'unlike' data from another 
population. Thus, the most convincing demon- 
stration of model quality can be made only if the 
test data are in some sense unlike the development 
data. A single sample split into two parts is no 
substitute for test data from controlled, replicated 
trials. Vanclay (1994) discussed the dangers of 
constructing a growth model from passive moni- 
toring data in which stand density and site pro- 
ductivity are confounded. Splitting such data into 
calibration and benchmark sets may not reveal 
the fallacy of a positive correlation between stand 
density and tree growth; this can only be refuted 
(empirically) using data from thinning and spac- 
ing trials (depending somewhat on how the data 
are divided). 

Unfortunately, the ideal, a series of properly 
replicated trials, is rarely available. However, data 

which are independent spatially (e.g. different lo- 
cation or site), silviculturally (e.g. different man- 
agement regime), temporally (e.g. more recent), or 
logistically (e.g. collected by a different agency) 
may provide a convincing test if they can be 
reserved without compromising the range of site 
and stand conditions represented in the model. 
Plots established for long periods with regular 
remeasurement, particularly those remaining 
undisturbed (i.e. no thinning), may prove useful 
as a discriminating test. Objective procedures (e.g. 
Snee, 1977) may be used to select benchmark data 
to minimize the dangers of bias. Following test- 
ing, the benchmark and calibration data may be 
pooled and the model recalibrated to obtain the 
best parameter estimates. 

One possible frustration with benchmarking 
may arise when the initial calibration of the model 
seems inadequate in benchmark trials, since there 
is no way to test if recalibration using the pooled 
data will result in an improvement. The change in 
parameter estimates may serve as a guide (and 
may even serve as a good benchmark criterion, 
see for example Siev/inen and Burk, 1993), but do 
not reveal if the recalibration is 'adequate'. How- 
ever, if the model is the best that can be obtained 
with existing resources, it must be considered 
acceptable, even if inadequate in some sense, since 
there is no alternative other than to invest more 
resources and wait for new data and techniques. 
Perhaps the real test of a model (in a practical 
sense, if not in an epistemological sense) is if 
forest managers have sufficient confidence in it to 
use it as the basis for management decisions. 

3.2. Resampling procedures 

An efficient alternative to independent data is 
to mimic these tests with resampling techniques 
such as cross-validation, boot-strapping and jack- 
knifing (e.g. Efron and Gong, 1983; Weisberg, 
1985). Cross-validation is the logical generaliza- 
tion of partitioning the data for model calibration 
and benchmarking (e.g. Burk, 1990). Rather than 
omitting some data, each datum is deleted in turn 
and the model is fitted to the remaining n -  1 
data. Benchmark tests are averaged from the indi- 
vidual deleted data. If  the test statistic is squared 
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error and the model is linear, the cross-validation 
estimate of true error is n times the PRESS statis- 
tic computed by many regression packages. A 
variation on these single-observation resampling 
procedures is to omit groups of data, for example, 
according to geographic location, management 
strategy, or other criteria (e.g. Tarp-Johansen et 
al., 1997). 

One shortcoming of any resampling procedure 
lies in its dependence on the data. The sample 
should adequately represent the variability and 
other characteristics of the population of interest, 
or the resampling procedure will not provide an 
adequate test of the model. Unfortunately, these 
are the very circumstances under which the model 
itself should come under heaviest criticism (Burk, 
1990). 

Despite the efficiency of re-sampling proce- 
dures, it seems impossible to avoid the use of 
some benchmark data, since resampling to test a 
complete model involving many relationships and 
assumptions seems impractical. 

4. Other considerations 

A technical appraisal of a model does not con- 
stitute a complete evaluation. There are several 
other important qualitative aspects which should 
also be considered. Many of these have already 
been considered, at least in part, but it remains 
important to re-examine several aspects: 
1. Does the model satisfy the needs of clients? 
2. Are underlying concepts sound, and visible to 

users (in the model or documentation)? 
3. Have concepts been implemented faithfully, 

unconstrained by resources or technology (e.g. 
has the I F  . . .  T H E N  . . .  E L S E  . . .  E N D I F  structure of 
the computer language led to the use of on-off 
behaviour rather than a gradual phasing in and 
out, even though the latter may be more ap- 
propriate)? 

4. Is the model parsimonious, satisfying the gen- 
eral principle of science that entities should not 
be multiplied beyond necessity? (The principle is 
known as Ockham's razor; see Keuzenkamp 
and McAleer, 1995, for a recent review). 

Some of these aspects have been explored more 
thoroughly in the social sciences where it is more 
difficult to obtain quantitative benchmark data 
than in the natural sciences. Thus, it is interesting 
to explore some experiences of that discipline. In 
a review of several models for social policy analy- 
sis, Meadows and Robinson (1985) observed that 
"tests tend to be weak, marginal, unsymmetrical 
and very biased. In part this is due to oversized 
models whose complete testing would be impossi- 
bly expensive and tedious. It is also due to a 
general lack of imagination, motivation, training, 
client pressure and agreed-upon methods for test- 
ing". Although this criticism was levelled specifi- 
cally at the social sciences, it also applies to some 
extent, in forest growth modelling. 

Meadows and Robinson (1985) collated specific 
advice to overcome these limitations, including 
(and followed by our responses): 
1. Modellers should think more and wield tools 

less (Majone, 1977)--the 'new toy' syndrome 
is a hazard that is also prevalent in forest 
growth modelling. 

2. Models should be given to an independent 
evaluation agency for testing (Quade and 
Boucher, 1968)--several independent evalua- 
tions have been published in refereed journals 
(e.g. Reynolds, 1984; Oderwald and Hans, 
1993; Soares et al., 1995). 

3. Modellers should test each part of their model, 
not just the summary output (Biggs and 
Cawthorns, 1962)--this may be tedious and 
time-consuming, but is important to gain a 
good insight into the model (e.g. Hann, 1980; 
Soares et al., 1995). 

4. Modellers should test their results against the 
real world, rather than against a set of artificial 
rules or formulas (Brewer, 1973)--this seems 
to be one thing that is done well on the rare 
occasions that forest growth models are thor- 
oughly benchmarked (e.g. Hann, 1980; 
Reynolds, 1984; Soares et al., 1995; West, 
1981). 

It is disconcerting to reflect that this advice 
remains as necessary, and as rarely applied today, 
as when it was first offered. Meadows and 
Robinson (1985) concluded with a warning that 
"modelling efforts often succumb to a slow ... 
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drift ... away from what is important to what is 
... tractable, away from unconventional view- 
points and toward established wisdom. At each 
little decision point ... the guiding question 
should be 'would it help solve the problem?'. 
...[T]he criterion for decision should always be 
what will most help real-world decisions, not what 
the modeller will find easy or fun, or what the 
client will find ... uncontroversial." A decade 
later, this warning remains timely and pertinent. 

Some readers may find our stance too idealistic, 
but while we accept that modelling may be con- 
strained by knowledge, data and resources, we 
echo the sentiments of Ziman (1978): "[one] learns 
how easy it is to persuade oneself of the validity 
of a model which later turns out to be false, and 
comes to realize that even in very strongly mathe- 
matical and well-defined scientific issues, it may 
take a long time, much criticism and the death of 
many promising conjectures before a reliable the- 
ory is [established]". 

5. Practical relevance 

It is appropriate to conclude by exploring the 
practical relevance of model evaluation with some 
case studies. We tried to find documented in- 
stances of well-tested models that nonetheless 
went wrong and of untested models that revealed 
useful insights, but found this difficult, probably 
because modellers rarely admit model weaknesses 
or failures, and usually publish material relating 
to model development rather than model applica- 
tions. However, some insights can be offered. 

The JABOWA model (Botkin et al., 1972; 
Botkin, 1993) has been remarkably successful in 
many respects. It laid the foundations for the 
'gap-phase' modelling approach; has been used 
extensively in academia, research and teaching; 
has been re-calibrated for many different forests 
ranging from the tropics to the boreal zone; pro- 
vided the basis for several models derived more- 
or-less directly from JABOWA (e.g. CLIMACS, 
FIRESUM, FORET, FORENA, LINKAGES, SILVA, ZE- 

LIG; e.g. Liu and Ashton, 1995); and has been 
cited in the formal literature more than 160 times 
(Botkin, 1993). Despite this prominence, the 

model and its derivatives have apparently not 
been used in operational forest management or 
planning. In his attempt to adapt the JABOWA 
model for British woodlands, Spilsbury (1991) 
noted that JABOWA had several serious deficien- 
cies involving growth patterns, calibration proce- 
dures, and performance in empirical tests, 
especially relating to the diameter frequency dis- 
tribution. 

Another relatively prominent model, the STEMS 
model and its derivatives (Leary, 1979; Belcher et 
al., 1982), has both been formally evaluated (e.g. 
Holdaway and Brand, 1983, 1986; Brand and 
Holdaway, 1989) and used operationally by forest 
managers. However, the operational use of this 
model may be as much a result of packaging, 
marketing and institutional affiliation, as of per- 
formance testing, since several deficiencies are ap- 
parent in the model. By studying predicted 
trajectories in a Bakuzis' matrix, Leary (1997) 
found several shortcomings in STEMS projections 
of the growth of red pine in pure even-aged 
stands. Specifically, there was little dependence of 
any stand property on site, and mortality rates, 
height growth and stand basal area development 
appeared questionable. And following an empiri- 
cal benchmark study, Brand and Holdaway 
(1989) recommended 'cautious use of STEMS85 
and TWIGS for: 

• stands with high basal area; 
• lowland hardwood and northern hardwood 

stands in western lower Michigan; 
• stands with many trees slightly smaller than 

sawtimber size.' 
Management acceptance of a model and its 

predictions may rest on many factors other than 
formal evaluations of model performance. The 
management response to a series of yield forecasts 
for north Queensland rainforests (Vanclay, 1996) 
depended not on formal test results (there were no 
such tests), but on subjective evaluations, person- 
alities, the difficulty of implementation, and on 
politics and economics. This may reflect on the 
immaturity of modelling, and the poor linkage 
between modelling and management. Most man- 
agers have little experience of modelling, don't 
know what kind of model evaluation to expect, 
and have no real basis for appraising models (see 
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for  example  Brand  and  Ho ldaway ,  1983). Thus,  
model le rs  need to be more  p roac t ive  in discussing 
their  work  with forest  manage r s  and  o ther  m o d e l  
users. This  lucid commun ica t i on  m a y  be especial ly 
i m p o r t a n t  if  the mode l  is being used to m a k e  
inferences a b o u t  the  sus ta inabi l i ty  o f  forest  prac-  
tices (e.g. M o i r  and  Mowrer ,  1995). 

6. Synthesis of evaluation procedures 

These few simple suggest ions are no t  in tended  
as a comprehens ive  review of  mode l  eva lua t ion  
procedures ,  bu t  merely  highl ight  some i m p o r t a n t  
and  somet imes  ove r looked  aspects.  W e  stress tha t  
eva lua t ion  is no t  one simple procedure ,  bu t  con-  
sists o f  a n u m b e r  o f  in ter re la ted  steps tha t  c anno t  
be separa ted  f rom each o ther  or  f rom m o d e l  
cons t ruc t ion .  Our  f ive-point  checklist  urges m o d -  
ellers to examine:  
1. logic and  bio-logic;  
2. s tat is t ical  proper t ies ;  
3. character is t ics  o f  errors;  
4. residuals;  
5. sensi t ivi ty analyses.  

Several  s tat is t ical  tests, as well as g raph ica l  
procedures ,  m a y  be useful, bo th  wi th  d a t a  used 
for  mode l  ca l ib ra t ion  and  with  d a t a  used for  
' i ndependen t '  eva lua t ion  o f  the  model .  However ,  
the val id i ty  o f  conclus ions  depends  on  the va l id i ty  
o f  assumpt ions  and  the app l i ca t ion  in quest ion.  
These pr inciples  should  be kep t  in mind  th rough-  
ou t  mode l  cons t ruc t ion  and  evalua t ion .  

Acknowledgements 

T o m  Burk,  Oscar  Garc ia ,  Jerry  Leech, N a o m i  
Oreskes  and  Stanley W o o d  p rov ided  helpful  sug- 
gest ions and  t h o u g h t - p r o v o k i n g  commen t s  on  the 
dra f t  manuscr ip t .  

References 

Bates, D.M. and Watts, D.G., 1988. Nonlinear Regression 
Analysis and its Applications. Wiley, New York, xiv + 365 
PP. 

Belcher, D.W., Holdaway, M.R. and Brand, G.J., 1982. A 
description of STEMS: the stand and tree evaluation and 
modelling system. USDA For. Serv. Gen. Tech. Rep., 
NC-79, 18 pp. 

Biggs, A.G. and Cawthorns, A.R., 1962, quoted in: P.W. 
House and J. McLeod (Editors), Large-Scale Models for 
Policy Evaluation. Wiley, New York, p. 73. 

Botkin, D.B., 1993. Forest Dynamics: An Ecological Model. 
Oxford University Press, Oxford, xv + 309 pp. 

Botkin, D.B., Janak, J.F. and Wallis, J., 1972. Some ecological 
consequences of a computer model of forest growth. J. 
Ecology, 60: 849-872. 

Brand, G.J. and Holdaway, M.R., 1983. Users need perfor- 
mance information to evaluate models. J. For., 81: 235- 
237, 254. 

Brand, G.J. and Holdaway, M.R., 1989. Assessing the accu- 
racy of TWIGS and STEMS85 volume predictions: a new 
approach. Northern J. Appl. For., 6: 109-114. 

Brewer, G.D., 1973. Politicians, Bureaucrats and the Consul- 
tant. Basic Books, New York. 

Burk, T.E., 1986. Growth and yield model validation: Have 
you ever met one that you liked? In: A. Allen and T.C. 
Cooney (Editors), Data Management Issues in Forestry. 
Forests Resources Systems Institute, Florence, AL, pp. 
35-39. 

Burk, T.E., 1990. Prediction error evaluation: preliminary 
results. In: L.C. Wensel and G.S. Biging (Editors), Forest 
Simulation Systems: Proc. IUFRO Conf., 2-5 Nov. 1988. 
University of California, Division of Agriculture and Na- 
tional Research, Bulletin, 1927, pp. 81-88. 

D'Agostino, R.B. and Stephens, M.A. (Editors), 1986. Good- 
ness-of-fit Techniques. Marcel Dekker, New York, xviii + 
560 pp. 

Dent, J.B. and Blackie, M.J., 1979. Systems Simulation in 
Agriculture. Applied Science, London. 

Draper, N.R. and Smith, H., 1981. Applied Regression Analy- 
sis. Wiley, New York, 709 pp. 

Efron, B. and Gong, G., 1983. A leisurely look at the boot- 
strap, the jackknife and cross-validation. Am. Stat., 37: 
36-48. 

Furnival, G.M. and Wilson, R.W., 1971. Systems of equations 
for predicting forest growth and yield. In: G.P. Patil, E.C. 
Pielou and W.E. Waiters (Editors), Statistical Ecology, 
Vol. 3. Pennsylvania State University Press, pp. 43-57. 

Gallant, R.A., 1987. Nonlinear Statistical Models. Wiley, New 
York, xii + 610 pp. 

Garcia, O., 1984. New class of growth models for even-aged 
stands: Pinus radiata in Golden Downs Forest. N.Z.J .  
For. Sci., 14: 65-88, 

Gertner, G., 1987. Approximating precision in simulation 
projections: an efficient alternative to Monte Carlo meth- 
ods. For. Sci., 33: 230-239. 

Gertner, G.Z., Cao, X. and Zhu, H. 1995. A quality assess- 
ment of a Weibull based growth projection system. For. 
Ecol. Manage., 71: 235-250. 

Gilchrist, W., 1984. Statistical Modelling. Wiley, Chichester, 
xv + 339 pp. 



J.K. Vanclay, J.P. Skovsgaard / Ecological Modelling 98 (1997) 1-12 11 

Goulding, C.J., 1979. Validation of growth models used in 
forest management. N.Z.J .  For., 24: 108-124. 

Gregoire, T.G. and Reynolds, M.R., 1988. Accuracy testing 
and estimation alternatives. For. Sci., 34: 302-320. 

Gregoire, T.G., Schabenberger, O. and Barrett, J.P., 1995. 
Linear modelling of irregularly spaced, unbalanced, longi- 
tudinal data from permanent-plot measurements. Can. J. 
For. Res., 25: 137-156. 

Hamilton, D.A., 1990. Extending the range of applicability 
of an individual tree model. Can. J. For. Res., 20: 1212- 
1218. 

Hann, D.W., 1980. Development and evaluation of an even- 
and uneven-aged ponderosa pine/Arizone fescue stand sim- 
ulator. USDA For. Serv. Res. Pap., INT-267, 95 pp. 

Hirsch, R.P., 1991. Validation samples. Biometrics, 47: 1193- 
1194. 

Holdaway, M.R. and Brand, G.J., 1983. An evaluation of the 
STEMS tree growth projection system. USDA For. Serv. 
Res. Pap., NC-234, 20 pp. 

Holdaway, M.R. and Brand, G.J., 1986. An evaluation of 
Lake States STEMS85. USDA For. Serv. Res. Pap., NC-269, 
10 pp. 

Jorgensen, S.E., 1986. Fundamentals of Ecological Modelling. 
Elsevier, Amsterdam, 389 pp. 

Keuzenkamp, H.A. and McAleer, M., 1995. Simplicity, scien- 
tific inference and econometric modelling. Econ. J., 105: 
1-21. 

Kincaid, H., 1996. Philosophical Foundations of the Social 
Sciences: Analyzing Controversies in Social Research. 
Cambridge, New York. 

Leary, R.A., 1970. Systems identification principles in studies 
of forest dynamics. USDA For. Serv. Res. Pap., NC-45, 38 

PP. 
Leary, R.A., 1979. Design. In: A generalized forest growth 

projection system applied to the lake states region. USDA 
For. Serv. Gen. Tech. Rep., NC-49: 5-15. 

Leary, R.A., 1988. Some factors that will affect the next 
generation of forest growth models. In: A.R. Ek, S.R. 
Shirley and T.E. Burk (Editors), Forest Growth Modeling 
and Prediction. Proc. IUFRO Conf., 24-28 Aug. 1987, 
Minneapolis, MN. USDA For. Serv., Gen. Tech. Rep., 
NC-120: 22-32. 

Leary, R.A., 1997. Testing models of red pine plantation 
dynamics using a modified Bakuzis matrix of stand proper- 
ties. Ecol. Model., 98: 35-46. 

Liu, J. and Ashton, P.S., 1995. Individual-based simulation 
models for forest succession and management. For. Ecol. 
Manage., 73: 157-175. 

Majone, G., 1977. Pitfalls of analysis and analysis of pitfalls. 
Urban Ana., 4: 235. 

Mayer, D.G. and Butler, D.G., 1993. Statistical validation. 
Ecol. Model., 68: 21-32. 

Mayer, D.G., Stuart, M.A. and Swain, A.J., 1994. Regression 
of real world data on model output: an appropriate overall 
test of validity. Agric. Syst., 45: 93-104. 

Meadows, D.H. and Robinson, J.M., 1985. The Electronic 
Oracle: Computer Models and Social Decisions. Wiley, 
Chichester, xv + 445 pp. 

Moir, W.H. and Mowrer, H.T., 1995. Unsustainability. For. 
Ecol. Manage., 73: 239-248, 

Monserud, R.A., 1989. Optimizing single-tree simulators. In: 
H.E. Burkhart, M. Rauscher and K. Johann (Editors), 
Artificial intelligence and growth models for forest man- 
agement decisions. Proceedings IUFRO meeting, Vienna, 
18-22 Sept 1989. VPI and SU, Blacksburg VA, FWS-1-89, 
pp. 308-321. 

Mowrer, H.T., 1991. Estimating components of propagated 
variance in growth simulation model projections. Can. J. 
For. Res., 21: 379-386. 

Mowrer, H.T. and Frayer, W.E., 1986. Variance propagation 
in growth and yield projections. Can. J. For. Res., 16: 
1196-1200. 

Oderwald, R.G. and Hans, R.P., 1993. Corroborating models 
with model properties. For. Ecol. Manage., 62: 271-283. 

Oreskes, N., Shrader-Frechette, K. and Belitz, K., 1994. Verifi- 
cation, validation and confirmation of numerical models in 
the earth sciences. Science, 263: 641-645. 

Power, M., 1993. The predictive validation of ecological and 
environmental models. Ecol. Model., 68: 33-50. 

Quade, E.S. and Boucher, W.I. (Editors), 1968. Systems Anal- 
ysis and Policy Planning. Elsevier, New York. 

Ratkowsky, D.A., 1983. Nonlinear Regression Modeling. 
Marcel Dekker, New York, viii + 276 pp. 

Ratkowsky, D.A., 1990. Handbook of Nonlinear Regression 
Models. Marcel Dekker, New York, ix + 241 pp. 

Reynolds, M.R., 1984. Estimating the error in model predic- 
tions. For. Sci., 30: 454-469. 

Reynolds, M.R. and Chung, J., 1986. Regression methodology 
for estimating model prediction error. Can. J. For. Res., 
16: 931-938. 

Reynolds, M.R., Burk, T.E. and Huang, W., 1988. Goodness- 
of-fit tests and model selection procedures for diameter 
distribution models. For. Sci., 34: 373-399. 

Seber, G.A.F. and Wild, C.J., 1989. Nonlinear Regression. 
Wiley, New York, xx + 768 pp. 

Shirley, S.R., 1987. A generalized system of models forecasting 
Central States growth. USDA For. Serv. Res. Pap., NC- 
279, 10 pp. 

Siev/inen, R. and Burk, T.E., 1993. Adjusting a process-based 
growth model for varying site conditions through parame- 
ter estimation. Can. J. For. Res., 23: 1837-1851. 

Snee, R.D., 1977. Validation of regression models: methods 
and examples. Technometrics, 19:415 428. 

Soares, P., Tom6, M., Skovsgaard, J.P. and Vanclay, J.K., 
1995. Validating growth models for forest management 
using continuous forest inventory data. For. Ecol. Man- 
age., 71: 251-266. 

Spilsbury, M.J., 1991. Computer modelling of mixed age, 
polyspecific broadleaf woodland in the United Kingdom. 
D. Phil. Thesis, University of Oxford, 215 pp. 

Tarp-Johansen, M.J., Skovsgaard, J.P., Madsen, S.F., Jo- 
hannsen, V.K. and Skovgaard, I., 1997. Compatible stem 
taper and stem volume functions for oak in Denmark. 
Ann. Sci. For., 54: in press. 



12 J.K. Vanclay, J.P. Skovsgaard / Ecological Modelling 98 (1997) 1-12 

Vanclay, J.K., 1994. Modelling Forest Growth and Yield: 
Applications to Mixed Tropical Forests. CAB International, 
Wallingford, UK, xvii + 312 pp. 

Vanclay, J.K., 1996. Lessons from the Queensland rainforests: 
steps towards sustainability. J. Sustainable For., 3(2/3): 
1-27. 

Van Henten, E.J. and Van Straten, G., 1991. Sensitivity analysis 
of a dynamic growth model of lettuce. J. Agric. Eng. Res., 
59: 19-31. 

Weisberg, S., 1985. Applied Linear Regression, 2nd edn. Wiley, 
New York, xiv + 324 pp. 

West, P.W., 1981. Simulation of diameter growth and mortality 

in regrowth eucalypt forest of southem Tasmania. For. Sci., 
27: 603-616. 

West, P.W., 1995. Application of regression analysis to inventory 
data with measurements on successive occasions. For. Ecol. 
Manage., 71: 227-234. 

Ziman, J., 1978. Reliable Knowledge: An Exploration of the 
Grounds for Belief in Science. Cambridge University Press, 
Cambridge, 197 pp. 

Zhang, L., Moore, J.A. and Newberr, J.D., 1993. Disaggregating 
stand volume growth to individual trees. For. Sci., 39: 
295 308. 


