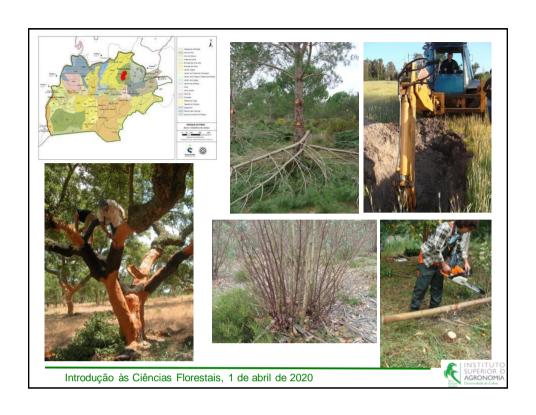
Introdução às Ciências Florestais

Licenciatura em Engenharia Florestal e dos Recursos Naturais 1º ano, 2º semestre

Paula Soares

Ano letivo 2019-20 1 de abril de 2020

Inventário de recursos florestais - conceitos básicos


Os slides baseiam-se nos textos da Prof^a Margarida Tomé disponíveis em:

http://www.inventarioflorestal.eu/

INSTITUTO SUPERIOR D AGRONOMIA

Silvicultura (Forestry)

É a ciência e a prática de conservar e gerir florestas e áreas florestais de modo a fornecer de modo sustentável produtos florestais, mantendo a saúde e estabilidade das áreas florestais, assim como quaisquer outros valores associados às florestas considerados desejáveis pelo produtor/gestor florestal

(Ford-Robertson, 1971)

Gestão Florestal

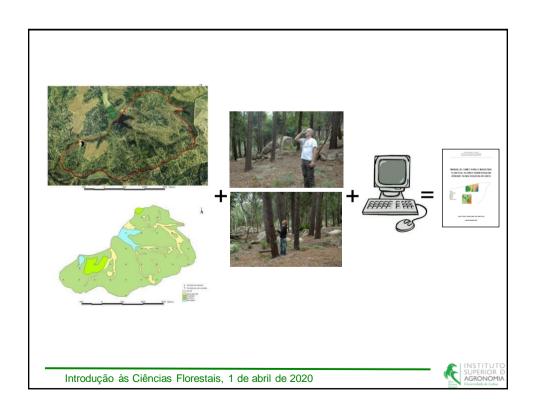
A atividade florestal implica a tomada de decisões na relação entre o homem e a floresta, em particular sobre o modo como o homem a modifica para alcançar os seus objetivos

Inventário e monitorização de recursos florestais

O inventário de recursos florestais implica a caracterização de uma determinada área florestal enquanto que a monitorização de recursos florestais tem como objetivo a avaliação das alterações dos recursos, tentando avaliar as causas das mudanças observadas assim como verificar se os planos de gestão florestal estão a decorrer de acordo com o previsto.

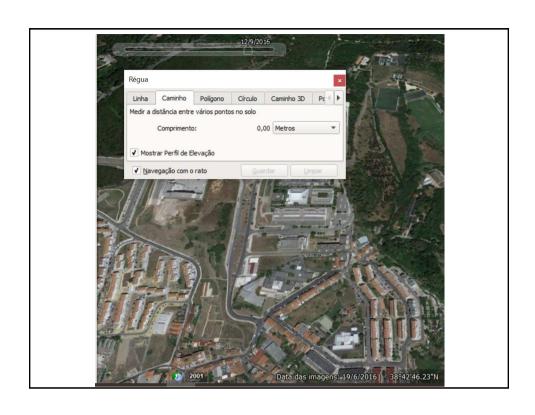
Introdução às Ciências Florestais, 1 de abril de 2020

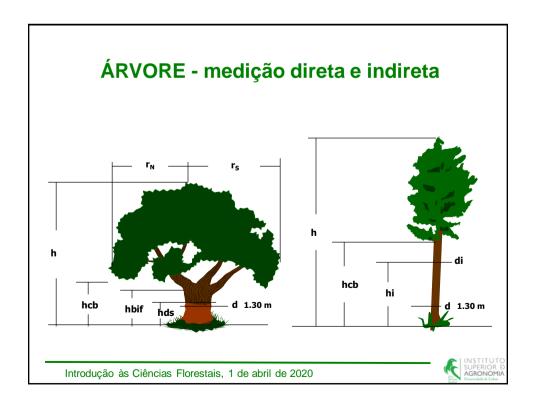
O Inventário Florestal...

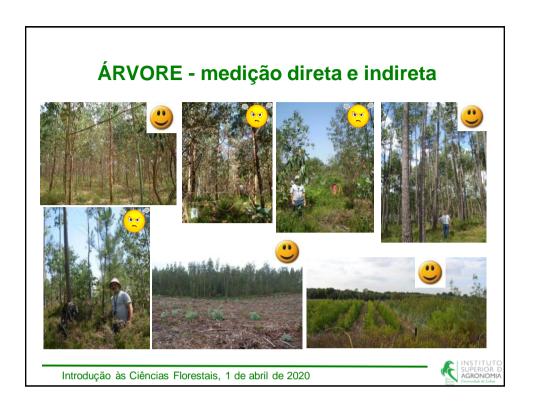

É o conjunto de técnicas que nos permite obter os dados para a caracterização de um ecossistema florestal

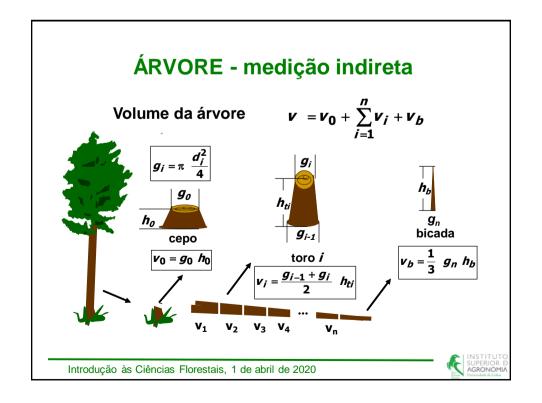
As necessidades de informação sobre os recursos florestais por parte dos gestores têm contribuido para a evolução da silvicultura

anos 50	anos 2000		
lenho	lenho		
	recursos múltiplos		
	biomassa		
	stocks de carbono		
	biodiversidade produtos não- lenhosos		
	outros usos do solo?		









Variáveis dendrométricas

Volumes da árvore

Volume total com casca

Volume total sem casca

Volume mercantil com casca (sem cepo e sem bicada)

Volume mercantil sem casca (sem cepo e sem bicada)

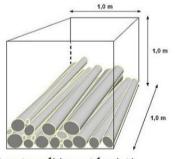
Introdução às Ciências Florestais, 1 de abril de 2020

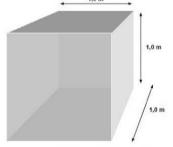
Volumes da árvore

Portugal:

Pinheiro bravo - 20% do volume total corresponde a casca (variável com a idade)

Eucalipto - 18% do volume total corresponde a casca (variável com a idade)




Introdução às Ciências Florestais, 1 de abril de 2020

Volumes da árvore

Estere: volume aparente de uma pilha cúbica com 1 m de largura x 1 m altura x 1 m profundidade

1 metro cúbico estéro (st)

1 metro cúbico sólido (m³)

volume real = vol. aparente da pilha x coeficiente de empilhamento

Volumes da árvore

Fatores de conversão (eucalipto):

 m^3 sem casca = esteres sem casca x 0.67 esteres sem casca = m^3 sem casca x 1.5

Variável com a espécie, classe de diâmetro, retidão dos toros...

Introdução às Ciências Florestais, 1 de abril de 2020

Tabela 7b. Equações utilizadas na estimação dos volumes mercantis de pinheiro bravo e eucalipto (sem cepo e sem casca)

Modelos

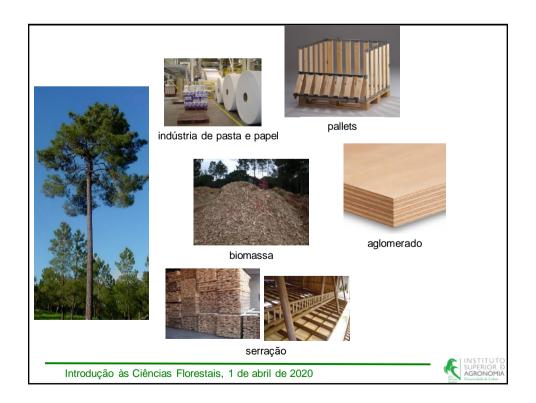
(2) Pvudi _st =
$$\frac{\text{vudi} _st}{\text{vudi}}$$
 = $e^{-\beta_0} \frac{d_i^{\beta_1}}{d^{\beta_2}}$

(3)
$$d_i = d \left[-\beta_0 \left(\frac{h_i}{h} - 1 \right) + \beta_1 \left(\frac{h_i^2}{h^2} - 1 \right) \right]^{0.5}$$

Espécie	Modelo	β ₀	β1	β2	β3	Fonte
Pinheiro bravo vu_st	(1b)	0,0000247	2,1119	0,9261		Falcão, 1994
Pinheiro bravo Pvud_st	(2)	1,41300	4,3488	4,3188	-	Falcão, 1994
Pinheiro bravo di	(3)	2,1823	0,8591			Falcão, 1994
Eucalipto vu_st	(1a)	0,1241	1,7829	1,1564		Tomé et al, 2007b
Eucalipto Pvudi_st	(2)	0,6022	4,7767	4,4125	-	Tomé et al, 2007b

d – diâmetro da árvore medido a 1,30 m de altura (cm); h – altura total da árvore (m); vu_st – volume total sem casoa e sem cepo (m³), di – diâmetro (cm) medido à altura hi (m); vud_st – volume sem casoa e sem cepo até ao diâmetro de desponta di (m³); Pvudi_st – proporção de volume sem casoa e sem cepo até ao diâmetro de desponta di.

Vamos aqui


Volumes da árvore

Volume por categorias de aproveitamento

repartição do volume por <u>categorias de aproveitamento</u> – estas definem-se de acordo com diâmetros mínimos de desponta e/ou comprimentos dos toros

Características dos toros	Destino
diâmetro ≥35 cm, sem defeitos	Desenrolamento e folha
20 ≤ diâmetro < 35 cm	Serração
14 ≤ diâmetro < 20 cm	Serração; tábua para caixotaria
7 ≤ diâmetro < 14 cm	Trituração – aglomerado, pasta para papel, biomassa
Diâmetro < 7 cm	Lenha, biomassa

ÁRVORE - estimação

As variáveis dendrométricas de medição difícil são, muitas vezes, estimadas com equações de regressão

Por ex.:

altura da árvore:

$$h = h_{dom} e^{\left(\frac{1}{d} - \frac{1}{d_{dom}}\right) \left(-2.713 - 0.207 \ h_{dom} + 0.0557 \frac{N}{1000}\right)}$$

volume da árvore:

$$\nu = 3.739 \frac{d^{1.815}}{100000} h^{1.145}$$

Introdução às Ciências Florestais, 1 de abril de 2020

Variáveis dendrométricas POVOAMENTO

Variáveis avaliadas em parcelas de área conhecida, reduzidas ao ha

Normalmente são:

- somas
- médias
- distribuições de frequência de variáveis da árvore

POVOAMENTO - determinação

Medição (direta ou indireta)

de todas as árvores da parcela (diâmetros, alturas) de árvores amostra ou modelo (diâmetros, alturas)

Estimação

nas árvores não modelo

Introdução às Ciências Florestais, 1 de abril de 2020

Informação não dendrométrica

Inventário Florestal do Concelho de Oliveira do Hospital -1992 ISA/DEF FICHA DE CARACTERIZAÇÃO DA PARCELA Estrato Parcela nº Carta militar nº: 211 Data: Fotografia nº: fotointerpr Exposição Ponto: 89 observado Declive 27% Apontou: Mediu: Todos SITUAÇÃO FISIOGRÁFICA SINAIS DE EROSÃO Enc.Sup. Cumeada Enc.Inf Acentuada Pouco ac. **PEDREGOSIDADE** RESINAGEM (Pinhal): Muita Média Não Desbaste/Corte raso À vida recente À morte há <5 anos há > 5 anos Eucaliptal: Eucaliptal: REGENERAÇÃO NATURAL Instalação < 1.30 m Idade rotação ripagem <10 1ª arcela espécie sob coberto céu aberto plano [10;20[vala e comoro >=20 >2ª С compasso Ν cova N terracos S Montado: irregular S Àrea da parcela SUB-BOSQUE

Informação geral

Data da medição: dia, mês, ano

Identificação da equipa: medidor, anotador

Tempo: deslocação à parcela, medição da parcela (orçamento)

Tipo de parcela: inventário, permanente, ensaio....

INSTITUTO SUPERIOR D AGRONOMIA Universidade de Lisbon

Caracterização da parcela de inventário

Localização e coordenadas

Acesso à parcela

Tempos de trabalho

Verificação da fotointerpretação

Caracterização fisiográfica

Outras características

Observações e inquirição local

Classificação das espécies

Introdução às Ciências Florestais, 1 de abril de 2020

Caracterização da parcela de inventário

Localização (em gabinete): nº carta militar; coordenadas GPS

Árvores de referência (3 árvores mais próximas do centro da parcela): distância ao centro (m) e azimute (º, g)

Área

Parcelas localizadas na bordadura povoamento/estrato: distância do centro da parcela ao limite do povoamento medida perpendicularmente a este

Acessibilidade: boa; má

Pedregosidade: muita; média; nula

Erosão: acentuada; pouco acentuada; nula

Caracterização da parcela de inventário

Fogo: indícios; ano fogo; danos arvoredo (parcial/total); corte Caracterização fisiográfica:

- exposição (bússola): N, S, E, O, NE, SE, NO, SO
- altitude (GPS)
- declive (Vertex/Blum-Leiss/Clisímetro)
- fisiografia: vale, encosta,.....

Sinais de desbaste

Avaliação da necessidade de realizar melhoramentos culturais: desbaste; desrama; monda; limpeza matos

Introdução às Ciências Florestais, 1 de abril de 2020

Caracterização da parcela de inventário

Verificação da fotointerpretação

Verificar a veracidade da classificação atribuída ao estrato durante a fotointerpretação (de acordo com as normas de fotointerpretação)

Situações em que o estrato observado é diferente do estrato fotointerpretado:

- ✓ erro de fotointerpretação
- √ substituição de espécie
- ✓ conversão

INSTITUTO SUPERIOR D AGRONOMIA

Caracterização da parcela de inventário

Verificação da fotointerpretação

A verificação da fotointerpretação refere-se à mancha na qual a parcela se insere e não apenas à parcela; para uma correta verificação da fotointerpretação há que ter em conta a área mínima definida para a fotointerpretação

Ex.

se a área mínima for de 5.000 m² e a parcela corresponder a uma pequena mancha de eucalipto, com cerca de 1.000 m², no meio de um povoamento puro de pinheiro bravo, então a ocupação de solo PbPb estará correcta.

Introdução às Ciências Florestais, 1 de abril de 2020

Caracterização da diversidade vegetal

Ocupação do sob-coberto

- √ Utilização agrícola
- ✓ Pastagem artificial
- ✓ Pastagem natural
- ✓ Matos

Estrutura vertical do povoamento

- √ Coberto por espécie
- ✓ Coberto total

Regeneração natural

- ✓ Abundância
- ✓ Avaliação de árvores menores

Codificação das árvores

Classe social

Árvores dominantes (D)

Árvores co-dominantes (C)

Árvores sub-dominantes (S)

Árvores dominadas (O)

Introdução às Ciências Florestais, 1 de abril de 2020

Codificação das árvores

Identificação das árvores de bordadura

Fitossanidade

Especificar a parte afetada (copa, tronco)

Descrever e classificar o tipo de danos (sinais e sintomas)

Especificar o tipo de agente que produziu o dano

Codificação das árvores

Código de estado

Código de forma

Código de estado: 0 – árvore viva

Árvore que não é morta nem falha

Introdução às Ciências Florestais, 1 de abril de 2020

Código de estado: 1 - árvore morta

Árvore que morreu na rotação e que apresenta copa seca ou ausência de copa; inclui também árvores deitadas no chão ou partidas abaixo da base da copa

Código de estado: 2 – falha

Toiça morta sem rebentação ou espaço resultante da morte da árvore, embora sem vestígios

Introdução às Ciências Florestais, 1 de abril de 2020

Código de forma: 0 – árvore bem conformada

Árvore sem defeitos e que não se identifica com nenhum dos códigos seguintes

Código de forma: 1 - árvore bifurcada

Árvore com bifurcação acima de 1.30 m de altura, sem que nenhum dos ramos assuma dominância

Introdução às Ciências Florestais, 1 de abril de 2020

Código de forma: 2 - ramos grossos

Árvore que apresenta um ou mais ramos que se destacam pelas suas dimensões, mas que não são o ponto de referência na medição de alturas

Código de forma: 3 - curvatura basal

Árvore com uma curvatura pronunciada no primeiro metro do tronco a partir do solo

Introdução às Ciências Florestais, 1 de abril de 2020

Código de forma: 4 - tronco torto

Árvore com uma curvatura pronunciada acima de 1 m a partir do solo

Código de forma: 5 – árvore inclinada

Árvore com uma inclinação superior a 30º do eixo vertical

Introdução às Ciências Florestais, 1 de abril de 2020

Código de forma: 6 – árvore com ponta partida

Árvore com a ponta partida acima da base da copa; as árvores partidas abaixo da base da copa codificam-se com código de estado =1

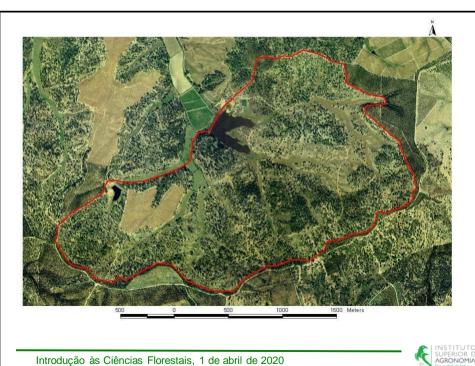
Código de forma:

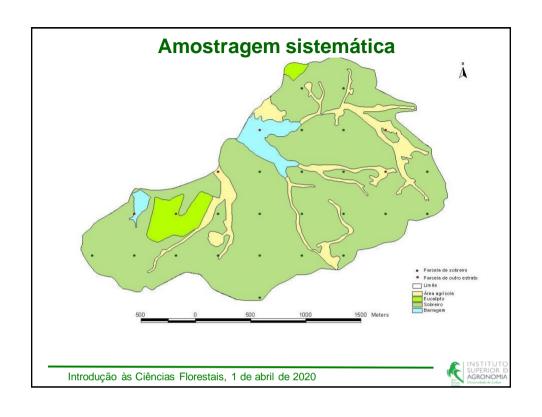
7 – árvore com ponta seca

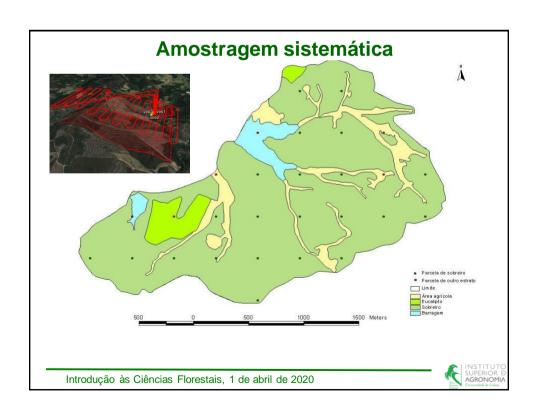
Árvore com a parte superior da copa seca; excluem-se as árvores com a totalidade da copa seca, que se codificam com código de estado = 1

Introdução às Ciências Florestais, 1 de abril de 2020

Amostragem no Inventário Florestal




A necessidade de amostrar


Em consequência:

- √ da grande extensão da maior parte das áreas em estudo
- √ do elevado consumo de tempo de algumas das técnicas de medição
- √ do facto de algumas técnicas de medição implicarem a destruição dos indivíduos (árvore ou povoamento) a medir
- a inventariação de recursos florestais pode ser baseada em técnicas de amostragem

A necessidade de amostrar

Variáveis do povoamento avaliadas com base em amostragem

Consequências:

O resultado não é exato, vindo afetado do erro de amostragem o qual se deve ao facto de não se ter medido o povoamento todo mas apenas um conjunto maior ou menor, de parcelas

O erro de amostragem é tanto maior quanto menos parcelas se medirem

O erro de amostragem é tanto maior quanto maior for a variabilidade da população

Introdução às Ciências Florestais, 1 de abril de 2020

Parcelas de inventário

Forma das parcelas

As formas mais utilizadas são o retângulo, o quadrado, o círculo e a faixa

A razão perímetro/área deve ser a menor possível para minimizar as árvores que se encontram no limite da parcela pois são uma fonte de erro - teoricamente, a forma mais vantajosa é o círculo e a forma mais desfavorável é a faixa

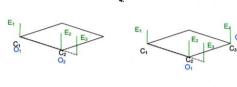
Introdução às Ciências Florestais, 1 de abril de 2020

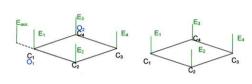

Dimensão das parcelas de inventário

Áreas mais comuns em parcelas de inventário e respectivos raios

Espécie(s)	Área (m²)	Raio (m)
Eucalipto	400	11.28
Pinheiro, eucalipto	500	12.64
Pinheiro, sobreiro jovem	1000	17.84
Sobreiro denso	1256.64	20
Sobreiro pouco denso	2827.43	30

A área da parcela está relacionada com a densidade do povoamento




Instalação de parcelas quadradas ou retangulares

 E_1 C_1 E_2 C_2 C_3

2 erros:

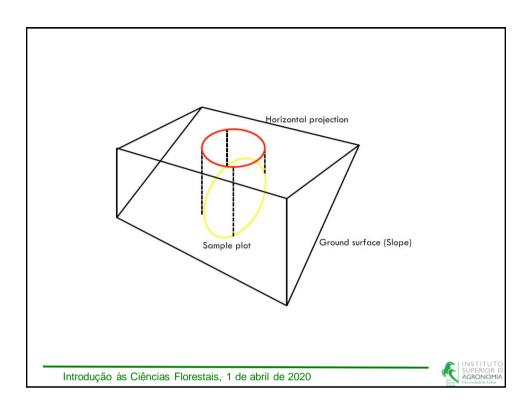
- (a) os que se cometem na medição de distâncias
- (b) os que se cometem no levantamento das perpendiculares quando se pretende encontrar o 3º e o 4º cantos

Introdução às Ciências Florestais, 1 de abril de 2020

Parcelas em terreno declivoso

Uma parcela circular em terreno declivoso corresponde a uma elipse no plano horizontal (com menor área do que a pretendida)

Hoje em dia existem vários aparelhos para a medição da distância horizontal com correção automática do declive



$$A = \Pi r^2$$
 $A = \Pi r^2 \cos \beta$

Medição de declives: Hipsómetros - Blum-Leiss, Vertex

$$dist_{inclinada} = \frac{dist_{horiz}}{\cos \beta}$$

