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linking farm‑level management decisions with the provision of socially valued public
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Dr. Jagadish Timsina 
Editor 
Agricultural Systems 
 
 
March 21, 2021 
 
Dear Dr. Jagadish Timsina, 
 
As requested in your email of 15 February 2021, I inform you that I have now revised the article 
by making the changes requested by the reviewer 1, namely: 
 
- added a "north" arrow to figure 1; 
- I separated the mean and the standard deviation into two columns in table 1; 
- I separated the mean, standard deviation, minimum and maximum into different columns in 
figure 2; 
- I increased the size of the partial dependence plots in Supplementary Information. 
 
Hoping that the article is now up to the high standards of Agricultural Systems, I would like to 
take the opportunity to thank the editor and the reviewers for all the revision work that has 
contributed so much to improving the article. 
 
Best regards, 
 

 
____________________________ 
Paulo Flores Ribeiro 
(pfribeiro@isa.ulisboa.pt) 
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Abstract 

 

CONTEXT: Efforts to bring together landscape analysis and farming systems have failed to 

explain the drivers behind their spatial distribution. Since agricultural landscapes are an 

outcome of farmers’ decisions, understanding the role of socioeconomic and biophysical drivers 

of such decisions is essential for policy-making targeting landscape-level provision of public 

goods and ecosystem services from agriculture. 

OBJECTIVE: Aiming to better understand the role of these drivers, we focused on a region 

dominated by agricultural use, with extensive variability in biophysical and socioeconomic 

conditions. A typology of farming systems was derived from spatially explicit farm-level data 

provided by the Portuguese agency responsible for Common Agricultural Policy payments, for 

2017. Farms were thoroughly characterized through relevant biophysical and socioeconomic 

variables considered as potential drivers of farming systems. 

METHODS: A random forest approach was used to develop a farming system choice-model, 

dependent on those biophysical and socioeconomic variables. Variable importance measures 

and partial dependence plots were used to explore the role of these variables in explaining the 

spatial distribution of farming systems and to predict spatial patterns at the landscape scale. 

RESULTS AND CONCLUSIONS: Results showed that both biophysical and socioeconomic drivers 

play a significant role in the spatial distribution of most agricultural systems. Its importance, 

however, varies significantly across farming systems, being crucial for some and almost 

irrelevant for others. Farm size and climate have proved to be the most relevant drivers for most 

farming systems.  Overall, our approach proved to be quite accurate in predicting patterns of 

farming systems at the landscape scale. 

SIGNIFICANCE: The proposed framework has shown great potential as a tool to support 

information-based policy design to improve agricultural landscape planning, by linking 

farm-level management decisions with the provision of socially valued public goods from 

agriculture, perceived at the landscape-level. 

 

Abstract



Explaining farming systems spatial patterns: a farm-level choice 

model based on socioeconomic and biophysical drivers 

 

Response to Reviewers  
 

Reviewer #1:  

Manuscript title: Explaining farming systems spatial patterns: a farm-level choice model based 

on socioeconomic and biophysical drivers. 

This paper explores the farming systems typologies and potential drivers with their roles, using 

spatial farm level data collected from the Alentejo region in Portugal. The author(s) have used 

bio-physical and socio-economics features to characterize the farming systems. They have used 

random forest - a machine learning algorithm to identify the key drivers through the measure of 

variable of relative importance and potential role of these drivers using partial dependence plots 

that generates the response of these drives over the different sub-systems. 

Overall, at my first read, I enjoy reading this paper as there are no such papers that explores 

the farming systems typologies using on spatially explicit models. Therefore, this paper is some 

how novel (quite impressive) and it can be considered in Agricultural Systems journal. 

However, while reading the paper second time, I found several issues associated with the 

analytical approach and potential drivers of farming systems included in the model. Here are 

some of my comments and I encourage author(s) to address these comments as this paper is 

important and it will add value to the literature. 

R: We appreciate the kind words of the Reviewer and her/his work in revising the MS, as well 

as the valuable comments and suggestions that helped to improve the paper. 

 

1. The variables used in the model are highly time variant, but the analytical approach has 

included data from a single year (2017). However, the author(s) mentioned that the data are 

collected on yearly basis (line 78-79 of the MS). If the data are accessible, I encourage authors 

to include multiple years data and check consistency in results across different sub-systems. 

R: We understand the Reviewer’s comment and agree that it would be interesting to include 

data from multiple years. However, although a huge amount of spatially explicit, yearly updated, 

farm-level data has been gathered by agricultural agencies across EU countries for 

administrative and farm payments purposes, access to these data is notoriously difficult, 

allegedly due to data confidentiality issues. This has been an important hurdle in our research 

lab, and very recently (December 2020) we published an article (Santos et a., 2020 – reference 

now included in the MS) where we make an explicitly plea for greater openness in making this 

data available, particularly for research purposes. Nevertheless, in this study we had the 

opportunity to access a set of these data which, although for a single year (2017), covered a 

region large enough to explore the spatial variability of the territory and farming systems, and 

Response to Reviewers



thus advancing the existing understanding of why farmers' productive decisions, made at the 

same point in time and under the same market and policy context, are so different in space. 

An explicit reference to the shortcomings of using data from just one year has now been added 

to the MS in a new section named "4.5. Shortcomings of the approach and recommendations 

for future research" (L544-551): 

“Because our farm characterization variables report to a single year, the effect of economic or 

policy variables such as prices or subsidies can only be assumed as underpinning the farmers' 

choices reflected on the observed 2017 IACS/LPIS data. However, the use of this type of variables 

in the model, provided that time-series of farm-level data can be made available, would 

significantly extend the scope of this approach, allowing its use to evaluate policy and price 

change scenarios. Even without additional temporal data, the framework can take advantage of 

the wide extension of the study area to perform, e.g., climate-change scenarios assessment, by 

adopting a space-for-time substitution approach.” 

In any case, we agree that this is indeed an important issue, so we reviewed the MS by adding 

the following appeal in section “4.6. Concluding remarks" (L609-615): 

“The use of IACS / LPIS data proved to be an invaluable asset for the research, enabling a high-

detailed farm-level analysis, not achievable using official statistics and usually only possible 

through expensive and time-consuming farm surveys, often unfeasible for research works 

developed at regional scales like the one used in this study. Therefore, it is worth renewing an 

appeal previously made (Santos et al., 2020; Tóth and Kučas, 2016), addressed at the EU bodies 

responsible for maintaining the IACS databases, to make them more accessible to the scientific 

community, while safeguarding confidentiality duties.” 

 

2. Don't the farming practices across these sub-systems (different farming systems) affect FS? I 

even didn't see any sort of farming systems management features in the model. (Ref: Table 2).  

R: We understand the Reviewer’s concern, which stems from the fact that the MS lacked a 

definition of the underlying concept of farming system (a concern also raised by Reviewer #3). 

Here, we followed the farming system (FS) definition proposed by Santos et al (2020), as a set 

of farms roughly practicing the same crops and agricultural activities, using similar technological 

processes and input endowments. In this context, and considering the information available in 

the IACS agricultural database (which basically describes livestock and land use/cover patterns), 

we assume that the same crops and agricultural activities, when practiced by farms in the same 

FS, resort to approximately the same production means and techniques. To clarify this issue in 

the revised version of the MS, we introduced a paragraph in the Introduction section with the 

definition of farming system (FS) (L58-64): 

“The FS concept used in this study follows that proposed by Santos et al. (2020), according to 

which a FS can be defined as a set of farms roughly practicing the same crops and agricultural 

activities, using similar technological processes and input endowments. A key aspect in this 

concept is that only variables resulting from farm management decisions are considered, when 

defining a FS; all variables that may influence these decisions but do not result from them, at 

least in the short run (e.g. farm size or fragmentation level, climate, slopes, market or policy), 

should be considered as exogenous to the FS and, therefore, as potential drivers of the FS choice 

(Silva et al., 2020).” 



 

3. I wonder why results show the less significance of irrigation? Is there any special reason in 

Alentejo region, as water is often a limiting factor in agriculture and of course that drives the 

farming system in the global south?  

R: We tested 2 variables describing farm access to irrigation water: WPUBLIC and WPRIVATE. 

The first described the proportion of the farm area (UAA) inside public irrigation systems and it 

showed up very significant (high “variable importance” in current Fig. 3). The second was just a 

dummy variable indicating if the farm had access to surface water (mostly from small water 

streams or pounds) and, in fact, it showed little significance in all models. We attributed this 

finding to the fact that, in the Alentejo region, surface water in small/medium water streams is 

mostly of torrential regime, drying out during summer, and thus not suitable to support most 

irrigated agricultural systems (see also our response to minor comment #2, below). 

 

4. Model did not include any of the features related with the marketing and it is not discussed 

anywhere in the MS. Market is the vital component of the FS. 

R: From our point of view, the market is an exogenous variable to the farming system, being a 

potential key driver of farmers' productive choices, but it is not a defining characteristic of the 

FS, as it does not result from the decisions of individual farmers, as explained in the definition 

of FS now added to the MS (see reply to comment 2). However, at the same point in time, market 

conditions (especially product and input prices) are (virtually) the same for all farmers in a given 

region. Therefore, in a non-temporal model there is no variation in these variables and for that 

reason, their effects cannot be evaluated (the same goes for the effects of policies). This 

important limitation of non-temporal models with an economic feature was addressed in the 

Discussion in the original version of the MS (L533-540), and has now been moved into the new 

section "4.5. Shortcomings of the approach and recommendations for future research" added 

in response to the Reviewer’s comment #5 (L544-551): 

“Because our farm characterization variables report to a single year, the effect of economic or 

policy variables such as prices or subsidies can only be assumed as underpinning the farmers' 

choices reflected on the observed 2017 IACS/LPIS data. However, the use of this type of variables 

in the model, provided that time-series of farm-level data can be made available, would 

significantly extend the scope of this approach, allowing its use to evaluate policy and price 

change scenarios. Even without additional temporal data, the framework can take advantage of 

the wide extension of the study area to perform, e.g., climate-change scenarios assessment, by 

adopting a space-for-time substitution approach.” 

 

5. I would suggest to the author(s) to add the "limitation of the study" section before the 

conclusion. You can write all the methodological limitations (mentioned above, if not addressed 

properly) and you have also removed several samples (Line 92). Also, you can write why the 

classification error rate for some of the FS sub-components are much higher, here in this section. 

R: We appreciate the recommendation and proceed as suggested. A new section «4.5 

Shortcomings of the approach and recommendations for future research» has been added to 

the MS. 



 

Minor comments:  

1. Please include the legends of the graphs in Annex-I for all the features. 

R: Done 

 

2. Referring variable WPRIVATE: Isn't there a spatially distributed surface water spatial map? I 

am not sure about using yes/no type of raster as a feature in spatial prediction for water. Yes, 

we can use for example for land types (e.g., uplands or lowlands). But for irrigation I am not 

sure. 

R: We understand the concern raised by the Reviewer. However, the only information available 

that we were able to access was a surface water map. This map is presented in Annex I 

(supplementary information), in which we highlighted the UAA with direct contact with small 

private surface water sources, like small streams or pounds (we discarded large rivers and 

reservoirs, since large rivers are hardly a direct irrigation water source for most farms, and 

reservoirs in this region are mostly associated with dams of public irrigation systems, whose 

irrigation areas were considered in the WPUBLIC variable). Thereby, this map only shows UAA 

where the possibility (but not the verification) of growing irrigated crops from private surface 

water sources exists (“yes”), regardless of whether it was actually used for irrigation. We have 

now added an explanation on this in the new section «4.5 Shortcomings of the approach and 

recommendations for future research» (L554-560). 

“(…) The problems observed with variable WPRIVATE may be one such case, as this variable only 

reported access to small private surface water sources, which are mostly torrential regime in this 

region, with insufficient water guarantees to encourage investing in irrigation systems, and not 

taking into account that a significant portion of private irrigation in this region is probably 

resorting to groundwater sources. This premise, which we could not test due to lack of data, 

would be worth further investigation, should spatially explicit data on groundwater uptakes 

becomes available.” 

 

3. Less focus on the productivity with the farm system (FS). 

R: Productivity (whether land productivity or labour productivity) were not used to define the 

farming systems, but they were later used to characterize the FS (Table 4), where we present 

an “intensity” indicator, resulting from an estimate of land productivity (in 103 euros per 

hectare). Therefore, (land) productivity was used in order to characterize the result of the 

system and not the FS itself. 

 

4. Economic status and economical parameters are not used extensively as the components of 

FS as agriculture mechanization fully depends on economic parameters. 

R: Our data did not provide any information on the mechanization levels of the farms, nor their 

economic profitability. We tried to circumvent these limitations by estimating the total gross 

product per land unit (in €/ha UAA) for each farm, following the EU “standard output” 



approach (Commission Regulation (EC) No 1242/2008 of 8 December 2008), as explained in 

L125-127. 

“(…) The intensity variable was calculated following the EU “standard output” approach 

(Commission Regulation (EC) No 1242/2008 of 8 December 2008) by estimating the total gross 

product per land unit (in €/ha UAA) for each farm.” 

 

 

Reviewer #2:  

The manuscript is well written while using rich data set. 

I have following suggestions on the manuscript 

R: We thank the Reviewer for revising this paper and we welcome her/his valuable comments 

and suggestions. 

 

- Present a map of study location 

R: We added a map of the study-area in the revised version of our manuscript. 

 

- Variables category (Table 1) is not clear. For example what are the crops under cereal (as rice 

is also cereal crop). Same with horticultural crops and livestock. For clarification, present the 

description of the category of the variable in a separate table as supplementary material or 

present in the text. 

R: We understand the Reviewer’s comment. To clarify this issue, we changed Table 1 by adding 

a description of the crops included in each category, whenever appropriate. 

 

- In Partial dependent plots (Figure 3), present the variable unit in the X - axis for clarification. 

R: We significantly changed this section of the MS and merged the two previous figures 2 and 3 

into a single figure (current Fig. 3), also following Reviewer #3 suggestions (comment #7). The 

information on the marginal effects of the drivers on the FS, provided by the partial dependence 

plots, was also included in Fig. 3, as described in the caption. The partial dependence plots are 

now presented only in supplementary information (Annex IV). 

 

 

Reviewer #3:  

The authors aim to link the farm-level drivers of the choice of farming system (FS) and predict 

their spatial distribution at the landscape level in a large geographical area in Portugal 

dominated by agricultural use. The authors delineate a typology of farming systems (22 no.) and 

characterize them by several biophysical and socioeconomic variables (assumed to explain the 

choice of FS). These factors/drivers were used in a random forest-based FS choice model to 



identify the critical drivers (and their roles) for all identified farm types. Finally, based on these 

farm-level drivers, the authors predict the spatial patterns of FS at the landscape scale. The 

article is well-written and the analytical approaches employed are novel in a sense that they link 

the farm-level drivers to the landscape level predictions, which is essential for practical purposes 

(e.g. provision of public goods). However, I have a few comments and suggestions for the 

authors to improve the readability for the readers having a different disciplinary background. 

My comments may also help other researchers to replicate the methods of this study in other 

contexts. 

R: We are very grateful to the Reviewer for revising this MS so thoroughly and for conceding the 

contribution and novelty of the work. Thank you for your comments and suggestions, which 

have greatly improved the MS. 

 

1. I am not very clear about the statement "There has been, however, a recent surge in the 

development of proposals to bring together landscape analysis and farming systems (FS) to 

understand agricultural landscapes, which can establish the FS geography but struggle to explain 

the drivers behind their spatial distribution" - Is it that no existing report on landscape analysis 

and farming systems explain such spatial distribution? If yes, I am interested to know why do 

they struggle to do that - is it linked to the constrained access to data or methodological 

limitation? 

R: We agree that the statement was misleading and therefore re-wrote it as “(…) but do not go 

into explaining the (…)”. 

 

2. The concept of 'farming system' needs to be defined somewhere in the methods section since 

it has an established technical definition in the related literature. I guess farm types (identified 

by PCA and Cluster Analysis) are analogous to FS. This needs to be mentioned to avoid 

speculation and confusion. 

R: We agree that a definition of the FS concept used in this study was missing, so we added a 

paragraph in the Introduction to clarify the concept early in the manuscript. We also revised the 

Methods section to clarify methodological issues related to the concept whenever needed. (L58-

64): 

“The FS concept used in this study follows that proposed by Santos et al. (2020), according to 

which a FS can be defined as a set of farms roughly practicing the same crops and agricultural 

activities, using similar technological processes and input endowments. A key aspect in this 

concept is that only variables resulting from farm management decisions are considered, when 

defining a FS; all variables that may influence these decisions but do not result from them, at 

least in the short run (e.g. farm size or fragmentation level, climate, slopes, market or policy), 

should be considered as exogenous to the FS and, therefore, as potential drivers of the FS 

choice (Silva et al., 2020).” 

According to this definition, farm type and farming system are not necessarily analogous: for 

example, in building a farm typology we would probably use the size of the farm, to distinguish 

different farm types (e.g. small, medium and large farms); in a typology of farming systems we 

do not use this variable, as we consider that the size of the farm is, in fact, a driver that 

expands or restricts the farmer's productive options, that is, the choice of the FS. For this 



reason, we do not use the term "farm type" in this paper (except in L133, when referring to 

the context of Commission Regulation (EC) No 1242/2008 of 8 December 2008). 

 

3. I am curious to know the process of identifying the socioeconomic and biophysical drivers. Is 

this ad-hoc or selected through an internal review process or by expert consultation? Also, how 

were they screened? Please mention. 

R: Yes, the screening of the potential drivers was mostly based on literature review and the 

experience of the authors from previous studies. We added a clarification on this at the 

beginning of section 2.3 – Socioeconomic and biophysical drivers (L167-170): 

“Potential socioeconomic and biophysical drivers of farming system choice were screened from 

literature (e.g. Grigg, 2005; Hazell and Wood, 2008; Kristensen et al., 2016; Plieninger et al., 

2016; Reboul, 1989; van Vliet et al., 2015) and the authors’ experience from previous studies 

where similar approaches were applied (Ribeiro et al., 2018, 2014; Silva et al., 2020).” 

 

4. "...by testing different stratified sampling approaches to deal with anticipated unbalanced 

data" - This is an exciting strategy to optimize the prediction accuracy of the model across FS. 

But, I think the authors need to explain this in details in the Supplementary Information. 

R: Agreed (please, see response to comment #12). 

 

5. Although PDP gives a hint of marginal effects of the drivers on individual FS, I am interested 

to know how the interactions of drivers (especially powerful drivers) affected the choice of FS 

and how that could affect the landscape level prediction of the model. Because it is often 

common that certain combinations of the drivers (e.g. landholding and access to irrigation) 

emerge as powerful influencing factors for certain FS. Related discussions are placed here and 

there in the MS, but I would love to see the authors say explicitly how this complexity (i.e. 

possible interactions) was handled. Or at least provide the readers with an indication of such 

interactions operative at the farm level. You may also suggest that accommodating these 

interactions in the landscape level prediction models could be a future scope of research. 

R: This is, indeed, an interesting issue. Interaction effects in random forest models has been the 

subject of discussion among experts and a final conclusion still seems to have not been reached. 

Some argue that the random forest model, being based on decision trees where variables are 

analysed sequentially, is therefore able to deal with interactions without having to specify them. 

Others draw attention to the fact that interactions can be masked by marginal effects, making 

it impossible to differentiate between interactions and marginal effects. Others still suggest 

working on interactions in advance, creating new variables in the database, but this can lead to 

a significant unfolding in the number of predictor variables. In models that are characterized by 

the high dimensionality of the data, this can increase the complexity of the analysis to 

undesirable levels. 

In this study, we were mostly focused on exploring the direct (marginal) effects of biophysical 

and socioeconomic drivers on the spatial distribution of FS. However, although exploring the 

effects of interaction between drivers is beyond the scope of this study, it must be recognized 

that they are both possible and probable, and thus it should be mentioned in the MS. Therefore, 



we left a reference to this in section «4.5 Shortcomings of the approach and recommendations 

for future research» (L565-568): 

“Also, one aspect that has not been explored in the present study and should merit further 

investigation is the occurrence of interaction effects between drivers. Although the way random 

forests deal with these effects is still subject to discussion (Wright et al., 2016), its likely existence 

recommends additional analysis.” 

 

6. Authors have made critical reflections regarding the high error rate in the model for certain 

FS. Can a list of reasons be prepared for FS with very high error rates so that readers do not 

run across the text to explore them? 

R: The high error rate in some FS is attributed to the existence of factors that are not being 

controlled by the considered variables. These may include the effect of farmers’ individual 

desires, attitudes or motivations, or her/his socioeconomic profile, which cannot be controlled 

based on IACS data. It is therefore difficult, if not impossible, to present a list of the potential 

reasons behind the high error rate observed in some FS, based on the available data. Only in 

some cases we could speculate on the possible reasons for this mismatch, such as the 

"Pastures without livestock" system, to which we referred in the MS. Following a suggestion 

from Reviewer #1, we have gathered references to these issues in the new section «4.5 

Shortcomings of the approach and recommendations for future research» and changed the 

text hoping to make it clearer (L569-585). 

“Finally, the fact that the prediction error rate has shown significant disparities across the FS 

suggests that the choice of some of these FS may be due to effects not measured by the 

variables examined, including factors related to farmers' desires, attitudes and motivations, or 

with their socioeconomic profile which, as mentioned above, cannot be assessed on the basis of 

IACS data. One such case would be the Pastures without livestock system, whose choice is 

probably mostly determined by the presence of livestock farms in the nearby, with whom the 

farm can negotiate grazing land renting, rather than by the biophysical characteristics of the 

farm or its socioeconomic context. On the other hand, FS with lower error rates in the model 

were those who most depend on the chosen socioeconomic or biophysical factors, such as the 

Rice, Irrigated cereals and horticulture or Rainfed cereals and oilseed systems (where cereals 

are an autumn-winter rainfed crop and oilseeds are grown in spring-summer season, often 

irrigated) that highly depend on irrigation water provided by public irrigation systems in this 

region. The same applies to the Vineyards system, whose location is highly dependent on the 

availability of regional labour supply, to meet peaks of labour needs at certain times of the 

year, related to certain crop operations (e.g. harvesting or pruning). In the present market, 

policy and technological context, these FS revealed greater dependence on farm structure and 

“territorial embeddedness” (sensu Cerceau et al., 2018).” 

 

7. I strongly recommend that the authors prepare a summary table or (ideally) a value-added 

visualization (e.g. heatmap) to show all the critical drivers for 22 FS together. That will be great 

for the readers to get an overview of variable importance covering all 22 FS instead of scanning 

through the figures and their discussions. A large number of related figures in the main text 

may be sent to the Supplementary Information. 



R: We agreed with the Reviewer's suggestion and merged the two previous figures 2 and 3 into 

a single figure (current Fig. 3) showing a heatmap of variable importance of drivers in each FS, 

and including an information on the marginal effects of the drivers on the FS, provided by the 

partial dependence plots, as described in the caption. The partial dependence plots are now 

presented only in supplementary information (Annex IV). 

 

8. I was curious to know (to teach myself) why hexagonal units were taken as the unit of analysis? 

I see an explanation in the methods. But, my interest is in the usefulness of the shape of the 

unit. Can any reference be cited here? 

R: Hexagonal grids have been widely used in ecology studies exploring landscape metrics (Birch 

et al., 2007; Grif et al., 2000; Schindler et al., 2008). Compared to square grids, hexagonal grids 

can be seen as more “natural” shapes, as they potentially reduce bias due to edge effects by 

decreasing the perimeter-area ratio (which is minimal in the circle, although it does not allow 

continuous grids to be formed) (Birch et al., 2007; Elkie et al., 1999). We have introduced a brief 

explanation of this option in the MS (L246-248): 

“A hexagonal grid was preferred over a square grid because it is less subject to bias from the 

edge effects when computing landscape metrics (Birch et al., 2007).” 

 

9. Is it the case that a hexagon where an FS (say FS-X) is predominant will be more accurately 

predicted if the error rate associated with FS-X in the RF Choice-Model is low? If that is the case, 

the prediction accuracy is dependent on FS composition in the hexagon. Then, I assume that the 

hexagons should be marked as 'more predictable' and 'less predictable' for informing the 

planners. Does marking hexagons as 'less error-prone' add value to the landscape-level 

prediction and their use in practice? Please think. 

R: In our view, several factors may influence the accuracy rate in predicting the landscape 

pattern in each hexagon. On the one hand, the hit rate on each hexagon will depend on the hit 

rate of the FS that make it up, as mentioned by the Reviewer. On the other hand, it will also 

depend on the number of FS in that hexagon (a higher number of different FS may contribute to 

lower the hit rate). Not to mention the influence that the size of the hexagons can also have on 

the predictive ability of the model, as noted by the Reviewer in his comment #10. 

Additionally, it should be noted that the differences were not calculated at the farm level, but 

at the level of the hexagon as a whole, as described in L249-253. Therefore, the FS hit rate may 

not evolve in parallel with the landscape hit rate. For example, in a hypothetical landscape with 

only two competing FS, each occupying 50% of the total area, if the error rate in the prediction 

of the FS is 100%, the success rate in predicting the landscape pattern will be also 100%, as the 

same 50-50% ratio is maintained in the hexagon's FS composition. This resembles to the fuzzy 

kappa statistic approach, which is often used for pattern recognition in raster map comparisons 

(which is not, however, our case) (Hagen‐Zanker, 2009; Hagen, 2002; Visser and De Nijs, 2006). 

Fuzzy map comparisons stand out as they resemble the way human observers compare maps 

(e.g. two chess boards on top of each other result in a complete mismatch of colours if one of 

them is rotated 90 degrees; however, for a human observer the patch pattern will be the same 

in both boards). 



It is therefore not easy to state how assigning a “predictability-tag” to individual hexagons could 

be useful for planning purposes, given the uncertainty about its actual meaning. The approach, 

as proposed, is particularly suited for its ability to establish a direct link between the farm and 

the landscape scales, enabling to easily assess the impact of local (farm) policies on landscape 

patterns. It can thus be used to find the right balance between farmers’ private goals and societal 

demand for agricultural public goods by, e.g., simulating policies that encourage farmers to 

adopt particular high nature value farming systems. 

 

10. "For agricultural landscape planning focused on agroecosystem services provision, this may 

be the right scale of analysis" - I appreciate this insight. However, how can we say this without 

experimenting with the size of the hexagon? I do not expect that everything will be done in a 

single study. However, identifying the appropriate scale for landscape-level prediction through 

the RF choice-model may be mentioned as the scope of future research. 

R: We agree that this is a relevant research issue and it should be further investigated. We 

have therefore inserted a reference to this question in the new section "4.5. Shortcomings of 

the approach and recommendations for future research" (L561-564): 

“Another issue deserving further investigation concerns the dimension of the grid of landscape 

analysis units. It is possible that the size of these units (i.e. the hexagons, in the current case) 

influences the accuracy of the model, so future investigation focused on determining its optimal 

size could prove to be of high value.” 

 

11. I surmise the assumed equivalence of farm-level decision for all 22 Farm Types. Can the 

choice of pasture and olive be judged with the same set of indicators? I understand the random 

allocation of variables (at individual nodes of the tree) during the random forest exercise, but it 

is tricky to equate the existence of a rice field with an eight-year-old orchard. I request the 

author to reflect on this. 

R: On a first note, it is important to bear in mind that the model is choosing between farming 

systems (FS) and not between crops or land uses/covers. Each FS is represented by the centroid 

of the group (cluster) that includes all the farms that were classified in this class (FS). The land 

use/cover of this synthetic “representative farm” assumes the average land use/cover of all 

farms in the same class. Therefore, the question of choosing between pasture or olive groves, 

or between rice and orchards, does not arise as such. 

The estimation of a random forest model involves training hundreds of individual decision trees, 

each one using a slightly different (random) subset of the observations, and selecting for each 

splitting node the best predictor variable from a (random) subset of the total predictors in the 

dataset. The final prediction will be the mode of the predictions from all individual trees. 

Using a random forest model in practice, to classify a new observation (i.e. to make a prediction), 

involves making this observation go through all the nodes of each tree, until reaching a terminal 

node (or "leaf") that will assign it with a single class of the dependent variable (i.e. a FS in our 

case). After going through all the trees in the forest, this observation will be assigned to the class 

verified in most of the trees (the most “voted” FS). 



Therefore, each observation will be classified in a completely independent way, based only on 

the values of its own predictor variables (i.e., based on its intrinsic characteristics), and without 

any relation to the values of the other observations. Observations with similar characteristics 

will thus tend to be classified in the same category and, as these characteristics result from 

spatial components, they will also tend to be spatially arranged. 

So, the FS assigned by the model to each farm depends only on the characteristics (biophysical 

and socioeconomic) of that farm, without any relation to its previous use. The fact that the 

model is able to predict correctly most of the times just means that, in fact, these biophysical 

and socioeconomic factors have been effectively taken into account by farmers in their 

production decisions. 

 

12. Details of the RF model  

I prefer the authors to detail the RF exercise to enhance the reproducibility of the Methods. The 

authors do not detail their data pretreatments nor the implementation of the machine learning 

methods. Were the comparisons made 'on equal footing'?  Can the author describe how they 

pretreated the data - this is important. One of the tricky bits about implementing machine 

learning is the data pretreatments and the data engineering that is required before fitting the 

models - I suggest the authors to clearly state what they did (for instance, any filtering? 

transformations? centering? scaling? etc.).  Then, when they fit the models, how did they 

optimize? For RF what are the hyperparameters (the number of trees, the minimum number of 

samples in a leaf node, the minimum number of samples required to split an internal node, etc.) 

they used and how they chose those hyperparameters for RF? It is insufficient to state that the 

"randomForest" package was used. I request the authors to describe all preprocessing and 

hyperparameter tuning and their effects in the modelling, etc.  I do not mean that they should 

include textbook descriptions of the algorithms, but instead, they should detail their specific 

implementation, optimizations etc., maybe in the Supplementary Information). 

R: We agree with the Reviewer and added a new annex in supplementary information (Annex II) 

describing the procedures followed in the parametrization of the random forest model. 

Accordingly, some of the more technical parts of the text in the original MS, describing the 

random forest model, have now been moved to this annex. 

 

Having said all these things, I must submit that every aspect of a complex phenomenon cannot 

be addressed (and thus controlled) in a single study. No one can do that/ expect that. Many of 

my suggestions are to address the raised issues in the MS either by rationalizing them or by 

mentioning them as the limitation/future scope of research. I congratulate the authors on 

coming up with a novel analytical approach that links farm-level drivers to the landscape-level 

prediction, something more acceptable to the policymakers. Overall, I have a positive impression 

of the paper and believe that it can make a significant contribution to the existing literature. 

 

*********************** 
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Explaining farming systems spatial patterns: a farm-level choice 1 

model based on socioeconomic and biophysical drivers 2 

 3 

Abstract 4 

 5 

CONTEXT: Efforts to bring together landscape analysis and farming systems have failed to explain the 6 

drivers behind their spatial distribution. Since agricultural landscapes are an outcome of farmers’ 7 

decisions, understanding the role of socioeconomic and biophysical drivers of such decisions is 8 

essential for policy-making targeting landscape-level provision of public goods and ecosystem services 9 

from agriculture. 10 

OBJECTIVE: Aiming to better understand the role of these drivers, we focused on a region dominated 11 

by agricultural use, with extensive variability in biophysical and socioeconomic conditions. A typology 12 

of farming systems was derived from spatially explicit farm-level data provided by the Portuguese 13 

agency responsible for Common Agricultural Policy payments, for 2017. Farms were thoroughly 14 

characterized through relevant biophysical and socioeconomic variables considered as potential 15 

drivers of farming systems. 16 

METHODS: A random forest approach was used to develop a farming system choice-model, dependent 17 

on those biophysical and socioeconomic variables. Variable importance measures and partial 18 

dependence plots were used to explore the role of these variables in explaining the spatial distribution 19 

of farming systems and to predict spatial patterns at the landscape scale. 20 

RESULTS AND CONCLUSIONS: Results showed that both biophysical and socioeconomic drivers play a 21 

significant role in the spatial distribution of most agricultural systems. Its importance, however, varies 22 

significantly across farming systems, being crucial for some and almost irrelevant for others. Farm size 23 

and climate have proved to be the most relevant drivers for most farming systems.  Overall, our 24 

approach proved to be quite accurate in predicting patterns of farming systems at the landscape scale. 25 

SIGNIFICANCE: The proposed framework has shown great potential as a tool to support information-26 

based policy design to improve agricultural landscape planning, by linking farm-level management 27 

decisions with the provision of socially valued public goods from agriculture, perceived at the 28 

landscape-level. 29 
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1. Introduction 31 

Agriculture is a dominant land use in many parts of the world, resulting from human interaction with 32 

nature over time. This interaction is mostly regulated by two main types of drivers: biophysical 33 

(climate, soil, topography...) and socioeconomic (farm structure, characteristics of farmers, markets, 34 

policies...). The way each of these drivers affects agricultural landscapes has attracted the interest of 35 

researchers (Grigg, 2005; Hazell and Wood, 2008; Kristensen et al., 2016; Plieninger et al., 2016; van 36 

Vliet et al., 2015), but many unanswered questions still persist (Plieninger et al., 2016; Wilson, 2009). 37 

Advancing knowledge about the role played by each of these factors in shaping agricultural landscapes 38 

can thus improve our understanding of human/environment interactions, allowing to anticipate farm 39 

management decisions and supporting evidence-based public intervention (Levers et al., 2016; van de 40 

Steeg et al., 2010). 41 

Such issues have recently been raised in the context of the provision of public goods and 42 

agroecosystem services in general, including biodiversity conservation (Landis, 2017; Schaller et al., 43 

2018). Much literature resort to aggregated data concerning land use or to agriculture intensification 44 

or specialization indicators, privileging landscape-dynamics analysis over landscape regional 45 

differentiation, and seldom take the farm as the unity of inquiry (Debolini et al., 2018; Ruiz-Martinez 46 

et al., 2015). There has been, however, a pressing need to the development of approaches linking 47 

landscape analysis and farming systems (FS) to understand agricultural landscapes, which are able to 48 

establish the FS geography but do not go into explaining the drivers behind their spatial distribution 49 

(Andersen, 2017; Benoît et al., 2012; Martel et al., 2019; Rizzo et al., 2013; van de Steeg et al., 2010). 50 

Indeed, considering the mismatch between the farm-scale, where management decisions take place, 51 

and the landscape-scale, where ecosystem services are perceived, landscape analysis can greatly 52 

benefit from a deeper understanding of the factors that influence farm management decisions. Thus, 53 

understanding the multiple production decisions of adjacent farmers and combining these decisions 54 

at the landscape-scale is key to explain the landscape mosaic and the ecological disturbance regimes 55 

(fire, grazing, ploughing…) that shape the habitats of wild species and the provision of diverse 56 

ecosystem services. 57 

The FS concept used in this study follows that proposed by Santos et al. (2020), according to which a 58 

FS can be defined as a set of farms roughly practicing the same crops and agricultural activities, using 59 

similar technological processes and input endowments. A key aspect in this concept is that only 60 

variables resulting from farm management decisions are considered, when defining a FS; all variables 61 

that may influence these decisions but do not result from them, at least in the short run (e.g. farm size 62 



or fragmentation level, climate, slopes, market or policy), should be considered as exogenous to the 63 

FS and, therefore, as potential drivers of the FS choice (Silva et al., 2020). 64 

To explain the spatial distribution of FS, distinct groups of drivers can be considered according to 65 

distinct disciplinary perspectives or theoretical approaches. The analysis of farm biophysical 66 

endowments to explain spatial patterns of FS has largely been explored by geography and 67 

geo-agronomy (Deffontaines, 2004; Deffontaines et al., 1995; Grigg, 2005; Lacoste et al., 2018). 68 

Climate, soil, and slope are often considered to establish a range of restrictions to the choice of the 69 

farming system. But FS are also dependent on farmland structure and social context. Farmland 70 

structure covers an ensemble of constraints such as farm size, fragmentation and spatial composition 71 

which potentially restrict farmers decisions (Grigg, 2005; Latruffe and Piet, 2014; Reboul, 1976; Ribeiro 72 

et al., 2018). The influence of territorial socioeconomic context on FS location may be grounded in the 73 

notion of local embeddedness, supported by local sociocultural, demographic and economic structures 74 

(Canadas and Novais, 2014; Debolini et al., 2018). 75 

Using farm-level data collected in 2017 in a large-scale study area, we developed an innovative 76 

methodological approach to: 1) derive a spatially-explicit FS typology; 2) assess the role of 77 

socioeconomic and biophysical factors in explaining the spatial distribution of those FS; 3) assess the 78 

extent to which we can predict FS patterns based on biophysical and socioeconomic variables. Results 79 

were used to discuss the role of these drivers on the choice of the FS and their potential to predict 80 

landscape patterns, seeking to draw conclusions to better inform policy design for landscape-level 81 

provision of public goods from agriculture and prediction of landscape patterns in face of biophysical 82 

or socioeconomic changes. 83 

 84 

2. Methods 85 

2.1.  Study area 86 

The study focused on the Alentejo region, in southern Portugal (Fig. 1), corresponding to the EU 87 

statistical region PT18, at the NUTS2 level (Nomenclature of Territorial Units for Statistics). Covering 88 

about 31,551 km2 (ca. 1/3 of Portugal), the region has a Mediterranean climate, with hot dry summers 89 

and mild rainy winters. The annual average temperature is about 16.3ºC, ranging from 9.9ºC to 23.4ºC 90 

in January and August, respectively, and the total annual rainfall is about 619 mm, largely concentrated 91 

in the rainy season (approx. October to March). The relief is predominantly smooth (47% of the land 92 



with slope < 5%; but 14% with slope > 15%), with few mountain areas (average altitude is 176 m a.s.l., 93 

ranging from 0 to 1020 m). 94 

 95 

 96 

Fig. 1 - Location of the study area in the Alentejo region (NUTS2), Portugal 97 

 98 

According to the latest agricultural census in Portugal (2009), the utilized agricultural area (UAA) in 99 

Alentejo (NUT 2) was then ca. 2.2 million hectares, covering almost 70% of the region and making it 100 

the dominant land use. Official statistics report that in 2016 the utilized agricultural area (UAA) was 101 

dominated by permanent pastures (64%), followed by annual crops (24%) and permanent crops (11%). 102 

Cereals, forages and olive groves were the main crops, with roughly equal shares of 8% in total UAA 103 

(making ca. 70% of the UAA excluding permanent pastures). Nearly 40% of the UAA is under the canopy 104 

of scattered trees, mainly cork and holm oaks (Quercus suber and Q. rotundifolia respectively), 105 

originating an agroforestry system locally named "montado", which is largely acknowledge for its high 106 

nature value (Ferraz-de-Oliveira et al., 2016). Cropland in these undercover areas are mainly 107 

permanent pastures (70%) and annual crops (30%). Most of the UAA is rainfed (ca. 90%) and irrigated 108 

areas are mostly located within state-promoted irrigation systems, often depending on large dams. 109 

The region is dominated by large holdings, with almost 90% of the UAA in farms with more than 50 ha. 110 

 111 



2.2.  Farming systems identification 112 

To build a farming systems typology for the study area we used data from the EU Integrated 113 

Administration and Control System (IACS) for 2017, associated with spatially explicit farm parcel data 114 

from the Land Parcel Identification System (LPIS), provided by the Portuguese agency responsible for 115 

Common Agricultural Policy (CAP) payments. These data are collected on a yearly basis from farmers 116 

declarations when applying for CAP payments and its usefulness for FS research has been 117 

demonstrated by previous studies (Lomba et al., 2017; Ribeiro et al., 2018, 2016, 2014). 118 

The raw dataset identified 26,648 CAP beneficiaries in the study area, covering a total of 2,221,816 ha 119 

distributed over 208,338 parcels which, in turn, included 560,213 subparcels for which land use/crop 120 

cover was described. Livestock declared by each beneficiary was also provided, describing species 121 

composition, gender, age groups and an indication of whether they were kept in stables or grazing. 122 

First, all parcels declared by the same CAP beneficiary were taken as a single farm. However, we found 123 

that some beneficiaries reported very scattered parcels, sometimes separated by hundreds of 124 

kilometres, where the farm concept (as an agricultural management unit) would not apply. In these 125 

cases, we decided to regroup these parcels into new (sub)farms by forcing the distance between them 126 

not to exceed 25 km, which increased the total number of farms to 28,739. This decision also helped 127 

to narrow down the range of biophysical variability within each farm, and thus to better link farm units 128 

to their biophysical context, described in the next section. We also discarded farms with total area 129 

equal or below 2 ha (4409 farms, representing less than 1% of total UAA) because the land use in 130 

smaller farms is likely to be highly sensitive to crop rotations, which cannot be properly captured with 131 

one-year data. 132 

The raw data included 129 land use/cover categories, which were simplified by aggregation into 133 

broader categories, while maintaining the distinction between irrigated and rainfed crops, when 134 

applicable (e.g., irrigated and rainfed cereals). We also included two variables describing the 135 

proportion of the UAA under the cover of cork and holm oaks, respectively, because their presence is 136 

prone to influence farm management, as the first is a major source of income for farmers (cork 137 

production) and the later provides shade and food (acorns) to livestock grazing, in addition to valuable 138 

firewood. These two variables were computed on a geographical information system (GIS) 139 

environment by intersecting the farms map (derived from the LPIS spatial data) with digital information 140 

on cork and holm oak distribution and computing, for each farm, the share of the UAA covered with 141 

both land cover classes. 142 



Livestock numbers were converted into livestock units (LU) using EU standard conversion factors, and 143 

these were used to describe the percentage composition of livestock by species, as well as livestock 144 

density in each farm. Thus, a set of 28 variables was defined to characterize the land use/cover and 145 

livestock patterns for each farm (Table 1). 146 

A principal component analysis (PCA) was performed on a correlation matrix of these 28 variables to 147 

reduce variable redundancy and the principal axes with eigenvalues above 1 entered a hierarchical 148 

cluster analysis (Ward method) to derive the FS typology. The number of clusters to retain was decided 149 

based on a visual analysis of the dendrogram and on expert knowledge of the study area. 150 

To help interpreting the resulting FS, we calculated three variables indicating the level of agricultural 151 

intensity, specialization and dependence on labour. The intensity variable was calculated following the 152 

EU “standard output” approach (Commission Regulation (EC) No 1242/2008 of 8 December 2008) by 153 

estimating the total gross product per land unit (in €/ha UAA) for each farm. The specialization variable 154 

was computed as the highest proportion of standard output from a single farm activity. The labour 155 

indicator aims to differentiate the FS based on their specific labour needs, in annual work units per 156 

land unit (AWU/ha UAA). Due to data limitations, we had to resort to official statistics on the “EU farm 157 

typology by economic size and type of farming” (in the sense of the above-mentioned legal text), at 158 

NUT2 level (Alentejo) for the year of 2013, from which we extracted the number of annual work units 159 

per hectare for each farm type, to be directly associated to each of the resultant FS on a similarity base. 160 

Thereby, this indicator was not computed at farm level, but directly at FS level. 161 

 162 

Table 1 – Summary statistics for the land use/cover and livestock farm characterization variables (n = 163 

24313 farms) 164 

Variable Mean SD 

Land use/cover variables (proportion of total UAA)   

Rice (both Indica and Japonica) 0.012 0.1 

Cereals Irrigated (corn, wheat, oats, barley, triticale) 0.018 0.104 

Cereals rainfed (wheat, corn, oats, barley, rye and triticale) 0.056 0.165 

Orchards (orange, apple, plum, fig, loquat, cherries, blackberry, raspberry) 0.013 0.078 

Forages Irrigated (ryegrass, lucerne, silage maize, sorghum, vetch) 0.006 0.051 

Forages Rainfed (ryegrass, oats, corn, sorghum, lupine) 0.049 0.153 

Horticultural (potatoes, carrots, onions, cabbages, beans, chickpeas) 0.017 0.089 

Industrial horticulture (tomato and pepper) 0.011 0.092 

Oilseeds (sunflower and rapeseed) 0.01 0.067 



Pastures (temporary grass and permanent grasslands) 0.511 0.41 

Fallows 0.043 0.146 

Olive groves Irrigated 0.034 0.156 

Olive groves Rainfed 0.171 0.291 

Vineyards 0.034 0.145 

Walnuts and almond trees 0.003 0.048 

Stone pine 0.009 0.079 

Other dry fruits (hazelnut, chestnut, pistachios, carob) 0.001 0.019 

Cork oak cover 0.149 0.265 

Holm oak cover 0.111 0.229 

Livestock variables (proportion in total LU)   

Cattle grazing 0.168 0.34 

Cattle stabled 0.003 0.04 

Fattening cattle grazing 0.018 0.054 

Fattening cattle stabled 0.002 0.037 

Sheep grazing 0.205 0.386 

Goat grazing 0.024 0.131 

Dairy cows 0.004 0.047 

Pigs grazing 0.008 0.076 

Livestock density (LU/ha UAA) (includes all farm animals, added-up in LU) 0.526 3.506 

 165 

2.3.  Socioeconomic and biophysical drivers 166 

Potential socioeconomic and biophysical drivers of farming system choice were screened from 167 

literature (e.g. Grigg, 2005; Hazell and Wood, 2008; Kristensen et al., 2016; Martel et al., 2019; 168 

Plieninger et al., 2016; Reboul, 1989; van Vliet et al., 2015) and the authors’ experience from previous 169 

studies where similar approaches were applied (Ribeiro et al., 2018, 2014; Silva et al., 2020). 170 

Subsequently, each farm was characterized according to a set of socioeconomic and biophysical 171 

variables thus identified, considered as potential drivers of FS spatial patterns (Table 2). These 172 

variables vary spatially but are mostly constant over time (at least for the time scale of most farm 173 

management decisions). 174 

Socioeconomic variables included seven farm structure variables (farm and block size, farm 175 

fragmentation and dispersion, access to public and private water sources for irrigation, nature 176 

conservation constraints on farm use), and six local context variables computed from official statistics 177 

at the administrative parish level (one demographic variable, population density, and five agricultural 178 

variables, e.g. AWU availability or the share of rented UAA); all farms in the same parish where 179 



assigned the same value in these variables; when farms had areas in more than one parish, these 180 

variables were computed through average-weighting by farm-area shares in each parish. Biophysical 181 

variables included three climatic variables (describing temperature and precipitation), eight soil quality 182 

variables (describing soil depth, texture and pH) and three topographic variables (slope categories). 183 

(Table 2). 184 

Values for explanatory variables were derived for each farm using a GIS (maps for explanatory variables 185 

are provided in supplementary information, Annex I). Farms with missing values resulting from map 186 

mismatches were discarded, dropping the number of valid observations to 23,416 farms. 187 

 188 

Table 2 – Summary statistics for the socioeconomic and biophysical drivers (n = 23416 farms) 189 

Variable Description Mean SD Min  Max 

Socioeconomic variables – farm structure variables 

FSIZE Farm size – Total UAA (ha) (1) 84.09 184.46 2.01  7191.16 

BLKSIZE Average farm-block size (ha) (1) 23.15 45.37 0.20  1109.93 

JANUS Januszewski index (adimensional) (1) (2) 0.65 0.23 0.13  1.00 

BLKDIST Average area-weighted block distances to farm 

centroids (m) (1) 

1571.00 2128.00 0.00  56951.00 

WPRIVATE Access to water from private ponds or small streams 

(yes=1; no=0) (5) 

0.16 0.37 0.00  1.00 

WPUBLIC Proportion of UAA in public irrigation systems (6) 0.15 0.31 0.00  1.00 

NATURE Proportion of UAA included in areas classified for 

nature conservation (7) 

0.22 0.39 0.00  1.00 

Socioeconomic variables – local socioeconomic variables 

INCAGRI Proportion of farms where agriculture is the main 

household income source (3) 

0.23 0.14 0.00  0.84 

INCOTH Proportion of farms where household income is 

mostly from outside the farm, but not pensions (3) 

0.26 0.07 0.00  0.67 

PDENS Population density (inhabitants/km2) (4) 32.5 77.8 0.89  1084.24 

AWU Number of annual work units (AWU) per km2 of total 

parish area (3) 

1.96 1.70 0.21  17.95 

AWU hired Proportion of hired work in total labour (3) 0.26 0.15 0.00  0.93 

RENT Proportion of rented land in total UAA (3) 0.18 0.12 0.00  1.00 

Biophysical variables 

TMIN Average minimum temperature in the coldest month 

1970-2000 (ºC) (8) 

4.71 0.59 3.01  8.40 



TMAX Average maximum temperature in the warmest 

month 1970-2000 (ºC) (8) 

31.56 1.95 20.24  35.68 

PREC Average annual rainfall 1970-2000 (mm) (8) 592.89 107.28 376.83  1195.51 

SDEPTH Soil depth (cm) (5) 52.74 29. 80 0.00  150.00 

SMOOTH Proportion of UAA with smooth slopes (<5%) (5) 0.51 0.32 0.00  1.00 

MODERATE Proportion of UAA with moderate slopes (5-16%) (5) 0.38 0.24 0.00  1.00 

STEEP Proportion of UAA with steep slopes (>16%) (5) 0.11 0.19 0.00  1.00 

HEAVY_S Proportion of UAA with heavy texture soils (5) 0.33 0.37 0.00  1.00 

MEDIUM_S Proportion of UAA with medium texture soils (5) 0.42 0.38 0.00  1.00 

LIGHT_S Proportion of UAA with light texture soils (5) 0.24 0.36 0.00  1.00 

VERYACID Proportion of UAA with very acid soils (pH<5) (5) 0.27 0.33 0.00  1.00 

ACID Proportion of UAA with acid soils (5<pH<6) (5) 0.41 0.38 0.00  1.00 

NEUTRAL Proportion of UAA with pH neutral soils (6<pH<7) (5) 0.21 0.30 0.00  1.00 

ALKALINE Proportion of UAA with alkaline soils (pH>7) (5) 0.11 0.24 0.00  1.00 

Sources: (1) Computed from LPIS data; (2) Farm spatial fragmentation index, varying from 0 to 1 with higher values 190 

indicating a higher degree of farmland consolidation (Januszewski, 1968); (3) Agricultural census 2009 - parish level; (4) 191 

Population census 2011 - parish level; (5) EPIC WebGIS Portugal (http://epic-webgis-portugal.isa.ulisboa.pt/); (6) DGADR - 192 

Direção-Geral de Agricultura e Desenvolvimento Rural (http://sir.dgadr.gov.pt/expl-alentejo); (7) ICNF – Instituto de 193 

Conservação da Natureza e das Florestas (http://www2.icnf.pt/portal/pn/ap); (8) IPMA - Instituto Português do Mar e da 194 

Atmosfera (https://www.ipma.pt/pt/oclima/normais.clima/) 195 

 196 

2.4.  Model design 197 

We developed a random forest FS choice model to explore the farm-level relationships between the 198 

typologies of FS derived from cluster analysis and the socioeconomic and biophysical variables. 199 

Random forest is a popular machine learning method that can be used both for regression and 200 

classification, and is well-suited for high dimensional data (Strobl et al., 2009). Random forest use 201 

bootstrap and aggregation (bagging), building multiple decision trees based on random subsets of the 202 

data and using a random subset of predictor variables candidates for each node, in each decision tree 203 

(Liaw and Wiener, 2002). On a classification problem, each observation is assigned to a class according 204 

to the majority of votes from all trees. Both the number of trees and the number of predictor variables 205 

sampled for each node are user-defined and can be used to tune the model. The mean out-of-bag 206 

(OOB) error rate computed across all trees provides a measure of model prediction accuracy (Breiman, 207 

2001). Random forests have been widely used in many scientific fields and have proved to be one of 208 

the best machine learning techniques currently available, including for predictive modelling of spatial 209 

and spatio-temporal data (Hengl et al., 2018). 210 

http://epic-webgis-portugal.isa.ulisboa.pt/
http://sir.dgadr.gov.pt/expl-alentejo
http://www2.icnf.pt/portal/pn/ap
https://www.ipma.pt/pt/oclima/normais.clima/


 211 

2.4.1. Explaining spatial distribution of farming systems 212 

Since we were firstly interested in exploring causal theories on the main drivers of FS spatial 213 

distribution, rather than using the model to make predictions on new data (e.g. to assess scenarios of 214 

policy or climate change), we tuned the model to optimize its average prediction accuracy across FS, 215 

rather than maximizing the overall prediction power, by testing different stratified sampling 216 

approaches to deal with anticipated unbalanced data (high variance in group sizes) (see details of 217 

model parametrization in supplementary information – Annex II). At this stage, model overfitting 218 

should not be an issue, since the focus was on explaining our training data, rather than the 219 

generalization of the model (Shmueli, 2010). 220 

With this modelling outset, all FS are assumed to be competing simultaneously for each farm and the 221 

choice is made dependent only on variables that vary in space, while keeping constant the effect of 222 

temporal variables (such as prices or policies). The effect of these temporal variables on the choices 223 

observed in the study year cannot be estimated, as we only have one observation on FS choice for 224 

each farm, that is: the choice observed in the study year 2017. 225 

We used variable importance measures to assess the relevance of each predictor variable in the model 226 

and their marginal effect on each FS was examined using partial dependence plots (Friedman, 2001) 227 

(supplementary information – Annex II). We investigated the shape of the partial dependence plots 228 

fitted functions for each class of the dependent variable (that is, for each FS) to infer their role as 229 

drivers or constraints for each FS. In addition, we computed the correlation coefficient between the 230 

level of farming intensity characterizing each FS with the corresponding prediction accuracy rate 231 

obtained by the model, to test the hypothesis of a positive relationship between the levels of this 232 

indicator and the degree of FS dependence on socioeconomic and biophysical drivers. 233 

All statistical analyses were carried out in R 3.4.1 (R Development Core Team, 2017).  234 

 235 

2.4.2. Predicting spatial patterns of farming systems 236 

On a following step, we focused on exploring the predictive capacity of the model in the choice of the 237 

FS, based on the socioeconomic and biophysical variables described above. Since we were mostly 238 

interested in predicting FS choice at the landscape-scale rather than at farm-scale, taking into account 239 

the importance of landscape patterns for biodiversity and public goods delivery, we focused the 240 

analysis on the model's ability to predict FS spatial patterns at a scale comparable to that of the 241 



landscape (Andersen, 2017). For this purpose, the study area was divided into a random network of 242 

hexagons of about 54,125 ha each, corresponding to a hexagon apothem of 12.5 km which was chosen 243 

with reference to the 25 km threshold used to define the farms. These hexagons were then used as 244 

analysis units to compare, for each hexagon, the percentage distribution of the UAA by FS in the 245 

observed situation with that predicted by the model. A hexagonal grid was preferred over a square 246 

grid because it is less subject to bias from the edge effects when computing landscape metrics (Birch 247 

et al., 2007). We rejected all hexagons with more than 66% of the area outside the LPIS data, due to 248 

low significance for this purpose. In each hexagon, we calculated the difference between the observed 249 

and predicted UAA shares for each FS and computed the half-sum of their absolute values. The average 250 

of these results across all hexagons was interpreted as an estimate of the percentage of accuracy 251 

obtained in model predictions, that is, the capacity of the model to predict spatial patterns of FS 252 

composition at the landscape-scale. In addition, we also computed the determination coefficient (r2) 253 

between the observed and predicted values in each hexagon, taking its mean as a measure of the 254 

quality of fit of the model. Model predictions were obtained by running the model on a random test-255 

set of the data with ca. 1/3 of the observations (farms), after estimating it in a train-set with the 256 

remaining 2/3. 257 

 258 

3. Results 259 

3.1.  Farming systems typology 260 

A solution of 30 groups, representing farming systems, was selected from the cluster analysis. As some 261 

groups included only a very small number of observations (farms), we anticipated potential problems 262 

in the estimation of the predictive model and so we decided to eliminate groups with less than 0.7% 263 

of the total number of observations, an arbitrary threshold mostly based on expert judgement. This 264 

led to the removal of 8 non-representative FS, comprising 613 farms accounting for 3.1% of total UAA, 265 

which were discarded for further analysis. Consequently, the final number of FS was set at 22 (Table 266 

3). 267 

By chance, these FS resulted equally divided into livestock-oriented systems and crop-oriented 268 

systems. Both groups include similar shares in number of farms (51.5% and 48.5%, respectively), 269 

although farms in livestock-oriented systems cover a much larger share of total UAA (78.2%) denoting 270 

they are larger farms, on average. 271 



Within the livestock systems, six are oriented to sheep, three to cattle, one to goats and one is mixed 272 

with cattle and sheep. Among the six sheep-oriented systems, two are agroforestry grazing systems, 273 

one associated with cork oak and the other with holm oak, a third one is related with open land 274 

pastures, a fourth sheep system is mainly dependent on forage crops, the fifth depends both on 275 

permanent pastures and forage crops, and the last is mostly a mixed-system combining rainfed olive 276 

groves with sheep grazing. The three cattle systems also include two agroforestry grazing systems with 277 

permanent pastures under the canopy of cork and holm oaks, respectively, and a third one depending 278 

mainly on forage crops. The mixed cattle-sheep system is highly dependent on irrigated forages and 279 

the last livestock-oriented system is the goat system, which is also a pasture-dependent grazing system 280 

(Table 3). 281 

Among the crop-oriented systems, five are dedicated to permanent crops, four to annual crops and 282 

the last two refer to special situations, one including farms without livestock but with almost all UAA 283 

under pasture, probably yearly rented to neighbours with cattle, and the other encompassing farms 284 

with almost all UAA set to fallow. The permanent crops systems included two systems dedicated to 285 

olive groves, one of which was irrigated and the other rainfed, one to vineyards, another to fruit trees 286 

and the last one to stone pines (for pine nut production). The annual crops systems included two 287 

rainfed systems, one dedicated to cereals and the other to cereals and oilseeds, one dedicated to 288 

irrigated cereals and horticultural crops, and the last one to rice production (Table 3). 289 

The average farming intensity across the 22 FS is about 1650 €/ha, with the Fruit trees system as the 290 

most intensive, reaching ca. 12600 €/ha, and 15 systems below 1000 €/ha. Agricultural specialization 291 

is relatively high, with more than half of the FS earning more than 80% of their standard output from 292 

a single activity. Average farm specialization is higher in crop systems than in livestock systems (85% 293 

and 74%, respectively), where most systems earn more than 90% from a single activity. Average labour 294 

needs are also higher in crop systems than in livestock systems (0.039 and 0.004 AWU/ha, respectively, 295 

i.e. nearly 10 times more), with a maximum of 0.259 AWU/ha found in the Irrigated cereals and 296 

horticultural crops system and a minimum of 0.003 AWU/ha found in systems Pastures without 297 

livestock and Fallows (Table 4). 298 

Average farm size varies significantly across FS, with values going from ca. 11 ha in both rainfed olive 299 

grove systems (with and without sheep) until over 200 ha, in cattle grazing – HO and – CO systems 300 

(288 and 249 ha, respectively) (Table 4). 301 

Almost 1/3 of all farms are included in only three FS, all with more than 2500 farms (systems Rainfed 302 

olive groves, Pastures without livestock and Cattle grazing – CO). However, nearly 1/3 of total UAA is 303 



concentrated in one single FS, the Cattle grazing – CO. The three cattle-oriented FS comprise more 304 

than half of the total UAA (53.3%) (Table 4). 305 

 306 



Table 3.a – Farming system description – Land cover composition (average values in proportion to the total UAA; values under 0.01 are omitted; values above 0.5 307 

are in bold) 308 

Farming system                    
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Cattle grazing – CO*     0.039     0.884   0.026     0.329 0.082 
Cattle grazing – HO*   0.020  0.035     0.906   0.020     0.048 0.590 
Cattle grazing – forages  0.011 0.143  0.239 0.015  0.020 0.027 0.388  0.045 0.093     0.049 0.086 
Grazing goats     0.027     0.923   0.023     0.314 0.207 
Mixed Cattle and sheep - 
Irrigated forages 

 0.034 0.037 0.444 0.112 0.019  0.016 0.018 0.219 0.018 0.015 0.049     0.066 0.028 

Sheep grazing – CO*     0.012     0.936   0.022   0.012  0.686 0.022 
Sheep grazing – HO*   0.029  0.025    0.013 0.891   0.032     0.051 0.641 
Sheep grazing - pastures   0.014  0.021     0.852   0.085     0.141 0.048 
Sheep grazing - pastures and 
forages 

  0.169  0.139 0.015   0.027 0.437   0.156 0.030    0.056 0.036 

Sheep grazing - forages   0.041  0.650    0.033 0.127   0.107     0.068 0.053 
Rainfed olive groves with 
sheep 

    0.016     0.291   0.660 0.010    0.039  

Rainfed olive groves         0.016 0.099 0.013  0.823 0.018    0.011  
Irrigated olive groves   0.012      0.022 0.052  0.770 0.083  0.021   0.016 0.024 
Vineyards  0.010   0.013    0.054 0.066 0.014 0.029 0.093 0.697    0.025 0.010 
Fruit trees     0.014    0.025 0.243 0.548 0.012 0.083 0.020   0.025 0.142 0.040 
Stone pine 0.038        0.019 0.189   0.023   0.713 0.000 0.249 0.010 
Rice 0.850 0.012       0.039 0.068        0.024  
Irrigated cereals and 
horticultural crops 

 0.300 0.038   0.241 0.242  0.049 0.077        0.018 0.012 

Rainfed cereals and oilseeds  0.087 0.300   0.038  0.430 0.063 0.030  0.011 0.026      0.018 
Rainfed cereals   0.463  0.016 0.015  0.010 0.171 0.150   0.147     0.031 0.039 
Pastures without livestock          0.785  0.015 0.152 0.012    0.082 0.088 
Fallows   0.079  0.011 0.016   0.752 0.037 0.011  0.077     0.048 0.141 

* CO – Under cover of cork oak; HO – Under cover of holm oak 309 

 310 



 311 

Table 3.b – Farming system description – Livestock composition in livestock-oriented farming 312 

systems (average values in proportion to total LU; values under 0.01 are omitted; proportions 313 

above 0.5 are in bold) and livestock density 314 

Farming system 
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Cattle grazing – CO* 0.872  0.084  0.028    0.799 

Cattle grazing – HO* 0.865  0.080  0.044    0.677 

Cattle grazing – forages 0.859  0.083  0.041    0.967 

Grazing goats     0.082 0.910   1.039 

Mixed Cattle and sheep - Irrigated 

forages 

0.480  0.073  0.300 0.069 0.077  0.618 

Sheep grazing – CO* 0.144  0.010  0.799 0.043   0.245 

Sheep grazing – HO*     0.963 0.028   0.387 

Sheep grazing - pastures     0.973 0.017   1.004 

Sheep grazing - pastures and 

forages 

    0.792 0.206   0.711 

Sheep grazing - forages 0.049    0.709 0.236   0.378 

Rainfed olive groves with sheep     0.974 0.024   1.212 

* CO – Under cover of cork oak; HO – Under cover of holm oak 315 

 316 

Table 4 – Characterization of farming systems according to the levels of farming intensity, 317 

specialization and labour needs, average farm size (in hectares of UAA and number of LU) and 318 

representativeness (in number of farms, UAA and LU) 319 

 

Characterization of farming 

systems 

Average 

farm size 
Representativeness 

Intensity 

(103 

€/ha) 

Speciali- 

zation 

(%) 

Labour 

needs 

(AWU/ha) 

UAA 

(ha) 

LU 

(n.) 

Number of 

farms 
UAA 

Livestock 

Units 

Total % 
Total 

(103 ha) 
(%) 

Total 

(103 LU) 
(%) 

Cattle grazing – CO* 0.46 84.3 0.005 248.5 128.7 2515 10.6 625 31.1 323.8 36.5 

Cattle grazing – HO* 0.31 84.0 0.005 288.2 157.0 1245 5.3 359 17.9 195.5 22.0 



Cattle grazing – forages 0.75 68.3 0.005 186.1 88.1 463 2.0 86 4.3 40.8 4.6 

Grazing goats 0.94 88.6 0.004 52.6 19.7 251 1.1 13 0.7 4.9 0.6 

Mixed Cattle and sheep 

- Irrigated forages 

1.14 75.0 0.005 58.8 24.3 171 0.7 10 0.5 4.1 0.5 

Sheep grazing – CO* 0.24 54.6 0.004 89.0 19.0 2346 9.9 209 10.4 44.6 5.0 

Sheep grazing – HO* 0.28 64.9 0.004 84.9 23.5 1391 5.9 118 5.9 32.6 3.7 

Sheep grazing - pastures 0.71 84.1 0.004 54.5 22.4 1461 6.2 80 4.0 32.7 3.7 

Sheep grazing - pastures 

and forages 

0.79 70.6 0.004 52.8 18.7 745 3.1 39 2.0 13.9 1.6 

Sheep grazing - forages 0.46 69.9 0.004 25.3 4.3 848 3.6 21 1.1 3.7 0.4 

Rainfed olive groves 

with sheep 

0.91 74.1 0.006 12.0 9.6 774 3.3 9 0.5 7.4 0.8 

Rainfed olive groves 0.30 92.3 0.010 10.6 0.1 2626 11.1 28 1.4 0.3 0.0 

Irrigated olive groves 1.45 93.0 0.023 82.4 0.8 864 3.6 71 3.5 0.7 0.1 

Vineyards 1.84 90.3 0.050 24.3 0.5 928 3.9 23 1.1 0.4 0.0 

Fruit trees 12.59 89.9 0.036 25.7 1.5 325 1.4 8 0.4 0.5 0.1 

Stone pine 4.63 97.6 0.009 68.0 1.4 221 0.9 15 0.7 0.3 0.0 

Rice 1.70 93.8 0.018 52.8 4.0 314 1.3 17 0.8 1.3 0.1 

Irrigated cereals and 

horticultural crops 

4.66 90.9 0.259 53.7 1.8 1070 4.5 57 2.9 1.9 0.2 

Rainfed cereals and 

oilseeds 

0.98 88.2 0.006 65.7 0.9 421 1.8 28 1.4 0.4 0.0 

Rainfed cereals 0.42 82.0 0.010 33.8 0.4 1537 6.5 52 2.6 0.6 0.1 

Pastures without 

livestock 

0.20 61.5 0.003 48.5 8.5 2602 11.0 126 6.3 22.2 2.5 

Fallows 0.59 54.1 0.003 20.8 0.0 582 2.5 12 0.6 0.0 0.0 

Total - - - - - 23700 100 2007 100 733 - 

* CO – Under cover of cork oak; HO – Under cover of holm oak 320 

 321 

3.2.  Spatial determinants of farming system choice 322 

The tuning of the random forest model led to a 500 trees model, with 5 variables randomly 323 

sampled as candidates at each split and using the “sampsize” option to correct size differences 324 

across the FS categories (see details in Annex II – supplementary information). The classification 325 

error rates for each of the 22 FS ranged from 14.0% in the Rice system to 97.4% in the Pastures 326 

without livestock system (Fig. 2), with an average of 63.7% across all FS, a value that should be 327 



evaluated positively considering the high number of classes in the dependent variable (22 FS, 328 

for which the random error rate would be about 95.4% with balanced data). 329 

 330 

 331 

Fig. 2 - Classification error rates for the 22 farming systems (values in %) 332 

 333 

The relative importance of socioeconomic and biophysical variables was very similar, and among 334 

the top ten variables, in terms of mean decrease accuracy (Annex II – supplementary 335 

information), six are socioeconomic and four are biophysical. The farm physical dimension 336 

variables (FSIZE and BLKSIZE) and a local context of high dependence on family income in 337 

agriculture (INCAGRI) proved to be the most relevant socioeconomic factors influencing the 338 

choice of FS, while in the biophysical variables the most important were the climatic variables 339 

(Fig. 3). The variable indicating access to surface water sources (WPRIVATE) was found to be the 340 

least important, either in the global model or in most of the class-specific models. 341 

 342 



 343 

Fig. 3 - Variable importance for the overall model and for each farming system. Socioeconomic farm structure variables in blue; local-socioeconomic variables 344 

in orange; biophysical variables in green. Variables ordered by decreasing variable importance in the overall model and within each sub-group. Symbols ↑, ↓ 345 

and ↕ indicate whether the marginal effect of the variable in each farming system is mostly positive, negative or non-monotonic, respectively, based on the 346 

shape of the fitted function on the partial dependence plots (partial dependence plots are provided in supplementary information, Annex IV). Variable 347 

description in Table 2 348 
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FSIZE 65,6 ↑ 59,5 ↑ 55,2 ↑ 41,5 ↕ 5,8 ↓ 4,7 ↑ -0,7 ↑ 6,0 ↕ 12,6 ↕ 12,4 ↓ 15,6 ↓ 29,9 ↓ 54,8 ↓ 19,6 ↓ 23,5 ↓ 13,0 ↕ 9,0 ↑ 15,7 ↓ 12,2 ↑ 13,9 ↓ 14,6 ↕ 9,7 ↓ 29,1

BLKSIZE 50,9 ↑ 37,9 ↑ 32,9 ↑ 19,3 ↕ 6,4 ↑ 3,1 ↑ 28,5 ↑ 11,3 ↓ 15,5 ↓ 14,2 ↓ 15,2 ↓ 42,5 ↓ 50,2 ↑ 25,9 ↓ 27,1 ↓ 7,1 ↑ 19,4 ↕ 19,4 ↓ 14,3 ↓ 19,8 ↓ 29,0 ↕ 6,9 ↓ 18,2

JANUS 32,5 ↑ 3,3 ↑ 6,0 ↓ 13,9 ↑ 4,3 ↕ 1,3 ↑ 7,0 ↑ 5,8 ↕ 7,4 ↓ 10,6 ↑ 4,8 ↕ 5,3 ↑ 7,8 ↑ 6,3 ↕ 12,5 ↑ 5,3 ↑ 3,5 ↓ 8,5 ↕ 12,5 ↓ 21,4 ↕ 3,5 ↑ 2,4 ↑ 12,8

BLKDIST 30,9 ↕ 6,7 ↑ 7,0 ↕ 5,6 ↕ 0,1 ↕ 1,1 ↑ 3,6 ↕ 5,5 ↓ 6,3 ↕ 2,1 ↓ 4,8 ↓ 7,1 ↓ 11,6 ↓ 9,5 ↕ 14,0 ↓ 6,5 ↑ 1,5 ↑ 2,3 ↑ 12,4 ↑ 14,8 ↕ 3,1 ↕ 4,5 ↓ 9,3

INCAGRI 52,7 ↕ 18,4 ↑ 5,4 ↓ 13,6 ↓ 1,4 ↕ 4,4 ↑ 14,0 ↕ 26,8 ↓ 14,3 ↓ 11,6 ↓ 12,6 ↓ 23,9 ↓ 30,2 ↓ 17,9 ↓ 27,0 ↓ 10,3 ↕ 29,6 ↑ 27,3 ↑ 16,6 ↕ 24,7 ↕ 18,3 ↓ 5,8 ↓ 26,2

RENT 47,3 ↑ 12,6 ↑ 6,1 ↑ 7,9 ↕ 2,1 ↕ 3,8 ↑ 8,7 ↑ 17,8 ↕ 10,3 ↕ 5,3 ↕ 11,7 ↕ 11,6 ↕ 18,5 ↑ 17,7 ↓ 23,1 ↓ 8,9 ↓ 11,8 ↕ 15,5 ↓ 16,7 ↕ 14,3 ↕ 11,6 ↕ 7,0 ↓ 17,1

INCOTH 47,3 ↓ 14,8 ↕ 8,7 ↑ 5,4 ↕ 4,8 ↕ 4,6 ↓ 14,6 ↕ 15,8 ↕ 12,3 ↕ 6,2 ↑ 11,3 ↕ 10,6 ↕ 18,8 ↑ 13,8 ↕ 20,6 ↑ 7,6 ↕ 19,1 ↓ 16,1 ↕ 14,9 ↑ 16,0 ↕ 10,3 ↕ 5,6 ↑ 19,6

PDENS 46,0 ↕ 16,3 ↓ 6,4 ↓ 5,4 ↓ 1,1 ↑ 5,0 ↓ 14,8 ↓ 23,5 ↕ 11,7 ↓ 5,8 ↕ 12,1 ↑ 20,4 ↕ 19,6 ↓ 16,4 ↑ 27,3 ↓ 10,7 ↓ 20,4 ↕ 13,3 ↑ 20,4 ↑ 21,6 ↓ 15,2 ↓ 5,3 ↓ 25,4

AWU 45,7 ↓ 15,7 ↓ 18,4 ↓ 10,3 ↓ 4,9 ↑ 5,9 ↓ 20,6 ↓ 21,7 ↓ 19,2 ↓ 10,5 ↕ 10,2 ↑ 14,8 ↑ 27,2 ↑ 27,0 ↑ 42,0 ↕ 9,6 ↓ 23,3 ↕ 17,0 ↑ 27,6 ↑ 18,1 ↑ 20,7 ↓ 11,2 ↑ 23,5

WPUBLIC 43,7 ↓ 28,2 ↓ 20,0 ↓ 5,3 ↓ 14,6 ↑ 6,4 ↓ 24,1 ↓ 27,0 ↓ 20,6 ↓ 3,0 ↕ 8,2 ↕ 20,4 ↑ 17,2 ↑ 43,4 ↑ 29,2 ↕ 9,6 ↓ 18,6 ↑ 32,2 ↑ 18,8 ↑ 42,5 ↕ 8,2 ↓ 10,3 ↕ 4,7

AWU_hired 43,6 ↑ 11,9 ↕ 11,2 ↓ 9,0 ↕ 3,1 ↕ 3,7 ↑ 14,1 ↕ 17,3 ↕ 7,8 ↓ 7,8 ↓ 8,8 ↕ 9,3 ↓ 18,2 ↓ 14,4 ↓ 19,7 ↓ 5,4 ↑ 12,4 ↑ 12,0 ↓ 18,2 ↕ 19,0 ↓ 14,7 ↓ 6,8 ↓ 15,0

NATURE 27,0 ↑ 5,5 ↕ 8,8 ↑ 11,8 ↕ 4,0 ↕ 6,2 ↕ 6,4 ↓ 6,0 ↓ 6,0 ↕ 8,4 ↓ 6,8 ↕ 6,2 ↓ 9,8 ↓ 12,2 ↓ 12,0 ↕ 7,6 ↕ 6,1 ↑ 9,6 ↓ 10,5 ↓ 12,2 ↓ 9,6 ↓ 2,4 ↓ 11,0

WPRIVATE 8,7 ↑ 0,8 ↑ 3,0 ↑ -0,7 ↓ 4,0 ↑ 0,9 ↓ -1,5 ↑ 1,3 ↓ 1,7 ↓ 1,2 ↓ 1,8 ↓ 4,6 ↓ 8,5 ↓ 4,2 ↓ 6,2 ↓ 2,0 ↑ 3,3 ↑ 3,4 ↑ 0,9 ↑ 3,3 ↓ 3,5 ↓ 1,9 ↓ 2,8

TMAX 56,4 ↓ 32,0 ↑ 21,0 ↕ 16,5 ↓ 12,2 ↕ 6,8 ↓ 31,7 ↑ 25,6 ↕ 11,7 ↑ 9,7 ↓ 13,6 ↑ 22,4 ↑ 36,8 ↑ 43,7 ↑ 28,1 ↕ 15,9 ↓ 26,2 ↓ 31,6 ↕ 25,9 ↑ 40,2 ↑ 28,4 ↑ 9,0 ↑ 25,6

TMIN 56,2 ↑ 18,7 ↑ 9,8 ↑ 15,6 ↕ 3,5 ↓ 5,4 ↕ 20,0 ↕ 26,0 ↕ 10,4 ↕ 8,0 ↕ 10,1 ↕ 16,9 ↓ 22,2 ↓ 19,4 ↕ 26,4 ↓ 10,3 ↕ 14,4 ↕ 15,4 ↓ 19,7 ↓ 19,2 ↕ 15,3 ↕ 7,3 ↕ 18,4

PREC 48,1 ↑ 25,7 ↓ 23,7 ↓ 20,1 ↑ 11,5 ↑ 5,4 ↑ 32,2 ↓ 33,3 ↑ 14,7 ↕ 12,9 ↑ 13,2 ↑ 22,4 ↕ 22,0 ↓ 25,7 ↑ 24,4 ↑ 17,7 ↑ 20,5 ↑ 22,4 ↕ 23,6 ↓ 22,3 ↓ 19,4 ↕ 6,9 ↓ 23,3

SDEPTH 47,3 ↓ 32,2 ↓ 13,8 ↓ 10,5 ↓ 15,9 ↑ 6,2 ↓ 23,4 ↓ 33,2 ↓ 9,1 ↓ 9,0 ↓ 5,3 ↕ 16,7 ↕ 20,0 ↓ 14,0 ↕ 22,7 ↓ 5,5 ↕ 27,9 ↑ 25,7 ↑ 35,9 ↑ 34,5 ↓ 14,9 ↓ 8,5 ↓ 15,7

LIGHT_S 41,5 ↑ 15,8 ↕ 19,0 ↓ 14,2 ↑ 7,0 ↑ 5,8 ↑ 26,4 ↓ 18,5 ↓ 8,2 ↓ 9,2 ↓ 2,4 ↕ 13,2 ↓ 17,1 ↓ 16,9 ↓ 14,3 ↑ 9,7 ↑ 26,8 ↑ 22,8 ↕ 15,8 ↓ 20,6 ↓ 16,7 ↓ 4,0 ↓ 16,6

ACID 41,2 ↑ 20,8 ↑ 12,5 ↓ 7,7 ↑ 5,9 ↓ -0,4 ↑ 13,5 ↑ 12,0 ↕ 6,0 ↕ 4,0 ↓ 4,3 ↓ 9,4 ↓ 24,6 ↓ 17,1 ↓ 18,8 ↕ 3,4 ↑ 8,7 ↑ 10,6 ↓ 12,0 ↓ 20,0 ↓ 10,7 ↕ 2,9 ↓ 11,2

NEUTRAL 40,9 ↓ 14,2 ↓ 10,8 ↓ 10,9 ↓ 9,7 ↑ 2,0 ↓ 15,9 ↓ 24,3 ↓ 8,9 ↓ 5,0 ↓ 4,8 ↑ 11,1 ↑ 28,6 ↑ 21,9 ↑ 19,7 ↓ 9,7 ↓ 15,6 ↓ 19,0 ↑ 15,6 ↑ 34,3 ↕ 12,0 ↓ 0,8 ↓ 10,9

MEDIUM_S 40,1 ↕ 13,1 ↑ 14,4 ↕ 7,3 ↕ 4,1 ↓ 3,5 ↕ 12,5 ↑ 16,6 ↑ 5,7 ↕ 6,8 ↕ 1,3 ↓ 10,4 ↓ 11,8 ↑ 8,2 ↓ 17,6 ↓ 4,9 ↕ 16,0 ↕ 13,0 ↓ 10,2 ↑ 17,3 ↑ 9,2 ↓ 5,9 ↕ 12,3

VERYACID 38,1 ↑ 13,5 ↑ 7,9 ↕ 5,9 ↑ 2,9 ↑ 4,7 ↑ 17,7 ↑ 16,6 ↕ 6,8 ↕ 6,8 ↓ 5,3 ↓ 9,7 ↓ 11,7 ↓ 9,8 ↓ 10,6 ↑ 2,5 ↑ 11,2 ↓ 10,3 ↓ 11,7 ↓ 12,3 ↕ 4,7 ↓ 3,5 ↑ 11,8

SMOOTH 37,7 ↓ 20,3 ↓ 13,4 ↓ 10,5 ↓ 14,6 ↑ 3,6 ↓ 22,7 ↓ 26,7 ↓ 10,6 ↓ 6,4 ↕ 5,9 ↓ 12,9 ↓ 14,2 ↕ 7,9 ↑ 18,9 ↓ 7,4 ↓ 13,2 ↑ 20,1 ↑ 24,8 ↑ 19,7 ↓ 11,9 ↓ 3,0 ↓ 16,1

HEAVY_S 34,2 ↓ 14,3 ↓ 10,5 ↕ 5,7 ↓ 4,9 ↑ 5,9 ↓ 17,2 ↕ 15,3 ↓ 10,4 ↕ 6,1 ↕ 5,8 ↑ 11,6 ↑ 15,6 ↑ 13,0 ↑ 16,3 ↓ 10,2 ↓ 20,6 ↕ 20,4 ↑ 16,3 ↑ 17,3 ↑ 15,8 ↓ 5,1 ↑ 14,6

STEEP 31,8 ↑ 19,2 ↑ 10,7 ↓ 9,4 ↑ 19,3 ↓ 0,8 ↑ 27,4 ↑ 25,5 ↑ 2,2 ↕ 6,8 ↓ 4,0 ↑ 3,1 ↑ 11,8 ↓ 14,2 ↓ 14,5 ↑ 5,8 ↑ 9,2 ↓ 9,9 ↓ 9,4 ↓ 15,2 ↓ 12,9 ↕ 5,9 ↓ 13,1

ALCALINE 31,7 ↓ 12,1 ↓ 11,5 ↓ 8,6 ↓ 3,5 ↑ 4,2 ↓ 18,1 ↓ 16,6 ↓ 9,4 ↓ 1,1 ↓ 8,1 ↕ 9,7 ↑ 11,0 ↕ 7,9 ↕ 12,0 ↓ 0,6 ↓ 12,6 ↑ 15,1 ↑ 19,8 ↑ 12,3 ↓ 12,4 ↓ 5,7 ↓ 9,2

MODERATE 29,9 ↑ 18,0 ↑ 12,0 ↑ 6,1 ↑ 5,2 ↓ 2,9 ↑ 18,0 ↑ 18,4 ↑ 11,2 ↑ 3,0 ↕ 4,6 ↑ 10,0 ↑ 7,1 ↑ 5,2 ↕ 14,2 ↑ 4,4 ↕ 7,7 ↓ 17,8 ↓ 22,1 ↓ 13,4 ↑ 4,6 ↕ 0,3 ↑ 11,2
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Farm size (FSIZE) and average farm-block size (BLKSIZE) were the most relevant variables for the 349 

choice of Cattle grazing FS, positively influencing its choice (Fig. 3). The same variables also have 350 

a relevant effect on most sheep systems but, in this case, predominantly on the opposite 351 

direction (Fig. 3). The choice of the Cattle grazing – CO system is positively influenced by the 352 

increase of the average annual rainfall (PREC) and negatively by high summer temperatures 353 

(TMAX), which has a positive effect on the choice of the Cattle grazing – HO system. The Cattle 354 

grazing – forages system is distinguished by a preference for warmer winters (Fig. 3). 355 

The Grazing goats system is positively related to sloping terrain; its choice is favoured by 356 

increasing the slope (STEEP), while avoiding flat land (SMOOTH). This system is also 357 

characterized by avoiding public irrigation areas (WPUBLIC) and deep soils (SDEPTH). The choice 358 

of the Mixed Cattle and sheep - Irrigated forages system is favoured by deeper soils, public 359 

irrigation systems (WPUBLIC) and high local labour availability (AWU), which is probably related 360 

to the irrigated forages component of this FS or with the labour needs associated with grazing 361 

herds. The average annual rainfall (PREC) has opposite effects in Sheep grazing – HO and – CO 362 

systems, with the first system being favoured by lower rainfall values, and the other way around 363 

in the later system. Sheep grazing – CO is also favoured by areas with steeper slopes (STEEP) and 364 

light soils (LIGHT_S), while the choice of Sheep grazing – HO decreases with deeper soils, 365 

smoother terrain and public irrigation structures. Lower values of local labour availability (AWU) 366 

seem to promote the choice of the Sheep grazing – pastures system, while the choice of Sheep 367 

grazing – forages system is negatively influenced as the local values of agricultural income 368 

dependence (INCAGRI) raises (Fig. 3). 369 

Both Rainfed olive groves systems (with and without sheep) are strongly related to smaller farm 370 

sizes, as these are also the two systems with lower average UAA (Table 4). Both are positively 371 

related to high summer temperatures (TMAX) and negatively to higher regional values of 372 

agricultural income dependence. The Rainfed olive groves with sheep system is favoured when 373 

average annual rainfall increases, and the Rainfed olive groves system is positively related to 374 

neutral pH soils (NEUTRAL) (Fig. 3). 375 

The Irrigated olive groves system is positively related to high summer temperatures, public 376 

irrigation systems, high local labour availability and high average farm-block size. It is negatively 377 

related to high average annual rainfall. The choice of the Vineyards system tends to increase 378 

with higher values of regional labour availability, public irrigation systems and population 379 

density (PDENS). The Fruit trees system is positively associated with average annual rainfall and 380 

negatively with high population density and warmer winters (TMIN). The choice of the Stone 381 



pine system is favoured by light soils (LIGHT_S) and discouraged by high summer temperatures 382 

and population density (Fig. 3). 383 

In the annual crops, the Rice system is mostly favoured by the presence of public irrigation 384 

systems, also by higher regional values of agricultural income dependence (INCAGRI) and soil 385 

depth, while negatively influenced by high summer temperatures. The Irrigated cereals and 386 

horticultural crops system is positively related to soil depth, regional labour availability and 387 

smooth slope terrain. The choice of the Rainfed cereals and oilseeds system is encouraged with 388 

public irrigation systems and higher values of soil depth, neutral pH and high summer 389 

temperatures. The Rainfed cereals system is negatively related to bigger farm-block sizes and 390 

average annual rainfall. The Pastures without livestock system seems to be promoted when 391 

labour availability is lower and outside public irrigation systems, although this FS presented the 392 

highest error rate (Fig. 2). The Fallows system also displays complex relations with the 393 

predictors, though it seems to be more positively associated with small farms and areas of low 394 

population density (Fig. 3). 395 

Finally, the prediction accuracy for the different farming systems (Fig. 2) showed a modest but 396 

positive correlation with the corresponding levels of agricultural specialization and labour needs 397 

(Table 4) (correlation coefficients of 0.44 and 0.26, respectively), and a virtually non-existent 398 

relationship with the level of agricultural intensity (correlation coefficient -0.03). 399 

 400 

3.3.  Spatial patterns of landscape-scale farming systems composition 401 

The hexagonal lattice resulted with 56 usable analysis units, i.e., hexagons with >33% of the area 402 

overlapped with LPIS data (Fig. 4). The average error rate in the FS spatial pattern predictions 403 

across all hexagons was 28.7% (max. 47.3%; min. 9.2%), which is substantially lower than the 404 

error rate obtained with model predictions at the farm-level (67.3%). The average coefficient of 405 

determination was 0.89 (max. 1.00; min. 0.28), revealing a good model fit. 406 

 407 



 408 

Fig. 4 - Observed (left) and predicted (right) FS maps for the 1/3 observations used in the 409 

model validation dataset and the hexagons network used to assess model accuracy in FS 410 

spatial patterns prediction (different colours identify distinct FS; detailed maps showing the 411 

spatial distribution of each farming system are provided in supplementary information, 412 

Annex III). 413 

 414 

4. Discussion 415 

The use of farm-level data (IACS) provided by the national CAP paying agency proved to be a 416 

suitable approach to derive the FS typology for the study area, in line with previous studies 417 

(Ribeiro et al., 2018, 2016, 2014). The spatial-explicit nature of these data (LPIS) allowed a very 418 

fine characterization of farms, including in their biophysical, structural and socioeconomic 419 

features. As expected, the extent and heterogeneity of the study area, in both socioeconomic 420 

and biophysical features, led to a broad typology of 22 farming systems, which are a direct 421 

outcome of distinct farm-management adaptive-responses to a variety of farm features and 422 

contexts. 423 

Although the FS typology was balanced in terms of crop- and livestock-oriented systems, the 424 

results showed that most of the study area is currently devoted to livestock systems, particularly 425 

cattle grazing. Although the present study does not allow this to be confirmed, farmers' 426 

preference for these systems may be due to an (at date) ongoing direct payment for suckler 427 



cows (and partially to sheep and goats), a national agricultural policy option taken under the 428 

2003 CAP reform that significantly impacted FS dynamics in the region (Ribeiro et al., 2014). 429 

 430 

4.1.  Farm structure drivers 431 

Many of the effects of structural socioeconomic variables observed here are consistent with 432 

those of previous studies. For example, the farm-size was found to positively influence the 433 

choice of extensive livestock systems over crop systems, which was also observed in Ribeiro et 434 

al. (2018), and also in the choice between cattle grazing over some sheep grazing specialized 435 

systems, which was also observed in studies by Ribeiro et al. (2014). 436 

Access to private sources of surface irrigation water showed very little importance in the FS 437 

choice-models, which is apparently odd for a region where water is often a limiting factor. This 438 

was probably due not only to the type of variable used (dummy variable, with 1 = “yes, the farm 439 

has access to surface water sources” and 0 otherwise) but also to the fact of not including access 440 

to groundwater from water wells, due to lack of data, which are a common source in parts of 441 

the region. In contrast, water availability from public irrigation systems is essential in explaining 442 

the spatial location of several irrigated FS (either cereals, oil seeds or intensive olive groves and 443 

vineyards) showing the importance of public water management policy over other biophysical 444 

constraints (Kahil et al., 2015). Not surprisingly, these farming systems most associated with 445 

large public irrigation systems are among the most intensive ones. 446 

Public intervention in nature conservation areas seems to be of little relevance for FS choice 447 

since although a considerable share of agriculture area is classified for nature conservation, the 448 

corresponding variable (NATURE) was one of the least relevant within a list of dimensions that 449 

has farm and block size at the top. 450 

An interesting side-result of our approach was the insight of an overall negative, though 451 

moderate, relationship between farm size and the level of agricultural intensity, indicating that 452 

larger farms tend to adopt less intensive FS, a finding that goes back to earlier works (Cornia, 453 

1985; Grigg, 2005; Reboul, 1989, 1976). Exceptions, however, can be found when contrasting, 454 

e.g., the Rainfed olive groves and the Irrigated olive groves systems, where large investments in 455 

fixed capital (including irrigation systems), together with labour availability, seem to provide 456 

increasing returns to scale, which was also reported in more recent studies (Deininger et al., 457 

2018; Rada and Fuglie, 2019). 458 

 459 



4.2.  Socioeconomic context drivers 460 

Regarding the socioeconomic context of the farms, the level of agricultural professionalization 461 

(inferred from the INCAGRI variable) and farm labour availability proved to be significant drivers 462 

of FS. On one side, higher levels of professionalization, which in Portugal are considerably low 463 

in average when comparing to non-South European countries (Arnalte-Alegre and Ortiz-464 

Miranda, 2013), are positively associated with Rice, Stone pine or Rainfed cereals and oilseeds 465 

systems. On the other side, Vineyards and Irrigated cereals and horticultural crops, which show 466 

the highest levels of labour intensity per hectare and the highest average of labour units per 467 

farm, are positively associated with local availability of farm labour. Considering that 468 

horticultural crops typically have the highest wage labour ratios compared to other crops 469 

(Baptista and Rolo, 2017), it was surprising that it did not show up associated with high local 470 

proportion of hired labour. A possible explanation may be the high geographic mobility of hired 471 

workers (Baptista and Rolo, 2017), although it may also emerge from the heterogeneity in labour 472 

intensity within this FS, since it encompasses irrigated cereals and industrial horticulture, with 473 

considerable levels of mechanization, as well as horticultural crops with very high levels of 474 

labour needs. 475 

The fact that local labour availability has a more widespread importance as a FS driver than rural 476 

population density, which only stands out in the single case of Vineyards, contradicts the idea of 477 

permanent crops and horticulture as able of promoting rural population retention (Egea and 478 

Pérez y Pérez, 2016), i.e., it points to the dissociation between farm labour dynamics and local 479 

demographics (Baptista and Rolo, 2017). While vineyards remain located in higher populated 480 

parishes, following deep-rooted institutional constraints by protected designations of origin, 481 

olive groves (either irrigated or rainfed) show no relation with local demographics. 482 

Land renting (RENT) did not appear in the top 5 drivers in any FS, suggesting that the size of the 483 

land renting market does not appear to have much effect on the choice of FS in the study area. 484 

However, the positive relationship observed between land renting and livestock grazing FS, 485 

especially cattle, suggests that these systems, which have experienced marked growth in the 486 

region in recent years (Ribeiro et al., 2018), expanded in part at the expense of this tenancy 487 

regime. 488 

 489 



4.3.  Biophysical drivers 490 

As anticipated, biophysical factors related to climate, soils and relief, proved to be strong 491 

determinants of FS spatial distribution (Grigg, 2005). Summer heat and annual precipitation 492 

came up as the main biophysical drivers of FS spatial distribution in the study area. High summer 493 

temperatures seem to favour the choice of olive groves, vineyards, rainfed cereals and cattle 494 

grazing systems associated to Holms oak, and to discourage livestock systems associated to Cork 495 

oak, Stone pine or Rice systems. Winter cold increases the likelihood of fruit tree systems and 496 

the opposite with forage systems. 497 

Deep soils and smooth relief are positive drivers of the Rice and Irrigated cereals and 498 

horticultural crops systems. The opposite effect is found towards the Grazing goats system, 499 

which is strongly related to stepper slopes. Soil pH did not emerge as a major driver for the 500 

distribution of any FS, except for rainfed cereals and olive groves systems which showed a 501 

preference for neutral pH soils. 502 

Following Cork and Holm oak distinct preferences for soil and climate (Surová and Pinto-Correia, 503 

2008), livestock systems associated with these two species of oaks were found distributed 504 

accordingly: Cork oak-associated systems prevail more to the coast and north of the study area, 505 

where summer temperatures are milder, annual rainfall is higher and soils are sandy and light-506 

textured; Holm oak-associated systems are further inland an south, where summers are 507 

warmer, annual rainfall is lower and soils are frequently poor and fairly thin. 508 

 509 

4.4.  Farming system prediction at the farm and landscape levels 510 

Although the model's ability to predict individual FS was quite varied, depending on the FS, when 511 

applied to predicting FS patterns at the landscape-level the model revealed a much higher hit 512 

rate. The random forest approach applied in the model estimation proved to be a valuable 513 

choice, particularly in dealing with such high dimensional data (Strobl et al., 2009). At the 514 

landscape level, the model was very effective in predicting farming systems patterns, i.e., the 515 

shares of FS composition within hexagon-shaped landscape units. For agricultural landscape 516 

planning focused on agroecosystem services provision, this may be the right scale of analysis, 517 

since a minimum share of farmland managed under the FS delivering those services should be 518 

sufficient to ensure the socially desired level of service, rather than requiring the service to be 519 

provided by a specific set of farms over a period of time (Andersen, 2017), as is typically the case 520 

with many agri-environment schemes requiring multi-annual contracts with individual farmers. 521 



 522 

4.5.  Shortcomings of the approach and recommendations for future 523 

research 524 

Despite the valuable advantages evidenced by the proposed approach, there is still room for 525 

future improvement. Improvements mostly relate to characteristics of the IACS and LPIS 526 

datasets and methodological options that are dependent on the geographic context of our study 527 

area.  528 

While recognized as having high potential for supporting data driven research, the IACS / LPIS 529 

datasets present limitations, such as the lack of information to characterize farmers’ 530 

socioeconomic profile, or information on complementarity relationships between farms, such 531 

as the rental or sale of pastures, which can mislead the computation of farms’ stock density. 532 

Such information would be valuable to include in the FS choice models. 533 

The fact that the empirical work was carried out in a region where the landscape is largely 534 

dominated by agriculture, makes it possible to closely link FS choice with landscape modelling. 535 

Where this is not the case, such as many mountain and less favoured regions across the EU, this 536 

approach may not deliver the same results, given the smaller share of agriculture in the 537 

landscape. Additionally, in such regions a significant part of agriculture is probably outside any 538 

CAP support system, so that an approach based on IACS / LPIS data can only partially capture an 539 

agricultural reality that is itself marginal at the landscape scale. Paradoxically, these regions 540 

often include significant shares of high nature value farmlands at the EU level (Lomba et al., 541 

2014). Nevertheless, it should be worth trying to reproduce the approach in such regions in the 542 

future, to test the generalization of the framework. 543 

Because our farm characterization variables report to a single year, the effect of economic or 544 

policy variables such as prices or subsidies can only be assumed as underpinning the farmers' 545 

choices reflected on the observed 2017 IACS / LPIS data. However, the use of this type of 546 

variables in the model, provided that time-series of farm-level data can be made available, 547 

would significantly extend the scope of this approach, allowing its use to evaluate policy and 548 

price change scenarios. Even without additional temporal data, the framework can take 549 

advantage of the wide extension of the study area to perform, e.g., climate-change scenarios 550 

assessment, by adopting a space-for-time substitution approach. 551 

The selection of candidate variables to be tested as drivers of FS choice is also a key step in the 552 

modelling approach. The misspecification or the absence of key variables can substantially 553 



undermine models’ performance. The problems observed with variable WPRIVATE may be one 554 

such case, as this variable only reported access to small private surface water sources, which are 555 

mostly torrential regime in this region, with insufficient water guarantees to encourage investing 556 

in irrigation systems, and not taking into account that a significant portion of private irrigation 557 

in this region is probably resorting to groundwater sources. This premise, which we could not 558 

test due to lack of data, would be worth further investigation, should spatially explicit data on 559 

groundwater uptakes becomes available. 560 

Another issue deserving further investigation concerns the dimension of the grid of landscape 561 

analysis units. It is possible that the size of these units (i.e. the hexagons, in the current case) 562 

influences the accuracy of the model, so future investigation focused on determining its optimal 563 

size could prove to be of high value. 564 

Also, one aspect that has not been explored in the present study and should merit further 565 

investigation is the occurrence of interaction effects between drivers. Although the way random 566 

forests deal with these effects is still subject to discussion (Wright et al., 2016), its likely existence 567 

recommends additional analysis. 568 

Finally, the fact that the prediction error rate has shown significant disparities across the FS 569 

suggests that the choice of some of these FS may be due to effects not measured by the variables 570 

examined, including factors related to farmers' desires, attitudes and motivations, or with their 571 

socioeconomic profile which, as mentioned above, cannot be assessed on the basis of IACS data. 572 

One such case would be the Pastures without livestock system, whose choice is probably mostly 573 

determined by the presence of livestock farms in the nearby, with whom the farm can negotiate 574 

grazing land renting, rather than by the biophysical characteristics of the farm or its 575 

socioeconomic context. On the other hand, FS with lower error rates in the model were those 576 

who most depend on the chosen socioeconomic or biophysical factors, such as the Rice, Irrigated 577 

cereals and horticulture or Rainfed cereals and oilseed systems (where cereals are an autumn-578 

winter rainfed crop and oilseeds are grown in spring-summer season, often irrigated) that highly 579 

depend on irrigation water provided by public irrigation systems in this region. The same applies 580 

to the Vineyards system, whose location is highly dependent on the availability of regional 581 

labour supply, to meet peaks of labour needs at certain times of the year, related to certain crop 582 

operations (e.g. harvesting or pruning). In the present market, policy and technological context, 583 

these FS revealed greater dependence on farm structure and “territorial embeddedness” (sensu 584 

Cerceau et al., 2018). 585 

 586 



4.6.  Concluding remarks 587 

Our framework proved to be a suitable approach to investigate the role of human and physical 588 

factors in farmers' decisions regarding the choice of the FS, providing effective contributions to 589 

improve our understanding of the spatial distribution of FS when observed at a regional scale. 590 

This research led to a better understanding of how each of the considered socioeconomic and 591 

biophysical factors influences the spatial location of a wide range of FS, a subject seldom 592 

explored in such detail in the literature. Results showed that both socioeconomic and 593 

biophysical factors exert a high influence on the spatial distribution of FS, clearly revealing the 594 

shortcomings of planning proposals exclusively confined to the agroecological aptitude 595 

perspective (Nguyen et al., 2015; Pirovani et al., 2018). That influence, however, is not 596 

comparable across FS, being decisive for the location of some FS and marginal for others. 597 

Contrasting relationships were found between the agricultural intensity level and the degree of 598 

dependence on biophysical drivers among the FS, with the simultaneous existence of intensive 599 

FS with strong connection to biophysical factors (e.g. Rice system), and others similarly intensive 600 

FS but where this relation is much weaker (e.g. Fruit trees system). This finding shows the 601 

shortcomings of the assimilation between agricultural intensity and degree of artificialization of 602 

the farm’s conditions, largely dominant in the literature on the relationship between agriculture 603 

and biodiversity/natural resources (Keenleyside et al., 2014). This assimilation ignores the 604 

distinction between land and labour productivity and the fact that intensity differences may be 605 

due to labour intensity levels rather than higher levels of external outputs. Our results point thus 606 

to the need of not reducing farming systems diversity to an intensity gradient, when comparing 607 

across distinct productions (Ribeiro et al., 2016). 608 

The use of IACS / LPIS data proved to be an invaluable asset for the research, enabling a high-609 

detailed farm-level analysis, not achievable using official statistics and usually only possible 610 

through expensive and time-consuming farm surveys, often unfeasible for research works 611 

developed at regional scales like the one used in this study. Therefore, it is worth renewing an 612 

appeal previously made (Santos et al., 2020; Tóth and Kučas, 2016), addressed at the EU bodies 613 

responsible for maintaining the IACS databases, to make them more accessible to the scientific 614 

community, while safeguarding confidentiality duties. 615 

Overall, the model's ability to perform scenario simulations and to predict patterns of farming 616 

systems assigns this approach with a high potential to support information-based policy design 617 



to improve agricultural landscape planning and ensure the provision of socially valued 618 

agroecosystem services. 619 
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Explaining farming systems spatial patterns: a farm-level choice 1 

model based on socioeconomic and biophysical drivers 2 

 3 

Abstract 4 

 5 

CONTEXT: Efforts to bring together landscape analysis and farming systems have failed to explain the 6 

drivers behind their spatial distribution. Since agricultural landscapes are an outcome of farmers’ 7 

decisions, understanding the role of socioeconomic and biophysical drivers of such decisions is 8 

essential for policy-making targeting landscape-level provision of public goods and ecosystem services 9 

from agriculture. 10 

OBJECTIVE: Aiming to better understand the role of these drivers, we focused on a region dominated 11 

by agricultural use, with extensive variability in biophysical and socioeconomic conditions. A typology 12 

of farming systems was derived from spatially explicit farm-level data provided by the Portuguese 13 

agency responsible for Common Agricultural Policy payments, for 2017. Farms were thoroughly 14 

characterized through relevant biophysical and socioeconomic variables considered as potential 15 

drivers of farming systems. 16 

METHODS: A random forest approach was used to develop a farming system choice-model, dependent 17 

on those biophysical and socioeconomic variables. Variable importance measures and partial 18 

dependence plots were used to explore the role of these variables in explaining the spatial distribution 19 

of farming systems and to predict spatial patterns at the landscape scale. 20 

RESULTS AND CONCLUSIONS: Results showed that both biophysical and socioeconomic drivers play a 21 

significant role in the spatial distribution of most agricultural systems. Its importance, however, varies 22 

significantly across farming systems, being crucial for some and almost irrelevant for others. Farm size 23 

and climate have proved to be the most relevant drivers for most farming systems.  Overall, our 24 

approach proved to be quite accurate in predicting patterns of farming systems at the landscape scale. 25 

SIGNIFICANCE: The proposed framework has shown great potential as a tool to support information-26 

based policy design to improve agricultural landscape planning, by linking farm-level management 27 

decisions with the provision of socially valued public goods from agriculture, perceived at the 28 

landscape-level. 29 

  30 
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 31 

1. Introduction 32 

Agriculture is a dominant land use in many parts of the world, resulting from human interaction with 33 

nature over time. This interaction is mostly regulated by two main types of drivers: biophysical 34 

(climate, soil, topography...) and socioeconomic (farm structure, characteristics of farmers, markets, 35 

policies...). The way each of these drivers affects agricultural landscapes has attracted the interest of 36 

researchers (Grigg, 2005; Hazell and Wood, 2008; Kristensen et al., 2016; Plieninger et al., 2016; van 37 

Vliet et al., 2015), but many unanswered questions still persist (Plieninger et al., 2016; Wilson, 2009). 38 

Advancing knowledge about the role played by each of these factors in shaping agricultural landscapes 39 

can thus improve our understanding of human/environment interactions, allowing to anticipate farm 40 

management decisions and supporting evidence-based public intervention (Levers et al., 2016; van de 41 

Steeg et al., 2010). 42 

Such issues have recently been raised in the context of the provision of public goods and 43 

agroecosystem services in general, including biodiversity conservation (Landis, 2017; Schaller et al., 44 

2018). Much literature resort to aggregated data concerning land use or to agriculture intensification 45 

or specialization indicators, privileging landscape-dynamics analysis over landscape regional 46 

differentiation, and seldom take the farm as the unity of inquiry (Debolini et al., 2018; Ruiz-Martinez 47 

et al., 2015). There has been, however, a recent surgepressing need to in the development of proposals 48 

approaches to bring togetherlinking landscape analysis and farming systems (FS) to understand 49 

agricultural landscapes, which are able to establish the FS geography but struggle do not go into 50 

explaining the drivers behind their spatial distribution (Andersen, 2017; Benoît et al., 2012; Martel et 51 

al., 2019; Rizzo et al., 2013; van de Steeg et al., 2010). Indeed, considering the mismatch between the 52 

farm-scale, where management decisions take place, and the landscape-scale, where ecosystem 53 

services are perceived, landscape analysis can greatly benefit from a deeper understanding of the 54 

factors that influence farm management decisions. Thus, understanding the multiple production 55 

decisions of adjacent farmers and combining these decisions at the landscape-scale is key to explain 56 

the landscape mosaic and the ecological disturbance regimes (fire, grazing, ploughing…) that shape 57 

the habitats of wild species and the provision of diverse ecosystem services. 58 

This study builds on the Santos et al. (2020) conceptual frameworkconsideringfor. Conversely, such are 59 

should be considered as exogenous to the FS and, therefore, as potential drivers of the FS choice (Silva 60 

et al., 2020). 61 
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The FS concept used in this study follows that proposed by Santos et al. (2020), according to which a 62 

FS can be defined as a set of farms roughly practicing the same crops and agricultural activities, using 63 

similar technological processes and input endowments. A key aspect in this concept is that only 64 

variables resulting from farm management decisions are considered, when defining a FS; all variables 65 

that may influence these decisions but do not result from them, at least in the short run (e.g. farm size 66 

or fragmentation level, climate, slopes, market or policy), should be considered as exogenous to the 67 

FS and, therefore, as potential drivers of the FS choice (Silva et al., 2020). 68 

To explain the spatial distribution of FS, distinct groups of drivers can be considered according to 69 

distinct disciplinary perspectives or theoretical approaches. The analysis of farm biophysical 70 

endowments to explain spatial patterns of FS has largely been explored by geography and 71 

geo-agronomy (Deffontaines, 2004; Deffontaines et al., 1995; Grigg, 2005; Lacoste et al., 2018). 72 

Climate, soil, and slope are often considered to establish a range of restrictions to the choice of the 73 

farming system. But FS are also dependent on farmland structure and social context. Farmland 74 

structure covers an ensemble of constraints such as farm size, fragmentation and spatial composition 75 

which potentially restrict farmers decisions (Grigg, 2005; Latruffe and Piet, 2014; Reboul, 1976; Ribeiro 76 

et al., 2018). The influence of territorial socioeconomic context on FS location may be grounded in the 77 

notion of local embeddedness, supported by local sociocultural, demographic and economic structures 78 

(Canadas and Novais, 2014; Debolini et al., 2018). 79 

 80 

 81 

Using farm-level data collected in 2017 in a large-scale study area, we developed an innovative 82 

methodological approach to: 1) derive a spatially-explicit FS typology; 2) assess the role of 83 

socioeconomic and biophysical factors in explaining the spatial distribution of those FS; 3) assess the 84 

extent to which we can predict FS patterns based on biophysical and socioeconomic variables. Results 85 

were used to discuss the role of these drivers on the choice of the FS and their potential to predict 86 

landscape patterns, seeking to draw conclusions to better inform policy design for landscape-level 87 

provision of public goods from agriculture and prediction of landscape patterns in face of biophysical 88 

or socioeconomic changes. 89 

 90 



2. Methods 91 

2.1.  Study area 92 

The study focused on the Alentejo region, in southern Portugal (Fig. 1), corresponding to the EU 93 

statistical region PT18, at the NUTS2 level (Nomenclature of Territorial Units for Statistics). Covering 94 

about 31,551 km2 (ca. 1/3 of Portugal), the region has a Mediterranean climate, with hot dry summers 95 

and mild rainy winters. The annual average temperature is about 16.3ºC, ranging from 9.9ºC to 23.4ºC 96 

in January and August, respectively, and the total annual rainfall is about 619 mm, largely concentrated 97 

in the rainy season (approx. October to March). The relief is predominantly smooth (47% of the land 98 

with slope < 5%; but 14% with slope > 15%), with few mountain areas (average altitude is 176 m a.s.l., 99 

ranging from 0 to 1020 m). 100 

 101 

 102 

Fig. 1 - Location of the study area in the Alentejo region (NUTS2), Portugal 103 

 104 

 105 

According to the latest agricultural census in Portugal (2009), the utilized agricultural area (UAA) in 106 

Alentejo (NUT 2) was then ca. 2.2 million hectares, covering almost 70% of the region and making it 107 

the dominant land use. Official statistics report that in 2016 the utilized agricultural area (UAA) was 108 
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dominated by permanent pastures (64%), followed by annual crops (24%) and permanent crops (11%). 109 

Cereals, forages and olive groves were the main crops, with roughly equal shares of 8% in total UAA 110 

(making ca. 70% of the UAA excluding permanent pastures). Nearly 40% of the UAA is under the canopy 111 

of scattered trees, mainly cork and holm oaks (Quercus suber and Q. rotundifolia respectively), 112 

originating an agroforestry system locally named "montado", which is largely acknowledge for its high 113 

nature value (Ferraz-de-Oliveira et al., 2016). Cropland in these undercover areas are mainly 114 

permanent pastures (70%) and annual crops (30%). Most of the UAA is rainfed (ca. 90%) and irrigated 115 

areas are mostly located within state-promoted irrigation systems, often depending on large dams. 116 

The region is dominated by large holdings, with almost 90% of the UAA in farms with more than 50 ha. 117 

 118 

2.2.  Farming systems identification 119 

To build a farming systems typology for the study area we used data from the EU Integrated 120 

Administration and Control System (IACS) for 2017, associated with spatially explicit farm parcel data 121 

from the Land Parcel Identification System (LPIS), provided by the Portuguese agency responsible for 122 

Common Agricultural Policy (CAP) payments. These data are collected on a yearly basis from farmers 123 

declarations when applying for CAP payments and its usefulness for FS research has been 124 

demonstrated by previous studies (Lomba et al., 2017; Ribeiro et al., 2018, 2016, 2014). 125 

The raw dataset identified 26,648 CAP beneficiaries in the study area, covering a total of 2,221,816 ha 126 

distributed over 208,338 parcels which, in turn, included 560,213 subparcels for which land use/crop 127 

cover was described. Livestock declared by each beneficiary was also provided, describing species 128 

composition, gender, age groups and an indication of whether they were kept in stables or grazing. 129 

First, all parcels declared by the same CAP beneficiary were taken as a single farm. However, we found 130 

that some beneficiaries reported very scattered parcels, sometimes separated by hundreds of 131 

kilometres, where the farm concept (as an agricultural management unit) would not apply. In these 132 

cases, we decided to regroup these parcels into new (sub)farms by forcing the distance between them 133 

not to exceed 25 km, which increased the total number of farms to 28,739. This decision also helped 134 

to narrow down the range of biophysical variability within each farm, and thus to better link farm units 135 

to their biophysical context, described in the next section. We also discarded farms with total area 136 

equal or below 2 ha (4409 farms, representing less than 1% of total UAA) because the land use in 137 

smaller farms is likely to be highly sensitive to crop rotations, which cannot be properly captured with 138 

one-year data. 139 
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The raw data included 129 land use/cover categories, which were simplified by aggregation into 140 

broader categories, while maintaining the distinction between irrigated and rainfed crops, when 141 

applicable (e.g., irrigated and all rainfed cereal crops were merged into a single category named 142 

"rainfed cereals"). We also included two variables describing the proportion of the UAA under the 143 

cover of cork and holm oaks, respectively, because their presence is prone to influence farm 144 

management, as the first is a major source of income for farmers (cork production) and the later 145 

provides shade and food (acorns) to livestock grazing, in addition to valuable firewood. These two 146 

variables were computed on a geographical information system (GIS) environment by intersecting the 147 

farms map (derived from the LPIS spatial data) with digital information on cork and holm oak 148 

distribution and computing, for each farm, the share of the UAA covered with both land cover classes. 149 

Livestock numbers were converted into livestock units (LU) using EU standard conversion factors, and 150 

these were used to describe the percentage composition of livestock by species, as well as livestock 151 

density in each farm. Thus, a set of 28 variables was defined to characterize the land use/cover and 152 

livestock patterns for each farm (Table 1). 153 

A principal component analysis (PCA) was performed on a correlation matrix of these 28 variables to 154 

reduce variable redundancy and the principal axes with eigenvalues above 1 entered a hierarchical 155 

cluster analysis (Ward method) to derive the FS typology. The number of clusters to retain was decided 156 

based on a visual analysis of the dendrogram and on expert knowledge of the study area. 157 

To help interpreting the resulting FS, we calculated three variables indicating the level of agricultural 158 

intensity, specialization and dependence on labour. The intensity variable was calculated following the 159 

EU “standard output” approach (Commission Regulation (EC) No 1242/2008 of 8 December 2008) by 160 

estimating the total gross product per land unit (in €/ha UAA) for each farm. The specialization variable 161 

was computed as the highest proportion of standard output from a single farm activity. The labour 162 

indicator aims to differentiate the FS based on their specific labour needs, in annual work units per 163 

land unit (AWU/ha UAA). Due to data limitations, we had to resort to official statistics on the “EU farm 164 

typology by economic size and type of farming” (in the sense of the above-mentioned legal text), at 165 

NUT2 level (Alentejo) for the year of 2013, from which we extracted the number of annual work units 166 

per hectare for each farm type, to be directly associated to each of the resultant FS on a similarity base. 167 

Thereby, this indicator was not computed at farm level, but directly at FS level. 168 

 169 

Table 1 – Summary statistics for the land use/cover and livestock farm characterization variables (n = 170 

24313 farms) 171 



Variable Mean ± SD 

Land use/cover variables (proportion of total UAA)  

Rice (both Indica and Japonica) 0.012 ± 0.1 

Cereals Irrigated (corn, wheat, oats, barley, triticale) 0.018 ± 0.104 

Cereals rainfed (wheat, corn, oats, barley, rye and triticale) 0.056 ± 0.165 

Orchards (orange, apple, plum, fig, loquat, cherries, blackberry, raspberry) 0.013 ± 0.078 

Forages Irrigated (ryegrass, lucerne, silage maize, sorghum, vetch) 0.006 ± 0.051 

Forages Rainfed (ryegrass, oats, corn, sorghum, lupine) 0.049 ± 0.153 

Horticultural (potatoes, carrots, onions, cabbages, beans, chickpeas) 0.017 ± 0.089 

Industrial horticulture (tomato and pepper) 0.011 ± 0.092 

Oilseeds (sunflower and rapeseed) 0.01 ± 0.067 

Pastures (temporary grass and permanent grasslands) 0.511 ± 0.41 

Fallows 0.043 ± 0.146 

Olive groves Irrigated 0.034 ± 0.156 

Olive groves Rainfed 0.171 ± 0.291 

Vineyards 0.034 ± 0.145 

Walnuts and almond trees 0.003 ± 0.048 

Stone pine 0.009 ± 0.079 

Other dry fruits (hazelnut, chestnut, pistachios, carob) 0.001 ± 0.019 

Cork oak cover 0.149 ± 0.265 

Holm oak cover 0.111 ± 0.229 

Livestock variables (proportion in total LU)  

Cattle grazing 0.168 ± 0.34 

Cattle stabled 0.003 ± 0.04 

Fattening cattle grazing 0.018 ± 0.054 

Fattening cattle stabled 0.002 ± 0.037 

Sheep grazing 0.205 ± 0.386 

Goat grazing 0.024 ± 0.131 

Dairy cows 0.004 ± 0.047 

Pigs grazing 0.008 ± 0.076 

Livestock density (LU/ha UAA) (includes all farm animals, added-up in LU) 0.526 ± 3.506 

 172 

2.3.  Socioeconomic and biophysical drivers 173 

Potential socioeconomic and biophysical drivers of farming system choice were screened from 174 

literature (e.g. Grigg, 2005; Hazell and Wood, 2008; Kristensen et al., 2016; Martel et al., 2019; 175 

Plieninger et al., 2016; Reboul, 1989; van Vliet et al., 2015) and the authors’ experience from previous 176 
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studies where similar approaches were applied (Ribeiro et al., 2018, 2014; Silva et al., 2020). 177 

Subsequently, each farm wasEach farm was characterized according to a set of socioeconomic and 178 

biophysical variables thus identified, considered as potential drivers of FS spatial patterns (Table 2). 179 

These variables vary spatially but are mostly constant over time (at least for the time scale of most 180 

farm management decisions). 181 

Socioeconomic variables included seven farm structure variables (farm and block size, farm 182 

fragmentation and dispersion, access to public and private water sources for irrigation, nature 183 

conservation constraints on farm use), and six local context variables computed from official statistics 184 

at the administrative parish level (one demographic variable, population density, and five agricultural 185 

variables, e.g. AWU availability or the share of rented UAA); all farms in the same parish where 186 

assigned the same value in these variables; when farms had areas in more than one parish, these 187 

variables were computed through average-weighting by farm-area shares in each parish. Biophysical 188 

variables included three climatic variables (describing temperature and precipitation), eight soil quality 189 

variables (describing soil depth, texture and pH) and three topographic variables (slope 190 

classescategories). (Table 2). 191 

Values for explanatory variables were derived for each farm using a GIS (maps for explanatory variables 192 

are provided in supplementary information, Fig. S1, Annex I). Farms with missing values resulting from 193 

map mismatches were discarded, dropping the number of valid observations to 23,416 farms. 194 

 195 

Table 2 – Summary statistics for the socioeconomic and biophysical drivers (n = 23416 farms) 196 

Variable Description Mean ± SD (Min-Max) 

Socioeconomic variables – farm structure variables 

FSIZE Farm size – Total UAA (ha) (1) 84.09 ± 184.46 (2.01-7191.16) 

BLKSIZE Average farm-block size (ha) (1) 23.15 ± 45.37 (0.20-1109.93) 

JANUS Januszewski index (adimensional) (1) (2) 0.65 ± 0.23 (0.13-1.00) 

BLKDIST Average area-weighted block distances to farm 

centroids (m) (1) 

1571 ± 2128 (0-56951) 

WPRIVATE Access to water from private ponds or small streams 

(yes=1; no=0) (5) 

0.16 ± 0.37 (0.00-1.00) 

WPUBLIC Proportion of UAA in public irrigation systems (6) 0.15 ± 0.31 (0.00-1.00) 

NATURE Proportion of UAA included in areas classified for 

nature conservation (7) 

0.22 ± 0.39 (0.00-1.00) 

Socioeconomic variables – local socioeconomic variables 
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INCAGRI Proportion of farms where agriculture is the main 

household income source (3) 

0.23 ± 0.14 (0.00-0.84) 

INCOTH Proportion of farms where household income is mostly 

from outside the farm, but not pensions (3) 

0.26 ± 0.07 (0.00-0.67) 

PDENS Population density (inhabitants/km2) (4) 32.5 ± 77.8 (0.89-1084.24) 

AWU Number of annual work units (AWU) per km2 of total 

parish area (3) 

1.96 ± 1.70 (0.21-17.95) 

AWU hired Proportion of hired work in total labour (3) 0.26 ± 0.15 (0.00-0.93) 

RENT Proportion of rented land in total UAA (3) 0.18 ± 0.12 (0.00-1.00) 

Biophysical variables 

TMIN Average minimum temperature in the coldest month 

1970-2000 (ºC) (8) 

4.71 ± 0.59 (3.01-8.40) 

TMAX Average maximum temperature in the warmest month 

1970-2000 (ºC) (8) 

31.56 ± 1.95 (20.24-35.68) 

PREC Average annual rainfall 1970-2000 (mm) (8) 592.89 ± 107.28 (376.83-1195.51) 

SDEPTH Soil depth (cm) (5) 52.74 ± 29. 80 (0.00-150.00) 

SMOOTH Proportion of UAA with smooth slopes (<5%) (5) 0.51 ± 0.32 (0.00-1.00) 

MODERATE Proportion of UAA with moderate slopes (5-16%) (5) 0.38 ± 0.24 (0.00-1.00) 

STEEP Proportion of UAA with steep slopes (>16%) (5) 0.11 ± 0.19 (0.00-1.00) 

HEAVY_S Proportion of UAA with heavy texture soils (5) 0.33 ± 0.37 (0.00-1.00) 

MEDIUM_S Proportion of UAA with medium texture soils (5) 0.42 ± 0.38 (0.00-1.00) 

LIGHT_S Proportion of UAA with light texture soils (5) 0.24 ± 0.36 (0.00-1.00) 

VERYACID Proportion of UAA with very acid soils (pH<5) (5) 0.27 ± 0.33 (0.00-1.00) 

ACID Proportion of UAA with acid soils (5<pH<6) (5) 0.41 ± 0.38 (0.00-1.00) 

NEUTRAL Proportion of UAA with pH neutral soils (6<pH<7) (5) 0.21 ± 0.30 (0.00-1.00) 

ALKALINE Proportion of UAA with alkaline soils (pH>7) (5) 0.11 ± 0.24 (0.00-1.00) 

Sources: (1) Computed from LPIS data; (2) Farm spatial fragmentation index, varying from 0 to 1 with higher values 197 

indicating a higher degree of farmland consolidation (Januszewski, 1968); (3) Agricultural census 2009 - parish level; (4) 198 

Population census 2011 - parish level; (5) EPIC WebGIS Portugal (http://epic-webgis-portugal.isa.ulisboa.pt/); (6) DGADR - 199 

Direção-Geral de Agricultura e Desenvolvimento Rural (http://sir.dgadr.gov.pt/expl-alentejo); (7) ICNF – Instituto de 200 

Conservação da Natureza e das Florestas (http://www2.icnf.pt/portal/pn/ap); (8) IPMA - Instituto Português do Mar e da 201 

Atmosfera (https://www.ipma.pt/pt/oclima/normais.clima/) 202 

 203 

2.4.  Model design 204 

We developed a random forest FS choice model to explore the farm-level relationships between the 205 

typologies of FS derived from cluster analysis and the socioeconomic and biophysical variables. 206 

Random forest is a popular machine learning method that can be used both for regression and 207 
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classification, and is well-suited for high dimensional data (Strobl et al., 2009). Random forest use 208 

bootstrap and aggregation (bagging), building multiple decision trees based on random subsets of the 209 

data and using a random subset of predictor variables candidates for each node, in each decision tree 210 

(Liaw and Wiener, 2002). On a classification problem, each observation is assigned to a class according 211 

to the majority of votes from all trees. Both the number of trees and the number of predictor variables 212 

sampled for each node are user-defined and can be used to tune the model. The mean out-of-bag 213 

(OOB) error rate computed across all trees provides a measure of model prediction accuracy (Breiman, 214 

2001). Random forests have been widely used in many scientific fields and have proved to be one of 215 

the best machine learning techniques currently available, including for predictive modelling of spatial 216 

and spatio-temporal data (Hengl et al., 2018). 217 

 218 

2.4.1. Explaining spatial distribution of farming systems 219 

Since we were firstly interested in exploring causal theories on the main drivers of FS spatial 220 

distribution, rather than using the model to make predictions on new data (e.g. to assess scenarios of 221 

policy or climate change), we tuned the model to optimize its average prediction accuracy across FS, 222 

rather than maximizing the overall prediction power, by testing different stratified sampling 223 

approaches to deal with anticipated unbalanced data (high variance in group sizes) (see details of 224 

model parametrization in supplementary information – Annex II). At this stage, model overfitting 225 

should not be an issue, since the focus was on explaining our training data, rather than the 226 

generalization of the model (Shmueli, 2010). 227 

With this modelling outset, all FS are assumed to be competing simultaneously for each farm and the 228 

choice is made dependent only on variables that vary in space, while keeping constant the effect of 229 

temporal variables (such as prices or policies). The effect of these temporal variables on the choices 230 

observed in the study year cannot be estimated, as we only have one observation on FS choice for 231 

each farm, that is: the choice observed in the study year 2017. 232 

We used variable importance measures to assess the relevance of each predictor variable in the model 233 

and their , which is computed by recording the error rate on the OOB portion of the data for each tree, 234 

and then repeat the calculation after permuting (shuffling) each predictor variable (Breiman, 2001). 235 

The difference between the two are then averaged over all trees and normalized by the standard 236 

deviation of the differences to obtain an adimensional measure of the mean decrease accuracy (MDA) 237 

for each predictor variable, computed both for the entire model and for each class (Liaw and Wiener, 238 

2002; Strobl et al., 2009). 239 
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To examine the marginal effect of each variable on each FS was examined usingwe used partial 240 

dependence plots (PDP) (Friedman, 2001). PDP indicate the model outcome in relation to each 241 

predictor variable, while considering the average effect of all other predictors in the model. These plots 242 

can show if the relationship between the target and a predictor variable is linear, monotonic or more 243 

complex . (supplementary information – Annex II). We investigated the shape of the partial 244 

dependence plots  fitted functions of the top five variables for each class of the dependent variable 245 

(that is, for each FS) to infer their role as drivers or constraints for each FS. In addition, we computed 246 

the correlation coefficient between the level of farming intensity characterizing each FS with the 247 

corresponding prediction accuracy rate obtained by the model, to test the hypothesis of a positive 248 

relationship between the levels of this indicator and the degree of FS dependence on socioeconomic 249 

and biophysical drivers. 250 

All statistical analyses were carried out in R 3.4.1 (R Development Core Team, 2017). Model estimation 251 

was performed with package “randomForest” (Liaw and Wiener, 2002). Partial dependence plots were 252 

conducted with package “pdp” (Greenwell, 2018). 253 

 254 

2.4.2. Predicting spatial patterns of farming systems 255 

On a following step, we focused on exploring the predictive capacity of the model in the choice of the 256 

FS, based on the socioeconomic and biophysical variables described above. Since we were mostly 257 

interested in predicting FS choice at the landscape-scale rather than at farm-scale, taking into account 258 

the importance of landscape patterns for biodiversity and public goods delivery, we focused the 259 

analysis on the model's ability to predict FS spatial patterns at a scale comparable to that of the 260 

landscape (Andersen, 2017). For this purpose, the study area was divided into a random network of 261 

hexagons of about 54,125 ha each, corresponding to a hexagon apothem of 12.5 km which was chosen 262 

with reference to the 25 km threshold used to define the farms. . These hexagons were then used as 263 

analysis units to compare, for each hexagon, the percentage distribution of the UAA by FS in the 264 

observed situation with that predicted by the model. . A hexagonal grid was preferred over a square 265 

grid because it is less subject to bias from the edge effects when computing landscape metrics (Birch 266 

et al., 2007). We rejected all hexagons with more than 66% of the area outside the LPIS data, due to 267 

low significance for this purpose. In each hexagon, we calculated the difference between the observed 268 

and predicted UAA shares for each FS and computed the half-sum of their absolute values. The average 269 

of these results across all hexagons was interpreted as an estimate of the percentage of accuracy 270 

obtained in model predictions, that is, the capacity of the model to predict spatial patterns of FS 271 

composition at the landscape-scale. In addition, we also computed the determination coefficient (r2) 272 
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between the observed and predicted values in each hexagon, taking its mean as a measure of the 273 

quality of fit of the model. Model predictions were obtained by running the model on a random test-274 

set of the data with ca. 1/3 of the observations (farms), after estimating it in a train-set with the 275 

remaining 2/3. 276 

 277 

3. Results 278 

3.1.  Farming systems typology 279 

A solution of 30 groups, representing farming systems, was selected from the cluster analysis. As some 280 

groups included only a very small number of observations (farms), we anticipated potential problems 281 

in the estimation of the predictive model and so we decided to eliminate groups with less than 0.7% 282 

of the total number of observations, an arbitrary threshold mostly based on expert judgement. This 283 

led to the removal of 8 non-representative FS, comprising 613 farms accounting for 3.1% of total UAA, 284 

which were discarded for further analysis. Consequently, the final number of FS was set at 22 (Table 285 

3). 286 

By chance, these FS resulted equally divided into livestock-oriented systems and crop-oriented 287 

systems. Both groups include similar shares in number of farms (51.5% and 48.5%, respectively), 288 

although farms in livestock-oriented systems cover a much larger share of total UAA (78.2%) denoting 289 

they are larger farms, on average. 290 

Within the livestock systems, six are oriented to sheep, three to cattle, one to goats and one is mixed 291 

with cattle and sheep. Among the six sheep-oriented systems, two are agroforestry grazing systems, 292 

one associated with cork oak and the other with holm oak, a third one is related with open land 293 

pastures, a fourth sheep system is mainly dependent on forage crops, the fifth depends both on 294 

permanent pastures and forage crops, and the last is mostly a mixed-system combining rainfed olive 295 

groves with sheep grazing. The three cattle systems also include two agroforestry grazing systems with 296 

permanent pastures under the canopy of cork and holm oaks, respectively, and a third one depending 297 

mainly on forage crops. The mixed cattle-sheep system is highly dependent on irrigated forages and 298 

the last livestock-oriented system is the goat system, which is also a pasture-dependent grazing system 299 

(Table 3). 300 

Among the crop-oriented systems, five are dedicated to permanent crops, four to annual crops and 301 

the last two refer to special situations, one including farms without livestock but with almost all UAA 302 

under pasture, probably yearly rented to neighbours with cattle, and the other encompassing farms 303 



with almost all UAA set to fallow. The permanent crops systems included two systems dedicated to 304 

olive groves, one of which was irrigated and the other rainfed, one to vineyards, another to fruit trees 305 

and the last one to stone pines (for pine nut production). The annual crops systems included two 306 

rainfed systems, one dedicated to cereals and the other to cereals and oilseeds, one dedicated to 307 

irrigated cereals and horticultural crops, and the last one to rice production (Table 3). 308 

The average farming intensity across the 22 FS is about 1650 €/ha, with the Fruit trees system as the 309 

most intensive, reaching ca. 12600 €/ha, and 15 systems below 1000 €/ha. Agricultural specialization 310 

is relatively high, with more than half of the FS earning more than 80% of their standard output from 311 

a single activity. Average farm specialization is higher in crop systems than in livestock systems (85% 312 

and 74%, respectively), where most systems earn more than 90% from a single activity. Average labour 313 

needs are also higher in crop systems than in livestock systems (0.039 and 0.004 AWU/ha, respectively, 314 

i.e. nearly 10 times more), with a maximum of 0.259 AWU/ha found in the Irrigated cereals and 315 

horticultural crops system and a minimum of 0.003 AWU/ha found in systems Pastures without 316 

livestock and Fallows (Table 4). 317 

Average farm size varies significantly across FS, with values going from ca. 11 ha in both rainfed olive 318 

grove systems (with and without sheep) until over 200 ha, in cattle grazing – HO and – CO systems 319 

(288 and 249 ha, respectively) (Table 4). 320 

Almost 1/3 of all farms are included in only three FS, all with more than 2500 farms (systems Rainfed 321 

olive groves, Pastures without livestock and Cattle grazing – CO). However, nearly 1/3 of total UAA is 322 

concentrated in one single FS, the Cattle grazing – CO. The three cattle-oriented FS comprise more 323 

than half of the total UAA (53.3%) (Table 4). 324 

 325 



Table 3.a – Farming system description – Land cover composition (average values in proportion to the total UAA; values under 0.01 are omitted; values above 0.5 326 

are in bold) 327 

Farming system                    
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Cattle grazing – CO*     0.039     0.884   0.026     0.329 0.082 
Cattle grazing – HO*   0.020  0.035     0.906   0.020     0.048 0.590 
Cattle grazing – forages  0.011 0.143  0.239 0.015  0.020 0.027 0.388  0.045 0.093     0.049 0.086 
Grazing goats     0.027     0.923   0.023     0.314 0.207 
Mixed Cattle and sheep - 
Irrigated forages 

 0.034 0.037 0.444 0.112 0.019  0.016 0.018 0.219 0.018 0.015 0.049     0.066 0.028 

Sheep grazing – CO*     0.012     0.936   0.022   0.012  0.686 0.022 
Sheep grazing – HO*   0.029  0.025    0.013 0.891   0.032     0.051 0.641 
Sheep grazing - pastures   0.014  0.021     0.852   0.085     0.141 0.048 
Sheep grazing - pastures and 
forages 

  0.169  0.139 0.015   0.027 0.437   0.156 0.030    0.056 0.036 

Sheep grazing - forages   0.041  0.650    0.033 0.127   0.107     0.068 0.053 
Rainfed olive groves with 
sheep 

    0.016     0.291   0.660 0.010    0.039  

Rainfed olive groves         0.016 0.099 0.013  0.823 0.018    0.011  
Irrigated olive groves   0.012      0.022 0.052  0.770 0.083  0.021   0.016 0.024 
Vineyards  0.010   0.013    0.054 0.066 0.014 0.029 0.093 0.697    0.025 0.010 
Fruit trees     0.014    0.025 0.243 0.548 0.012 0.083 0.020   0.025 0.142 0.040 
Stone pine 0.038        0.019 0.189   0.023   0.713 0.000 0.249 0.010 
Rice 0.850 0.012       0.039 0.068        0.024  
Irrigated cereals and 
horticultural crops 

 0.300 0.038   0.241 0.242  0.049 0.077        0.018 0.012 

Rainfed cereals and oilseeds  0.087 0.300   0.038  0.430 0.063 0.030  0.011 0.026      0.018 
Rainfed cereals   0.463  0.016 0.015  0.010 0.171 0.150   0.147     0.031 0.039 
Pastures without livestock          0.785  0.015 0.152 0.012    0.082 0.088 
Fallows   0.079  0.011 0.016   0.752 0.037 0.011  0.077     0.048 0.141 

* CO – Under cover of cork oak; HO – Under cover of holm oak 328 
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 330 

Table 3.b – Farming system description – Livestock composition in livestock-oriented farming 331 

systems (average values in proportion to total LU; values under 0.01 are omitted; proportions 332 

above 0.5 are in bold) and livestock density 333 

Farming system 

C
at

tl
e

 g
ra

zi
n

g 

C
at

tl
e

 s
ta

b
le

d
 

Fa
tt

e
n

in
g 

st
e

e
rs

 

gr
az

in
g 

Fa
tt

e
n

in
g 

st
e

e
rs

 

st
ab

le
d

 

Sh
e

e
p

 g
ra

zi
n

g 

G
o

at
 g

ra
zi

n
g 

D
ai

ry
 c

o
w

s 

P
ig

s 
gr

az
in

g 

Li
ve

st
o

ck
 

d
e

n
si

ty
 (

LU
/h

a)
 

Cattle grazing – CO* 0.872  0.084  0.028    0.799 

Cattle grazing – HO* 0.865  0.080  0.044    0.677 

Cattle grazing – forages 0.859  0.083  0.041    0.967 

Grazing goats     0.082 0.910   1.039 

Mixed Cattle and sheep - Irrigated 

forages 

0.480  0.073  0.300 0.069 0.077  0.618 

Sheep grazing – CO* 0.144  0.010  0.799 0.043   0.245 

Sheep grazing – HO*     0.963 0.028   0.387 

Sheep grazing - pastures     0.973 0.017   1.004 

Sheep grazing - pastures and 

forages 

    0.792 0.206   0.711 

Sheep grazing - forages 0.049    0.709 0.236   0.378 

Rainfed olive groves with sheep     0.974 0.024   1.212 

* CO – Under cover of cork oak; HO – Under cover of holm oak 334 

 335 

 336 

Table 4 – Characterization of farming systems according to the levels of farming intensity, 337 

specialization and labour needs, average farm size (in hectares of UAA and number of LU) and 338 

representativeness (in number of farms, UAA and LU) 339 

 

Characterization of farming 

systems 

Average 

farm size 
Representativeness 

Intensity 

(103 

€/ha) 

Speciali- 

zation 

(%) 

Labour 

needs 

(AWU/ha) 

UAA 

(ha) 

LU 

(n.) 

Number of 

farms 
UAA 

Livestock 

Units 

Total % 
Total 

(103 ha) 
(%) 

Total 

(103 LU) 
(%) 

Cattle grazing – CO* 0.46 84.3 0.005 248.5 128.7 2515 10.6 625 31.1 323.8 36.5 



Cattle grazing – HO* 0.31 84.0 0.005 288.2 157.0 1245 5.3 359 17.9 195.5 22.0 

Cattle grazing – forages 0.75 68.3 0.005 186.1 88.1 463 2.0 86 4.3 40.8 4.6 

Grazing goats 0.94 88.6 0.004 52.6 19.7 251 1.1 13 0.7 4.9 0.6 

Mixed Cattle and sheep 

- Irrigated forages 

1.14 75.0 0.005 58.8 24.3 171 0.7 10 0.5 4.1 0.5 

Sheep grazing – CO* 0.24 54.6 0.004 89.0 19.0 2346 9.9 209 10.4 44.6 5.0 

Sheep grazing – HO* 0.28 64.9 0.004 84.9 23.5 1391 5.9 118 5.9 32.6 3.7 

Sheep grazing - pastures 0.71 84.1 0.004 54.5 22.4 1461 6.2 80 4.0 32.7 3.7 

Sheep grazing - pastures 

and forages 

0.79 70.6 0.004 52.8 18.7 745 3.1 39 2.0 13.9 1.6 

Sheep grazing - forages 0.46 69.9 0.004 25.3 4.3 848 3.6 21 1.1 3.7 0.4 

Rainfed olive groves 

with sheep 

0.91 74.1 0.006 12.0 9.6 774 3.3 9 0.5 7.4 0.8 

Rainfed olive groves 0.30 92.3 0.010 10.6 0.1 2626 11.1 28 1.4 0.3 0.0 

Irrigated olive groves 1.45 93.0 0.023 82.4 0.8 864 3.6 71 3.5 0.7 0.1 

Vineyards 1.84 90.3 0.050 24.3 0.5 928 3.9 23 1.1 0.4 0.0 

Fruit trees 12.59 89.9 0.036 25.7 1.5 325 1.4 8 0.4 0.5 0.1 

Stone pine 4.63 97.6 0.009 68.0 1.4 221 0.9 15 0.7 0.3 0.0 

Rice 1.70 93.8 0.018 52.8 4.0 314 1.3 17 0.8 1.3 0.1 

Irrigated cereals and 

horticultural crops 

4.66 90.9 0.259 53.7 1.8 1070 4.5 57 2.9 1.9 0.2 

Rainfed cereals and 

oilseeds 

0.98 88.2 0.006 65.7 0.9 421 1.8 28 1.4 0.4 0.0 

Rainfed cereals 0.42 82.0 0.010 33.8 0.4 1537 6.5 52 2.6 0.6 0.1 

Pastures without 

livestock 

0.20 61.5 0.003 48.5 8.5 2602 11.0 126 6.3 22.2 2.5 

Fallows 0.59 54.1 0.003 20.8 0.0 582 2.5 12 0.6 0.0 0.0 

Total - - - - - 23700 100 2007 100 733 - 

* CO – Under cover of cork oak; HO – Under cover of holm oak 340 

 341 

3.2.  Spatial determinants of farming system choice 342 

The tuning of the random forest model lead to a 500 trees model, with 5 variables randomly 343 

sampled as candidates at each split and using the “sampsize” option to correct size differences 344 

across the FS categories (see details in Annex II – supplementary information). The classification 345 

error rates for each of the 22 FS ranged from 14.0% in the Rice system to 97.4% in the Pastures 346 

without livestock system (Fig. 2Fig. 1), with an average of 63.7% across all FS, a value that should 347 



be evaluated positively considering the high number of classes in the dependent variable (22 FS, 348 

for which the random error rate would be about 95.4% with balanced data). 349 

 350 

 351 

Fig. 2 - Classification error rates for the 22 farming systems (values in %) 352 

 353 

The relative importance of socioeconomic and biophysical variables was very closesimilar, and 354 

among the top ten variables, in terms of mean decrease accuracy (Annex II – supplementary 355 

information), six are socioeconomic and four are biophysical. The farm physical dimension 356 

variables (FSIZE and BLKSIZE) and a local context of high dependence on family income in 357 

agriculture (INCAGRI) proved to be the most relevant socioeconomic factors influencing the 358 

choice of FS, while in the biophysical variables the most important were the climatic variables 359 

(Fig. 3first plot in ). The variable indicating access to surface water sources (WPRIVATE) was 360 

found to be the least important, either in the global model or in most of the class-specific 361 

models. 362 

 363 
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 364 

Fig. 3 - Variable importance for the overall model and for each farming system. Socioeconomic farm structure variables in blue; local-socioeconomic variables 365 

in orange; biophysical variables in green. Variables ordered by decreasing variable importance in the overall model and within each sub-group. Symbols ↑, ↓ 366 

and ↕ indicate whether the marginal effect of the variable in each farming system is mostly positive, negative or non-monotonic, respectively, based on the 367 

shape of the fitted function on the partial dependence plots (partial dependence plots are provided in supplementary information, Annex IV). Variable 368 

description in Table 2 369 
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FSIZE 65,6 ↑ 59,5 ↑ 55,2 ↑ 41,5 ↕ 5,8 ↓ 4,7 ↑ -0,7 ↑ 6,0 ↕ 12,6 ↕ 12,4 ↓ 15,6 ↓ 29,9 ↓ 54,8 ↓ 19,6 ↓ 23,5 ↓ 13,0 ↕ 9,0 ↑ 15,7 ↓ 12,2 ↑ 13,9 ↓ 14,6 ↕ 9,7 ↓ 29,1

BLKSIZE 50,9 ↑ 37,9 ↑ 32,9 ↑ 19,3 ↕ 6,4 ↑ 3,1 ↑ 28,5 ↑ 11,3 ↓ 15,5 ↓ 14,2 ↓ 15,2 ↓ 42,5 ↓ 50,2 ↑ 25,9 ↓ 27,1 ↓ 7,1 ↑ 19,4 ↕ 19,4 ↓ 14,3 ↓ 19,8 ↓ 29,0 ↕ 6,9 ↓ 18,2

JANUS 32,5 ↑ 3,3 ↑ 6,0 ↓ 13,9 ↑ 4,3 ↕ 1,3 ↑ 7,0 ↑ 5,8 ↕ 7,4 ↓ 10,6 ↑ 4,8 ↕ 5,3 ↑ 7,8 ↑ 6,3 ↕ 12,5 ↑ 5,3 ↑ 3,5 ↓ 8,5 ↕ 12,5 ↓ 21,4 ↕ 3,5 ↑ 2,4 ↑ 12,8

BLKDIST 30,9 ↕ 6,7 ↑ 7,0 ↕ 5,6 ↕ 0,1 ↕ 1,1 ↑ 3,6 ↕ 5,5 ↓ 6,3 ↕ 2,1 ↓ 4,8 ↓ 7,1 ↓ 11,6 ↓ 9,5 ↕ 14,0 ↓ 6,5 ↑ 1,5 ↑ 2,3 ↑ 12,4 ↑ 14,8 ↕ 3,1 ↕ 4,5 ↓ 9,3

INCAGRI 52,7 ↕ 18,4 ↑ 5,4 ↓ 13,6 ↓ 1,4 ↕ 4,4 ↑ 14,0 ↕ 26,8 ↓ 14,3 ↓ 11,6 ↓ 12,6 ↓ 23,9 ↓ 30,2 ↓ 17,9 ↓ 27,0 ↓ 10,3 ↕ 29,6 ↑ 27,3 ↑ 16,6 ↕ 24,7 ↕ 18,3 ↓ 5,8 ↓ 26,2

RENT 47,3 ↑ 12,6 ↑ 6,1 ↑ 7,9 ↕ 2,1 ↕ 3,8 ↑ 8,7 ↑ 17,8 ↕ 10,3 ↕ 5,3 ↕ 11,7 ↕ 11,6 ↕ 18,5 ↑ 17,7 ↓ 23,1 ↓ 8,9 ↓ 11,8 ↕ 15,5 ↓ 16,7 ↕ 14,3 ↕ 11,6 ↕ 7,0 ↓ 17,1

INCOTH 47,3 ↓ 14,8 ↕ 8,7 ↑ 5,4 ↕ 4,8 ↕ 4,6 ↓ 14,6 ↕ 15,8 ↕ 12,3 ↕ 6,2 ↑ 11,3 ↕ 10,6 ↕ 18,8 ↑ 13,8 ↕ 20,6 ↑ 7,6 ↕ 19,1 ↓ 16,1 ↕ 14,9 ↑ 16,0 ↕ 10,3 ↕ 5,6 ↑ 19,6

PDENS 46,0 ↕ 16,3 ↓ 6,4 ↓ 5,4 ↓ 1,1 ↑ 5,0 ↓ 14,8 ↓ 23,5 ↕ 11,7 ↓ 5,8 ↕ 12,1 ↑ 20,4 ↕ 19,6 ↓ 16,4 ↑ 27,3 ↓ 10,7 ↓ 20,4 ↕ 13,3 ↑ 20,4 ↑ 21,6 ↓ 15,2 ↓ 5,3 ↓ 25,4

AWU 45,7 ↓ 15,7 ↓ 18,4 ↓ 10,3 ↓ 4,9 ↑ 5,9 ↓ 20,6 ↓ 21,7 ↓ 19,2 ↓ 10,5 ↕ 10,2 ↑ 14,8 ↑ 27,2 ↑ 27,0 ↑ 42,0 ↕ 9,6 ↓ 23,3 ↕ 17,0 ↑ 27,6 ↑ 18,1 ↑ 20,7 ↓ 11,2 ↑ 23,5

WPUBLIC 43,7 ↓ 28,2 ↓ 20,0 ↓ 5,3 ↓ 14,6 ↑ 6,4 ↓ 24,1 ↓ 27,0 ↓ 20,6 ↓ 3,0 ↕ 8,2 ↕ 20,4 ↑ 17,2 ↑ 43,4 ↑ 29,2 ↕ 9,6 ↓ 18,6 ↑ 32,2 ↑ 18,8 ↑ 42,5 ↕ 8,2 ↓ 10,3 ↕ 4,7

AWU_hired 43,6 ↑ 11,9 ↕ 11,2 ↓ 9,0 ↕ 3,1 ↕ 3,7 ↑ 14,1 ↕ 17,3 ↕ 7,8 ↓ 7,8 ↓ 8,8 ↕ 9,3 ↓ 18,2 ↓ 14,4 ↓ 19,7 ↓ 5,4 ↑ 12,4 ↑ 12,0 ↓ 18,2 ↕ 19,0 ↓ 14,7 ↓ 6,8 ↓ 15,0

NATURE 27,0 ↑ 5,5 ↕ 8,8 ↑ 11,8 ↕ 4,0 ↕ 6,2 ↕ 6,4 ↓ 6,0 ↓ 6,0 ↕ 8,4 ↓ 6,8 ↕ 6,2 ↓ 9,8 ↓ 12,2 ↓ 12,0 ↕ 7,6 ↕ 6,1 ↑ 9,6 ↓ 10,5 ↓ 12,2 ↓ 9,6 ↓ 2,4 ↓ 11,0

WPRIVATE 8,7 ↑ 0,8 ↑ 3,0 ↑ -0,7 ↓ 4,0 ↑ 0,9 ↓ -1,5 ↑ 1,3 ↓ 1,7 ↓ 1,2 ↓ 1,8 ↓ 4,6 ↓ 8,5 ↓ 4,2 ↓ 6,2 ↓ 2,0 ↑ 3,3 ↑ 3,4 ↑ 0,9 ↑ 3,3 ↓ 3,5 ↓ 1,9 ↓ 2,8

TMAX 56,4 ↓ 32,0 ↑ 21,0 ↕ 16,5 ↓ 12,2 ↕ 6,8 ↓ 31,7 ↑ 25,6 ↕ 11,7 ↑ 9,7 ↓ 13,6 ↑ 22,4 ↑ 36,8 ↑ 43,7 ↑ 28,1 ↕ 15,9 ↓ 26,2 ↓ 31,6 ↕ 25,9 ↑ 40,2 ↑ 28,4 ↑ 9,0 ↑ 25,6

TMIN 56,2 ↑ 18,7 ↑ 9,8 ↑ 15,6 ↕ 3,5 ↓ 5,4 ↕ 20,0 ↕ 26,0 ↕ 10,4 ↕ 8,0 ↕ 10,1 ↕ 16,9 ↓ 22,2 ↓ 19,4 ↕ 26,4 ↓ 10,3 ↕ 14,4 ↕ 15,4 ↓ 19,7 ↓ 19,2 ↕ 15,3 ↕ 7,3 ↕ 18,4

PREC 48,1 ↑ 25,7 ↓ 23,7 ↓ 20,1 ↑ 11,5 ↑ 5,4 ↑ 32,2 ↓ 33,3 ↑ 14,7 ↕ 12,9 ↑ 13,2 ↑ 22,4 ↕ 22,0 ↓ 25,7 ↑ 24,4 ↑ 17,7 ↑ 20,5 ↑ 22,4 ↕ 23,6 ↓ 22,3 ↓ 19,4 ↕ 6,9 ↓ 23,3

SDEPTH 47,3 ↓ 32,2 ↓ 13,8 ↓ 10,5 ↓ 15,9 ↑ 6,2 ↓ 23,4 ↓ 33,2 ↓ 9,1 ↓ 9,0 ↓ 5,3 ↕ 16,7 ↕ 20,0 ↓ 14,0 ↕ 22,7 ↓ 5,5 ↕ 27,9 ↑ 25,7 ↑ 35,9 ↑ 34,5 ↓ 14,9 ↓ 8,5 ↓ 15,7

LIGHT_S 41,5 ↑ 15,8 ↕ 19,0 ↓ 14,2 ↑ 7,0 ↑ 5,8 ↑ 26,4 ↓ 18,5 ↓ 8,2 ↓ 9,2 ↓ 2,4 ↕ 13,2 ↓ 17,1 ↓ 16,9 ↓ 14,3 ↑ 9,7 ↑ 26,8 ↑ 22,8 ↕ 15,8 ↓ 20,6 ↓ 16,7 ↓ 4,0 ↓ 16,6

ACID 41,2 ↑ 20,8 ↑ 12,5 ↓ 7,7 ↑ 5,9 ↓ -0,4 ↑ 13,5 ↑ 12,0 ↕ 6,0 ↕ 4,0 ↓ 4,3 ↓ 9,4 ↓ 24,6 ↓ 17,1 ↓ 18,8 ↕ 3,4 ↑ 8,7 ↑ 10,6 ↓ 12,0 ↓ 20,0 ↓ 10,7 ↕ 2,9 ↓ 11,2

NEUTRAL 40,9 ↓ 14,2 ↓ 10,8 ↓ 10,9 ↓ 9,7 ↑ 2,0 ↓ 15,9 ↓ 24,3 ↓ 8,9 ↓ 5,0 ↓ 4,8 ↑ 11,1 ↑ 28,6 ↑ 21,9 ↑ 19,7 ↓ 9,7 ↓ 15,6 ↓ 19,0 ↑ 15,6 ↑ 34,3 ↕ 12,0 ↓ 0,8 ↓ 10,9

MEDIUM_S 40,1 ↕ 13,1 ↑ 14,4 ↕ 7,3 ↕ 4,1 ↓ 3,5 ↕ 12,5 ↑ 16,6 ↑ 5,7 ↕ 6,8 ↕ 1,3 ↓ 10,4 ↓ 11,8 ↑ 8,2 ↓ 17,6 ↓ 4,9 ↕ 16,0 ↕ 13,0 ↓ 10,2 ↑ 17,3 ↑ 9,2 ↓ 5,9 ↕ 12,3

VERYACID 38,1 ↑ 13,5 ↑ 7,9 ↕ 5,9 ↑ 2,9 ↑ 4,7 ↑ 17,7 ↑ 16,6 ↕ 6,8 ↕ 6,8 ↓ 5,3 ↓ 9,7 ↓ 11,7 ↓ 9,8 ↓ 10,6 ↑ 2,5 ↑ 11,2 ↓ 10,3 ↓ 11,7 ↓ 12,3 ↕ 4,7 ↓ 3,5 ↑ 11,8

SMOOTH 37,7 ↓ 20,3 ↓ 13,4 ↓ 10,5 ↓ 14,6 ↑ 3,6 ↓ 22,7 ↓ 26,7 ↓ 10,6 ↓ 6,4 ↕ 5,9 ↓ 12,9 ↓ 14,2 ↕ 7,9 ↑ 18,9 ↓ 7,4 ↓ 13,2 ↑ 20,1 ↑ 24,8 ↑ 19,7 ↓ 11,9 ↓ 3,0 ↓ 16,1

HEAVY_S 34,2 ↓ 14,3 ↓ 10,5 ↕ 5,7 ↓ 4,9 ↑ 5,9 ↓ 17,2 ↕ 15,3 ↓ 10,4 ↕ 6,1 ↕ 5,8 ↑ 11,6 ↑ 15,6 ↑ 13,0 ↑ 16,3 ↓ 10,2 ↓ 20,6 ↕ 20,4 ↑ 16,3 ↑ 17,3 ↑ 15,8 ↓ 5,1 ↑ 14,6

STEEP 31,8 ↑ 19,2 ↑ 10,7 ↓ 9,4 ↑ 19,3 ↓ 0,8 ↑ 27,4 ↑ 25,5 ↑ 2,2 ↕ 6,8 ↓ 4,0 ↑ 3,1 ↑ 11,8 ↓ 14,2 ↓ 14,5 ↑ 5,8 ↑ 9,2 ↓ 9,9 ↓ 9,4 ↓ 15,2 ↓ 12,9 ↕ 5,9 ↓ 13,1

ALCALINE 31,7 ↓ 12,1 ↓ 11,5 ↓ 8,6 ↓ 3,5 ↑ 4,2 ↓ 18,1 ↓ 16,6 ↓ 9,4 ↓ 1,1 ↓ 8,1 ↕ 9,7 ↑ 11,0 ↕ 7,9 ↕ 12,0 ↓ 0,6 ↓ 12,6 ↑ 15,1 ↑ 19,8 ↑ 12,3 ↓ 12,4 ↓ 5,7 ↓ 9,2

MODERATE 29,9 ↑ 18,0 ↑ 12,0 ↑ 6,1 ↑ 5,2 ↓ 2,9 ↑ 18,0 ↑ 18,4 ↑ 11,2 ↑ 3,0 ↕ 4,6 ↑ 10,0 ↑ 7,1 ↑ 5,2 ↕ 14,2 ↑ 4,4 ↕ 7,7 ↓ 17,8 ↓ 22,1 ↓ 13,4 ↑ 4,6 ↕ 0,3 ↑ 11,2
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 370 

Farm size (FSIZE) and average farm-block size (BLKSIZE) were the most relevant variables for the 371 

choice of Cattle grazing FS (Fig. 2), positively influencing its choice as revealed by the partial 372 

dependence plots (Fig. 3Fig. 3). The same variables also have a relevant effect on most sheep 373 

systems but, in this case, predominantly on the opposite direction (Fig. 3Fig. 3). The choice of 374 

the Cattle grazing – CO system is positively influenced by the increase of the average annual 375 

rainfall (PREC) and negatively by high summer temperatures (TMAX), which has a positive effect 376 

on the choice of the Cattle grazing – HO system. The Cattle grazing – forages system is 377 

distinguished by a preference for warmer winters, as revealed by the increasing trend of the 378 

TMIN curve (Fig. 3Fig. 3). 379 

The Grazing goats system is positively related to sloping terrain; its choice is favoured by 380 

increasing the slope (STEEP), while avoiding flat land (SMOOTH). This system is also 381 

characterized by avoiding public irrigation areas (WPUBLIC) and deep soils (SDEPTH). The choice 382 

of the Mixed Cattle and sheep - Irrigated forages system is favoured by deeper soils, public 383 

irrigation systems (WPUBLIC) and high local labour availability (AWU), which is probably related 384 

to the irrigated forages component of this FS or with the labour needs associated with grazing 385 

herds.. The average annual rainfall (PREC) has opposite effects in Sheep grazing – HO and – CO 386 

systems, with the first system being favoured by lower rainfall values, and the other way around 387 

in the later system. Sheep grazing – CO is also favoured by areas with steeper slopes (STEEP) and 388 

light soils (LIGHT_S), while the choice of Sheep grazing – HO decreases with deeper soils, 389 

smoother terrain and public irrigation structures. Lower values of local labour availability (AWU) 390 

seem to promote the choice of the Sheep grazing – pastures system, while the choice of Sheep 391 

grazing – forages system is negatively influenced as the local values of agricultural income 392 

dependence (INCAGRI) raises (Fig. 3). 393 

Both Rainfed olive groves systems (with and without sheep) are strongly related to smaller farm 394 

sizes, as these are also the two systems with lower average UAA (Table 4). Both are positively 395 

related to high summer temperatures (TMAX) and negatively to higher regional values of 396 

agricultural income dependence. The Rainfed olive groves with sheep system is favoured when 397 

average annual rainfall increases, and the Rainfed olive groves system is positively related to 398 

neutral pH soils (NEUTRAL) (Fig. 3). 399 

The Irrigated olive groves system is positively related to high summer temperatures, public 400 

irrigation systems, high local labour availability and high average farm-block size. It is negatively 401 

related to high average annual rainfall. The choice of the Vineyards system tends to increase 402 
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with higher values of regional labour availability, public irrigation systems and population 403 

density (PDENS). The Fruit trees system is positively associated with average annual rainfall and 404 

negatively with high population density and warmer winters (TMIN). The choice of the Stone 405 

pine system is favoured by light soils (LIGHT_S) and discouraged by high summer temperatures 406 

and population density (Fig. 3). 407 

In the annual crops, the Rice system is mostly favoured by the presence of public irrigation 408 

systems, also by higher regional values of agricultural income dependence (INCAGRI) and soil 409 

depth, while negatively influenced by high summer temperatures. The Irrigated cereals and 410 

horticultural crops system is positively related to soil depth, regional labour availability and 411 

smooth slope terrain. The choice of the Rainfed cereals and oilseeds system is encouraged with 412 

public irrigation systems and higher values of soil depth, neutral pH and high summer 413 

temperatures. The Rainfed cereals system is negatively related to bigger farm-block sizes and 414 

average annual rainfall. The Pastures without livestock system seems to be promoted when 415 

labour availability is lower and outside public irrigation systems, although this FS presented the 416 

highest error rate (Fig. 2Fig. 1), so the shape of the fitted function on the partial dependence 417 

plots does not provide so clear relationships. The Fallows system also displays complex relations 418 

with the predictors, though it seems to be more positively associated with small farms and areas 419 

of low population density (Fig. 3). 420 

Finally, the prediction accuracy for the different farming systems (Fig. 2Fig. 1) showed a modest 421 

but positive correlation with the corresponding levels of agricultural specialization and labour 422 

needs (Table 4) (correlation coefficients of 0.44 and 0.26, respectively), and a virtually non-423 

existent relationship with the level of agricultural intensity (correlation coefficient -0.03). 424 

 425 



 426 
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 427 

Fig.  2 – (Continued) 428 

 429 
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 431 

3.3.  Spatial patterns of landscape-scale farming systems composition 432 

The hexagonal lattice resulted with 56 usable analysis units, i.e., hexagons with >33% of the area 433 

overlapped with LPIS data (Fig. 4Fig. 4). The average error rate in the FS spatial pattern 434 

predictions across all hexagons was 28.7% (max. 47.3%; min. 9.2%), which is substantially lower 435 

than the error rate obtained with model predictions at the farm-level (67.3%). The average 436 

coefficient of determination was 0.89 (max. 1.00; min. 0.28), revealing a good model fit. 437 

 438 



 439 

Fig. 4 - Observed (left) and predicted (right) FS maps for the 1/3 observations used in the 440 

model validation dataset and the hexagons network used to assess model accuracy in FS 441 

spatial patterns prediction (different colours identify distinct FS; detailed maps showing the 442 

spatial distribution of each farming system are provided in supplementary information, 443 

Annex III). 444 

 445 

4. Discussion 446 

The use of farm-level data (IACS) provided by the national CAP paying agency proved to be a 447 

suitable approach to derive the FS typology for the study area, in line with previous studies 448 

(Ribeiro et al., 2018, 2016, 2014). The spatial-explicit nature of these data (LPIS) allowed a very 449 

fine characterization of farms, including in their biophysical, structural and socioeconomic 450 

features. As expected, the extent and heterogeneity of the study area, in both socioeconomic 451 

and biophysical features, led to a broad typology of 22 farming systems, which are a direct 452 

outcome of distinct farm-management adaptive-responses to a variety of farm features and 453 

contexts. 454 

Although the FS typology was balanced in terms of crop- and livestock-oriented systems, the 455 

results showed that most of the study area is currently devoted to livestock systems, particularly 456 

cattle grazing. Although the present study does not allow this to be confirmed, farmers' 457 

preference for these systems may be due to an (at date) ongoing direct payment for suckler 458 

cows (and partially to sheep and goats), a national agricultural policy option taken under the 459 
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2003 CAP reform that led to significantly impacted FS dynamics in the region (Ribeiro et al., 460 

2014). 461 

 462 

4.1.  Farm structure drivers 463 

Many of the effects of structural socioeconomic variables observed here are consistent with 464 

those of previous studies. For example, the farm-size was found to positively influence the 465 

choice of extensive livestock systems over crop systems, which was also observed in Ribeiro et 466 

al. (2018), and also in the choice between cattle grazing over some sheep grazing specialized 467 

systems, which was also observed in studies by Ribeiro et al. (2014). 468 

Access to private sources of surface irrigation water showed very little importance in the FS 469 

choice-models, which is apparently odd for a region where water is often a limiting factor. This 470 

was probably due not only to the type of variable used (dummy variable, with 1 = “yes, the farm 471 

has access to surface water sources” and 0 otherwise) but also to the fact of not including access 472 

to groundwater from water wells, due to lack of data, which are a common source in parts of 473 

the region. In contrast, water availability from public irrigation systems is essential in explaining 474 

the spatial location of several irrigated FS (either cereals, oil seeds or intensive olive groves and 475 

vineyards) showing the importance of public water management policy over other biophysical 476 

constraints (Kahil et al., 2015). Not surprisingly, these farming systems most associated with 477 

large public irrigation systems are among the most intensive ones. 478 

Public intervention in nature conservation areas seems to be of little relevance for FS choice 479 

since although a considerable share of agriculture area is classified for nature conservation, the 480 

corresponding variable (NATURE) was one of the least relevant within a list of dimensions that 481 

has farm and block size at the top. 482 

An interesting side-result of our approach was the insight of an overall negative, though 483 

moderate, relationship between farm size and the level of agricultural intensity, indicating that 484 

larger farms tend to adopt less intensive FS, a finding that goes back to earlier works (Cornia, 485 

1985; Grigg, 2005; Reboul, 1989, 1976). Exceptions, however, can be found when contrasting, 486 

e.g., the Rainfed olive groves and the Irrigated olive groves systems, where large investments in 487 

fixed capital (including irrigation systems), together with labour availability, seem to provide 488 

increasing returns to scale, which was also reported in more recent studies (Deininger et al., 489 

2018; Rada and Fuglie, 2019). 490 

 491 



4.2.  Socioeconomic context drivers 492 

Regarding the socioeconomic context of the farms, the level of agricultural professionalization 493 

(inferred from the INCAGRI variable) and farm labour availability proved to be significant drivers 494 

of FS. On one side, higher levels of professionalization, which in Portugal are considerably low 495 

in average when comparing to non-South European countries (Arnalte-Alegre and Ortiz-496 

Miranda, 2013), are positively associated with Rice, Stone pine or Rainfed cereals and oilseeds 497 

systems. On the other side, Vineyards and Irrigated cereals and horticultural crops, which show 498 

the highest levels of labour intensity per hectare and the highest average of labour units per 499 

farm, are positively associated with local availability of farm labour. Considering that 500 

horticultural crops typically have the highest wage labour ratios compared to other crops 501 

(Baptista and Rolo, 2017), it was surprising that it did not show up associated with high local 502 

proportion of hired labour. A possible explanation may be the high geographic mobility of hired 503 

workers (Baptista and Rolo, 2017), although it may also emerge from the heterogeneity in labour 504 

intensity within this FS, since it encompasses irrigated cereals and industrial horticulture, with 505 

considerable levels of mechanization, as well as horticultural crops with very high levels of 506 

labour needs. 507 

The fact that local labour availability has a more widespread importance as a FS driver than rural 508 

population density, which only stands out in the single case of Vineyards, contradicts the idea of 509 

permanent crops and horticulture as able of promoting rural population retention (Egea and 510 

Pérez y Pérez, 2016), i.e., it points to the dissociation between farm labour dynamics and local 511 

demographics (Baptista and Rolo, 2017). While vineyards remain located in higher populated 512 

parishes, following deep-rooted institutional constraints by protected designations of origin, 513 

olive groves (either irrigated or rainfed) show no relation with local demographics. 514 

Land renting (RENT) did not appear in the top 5 drivers in any FS, suggesting that the size of the 515 

land renting market does not appear to have much effect on the choice of FS in the study area. 516 

However, the positive relationship observed between land renting and livestock grazing FS, 517 

especially cattle, (supplementary information, Annex III) suggests that these systems, which 518 

have experienced marked growth in the region in recent years (Ribeiro et al., 2018), expanded 519 

in part at the expense of this tenancy regime. 520 

 521 



4.3.  Biophysical drivers 522 

As anticipated, biophysical factors related to climate, soils and relief, proved to be strong 523 

determinants of FS spatial distribution (Grigg, 2005). Summer heat and annual precipitation 524 

came up as the main biophysical drivers of FS spatial distribution in the study area. High summer 525 

temperatures seem to favour the choice of olive groves, vineyards, rainfed cereals and cattle 526 

grazing systems associated to Holms oak, and to discourage livestock systems associated to Cork 527 

oak, Stone pine or Rice systems. Winter cold increases the likelihood of fruit tree systems and 528 

the opposite with forage systems. 529 

Deep soils and smooth relief are positive drivers of the Rice and Irrigated cereals and 530 

horticultural crops systems. The opposite effect is found towards the Grazing goats system, 531 

which is strongly related to stepper slopes. Soil ph pH did not emerge as a major driver for the 532 

distribution of any FS, except for rainfed cereals and olive groves systems which showed a 533 

preference for neutral ph pH soils. 534 

Following Cork and Holm oak distinct preferences for soil and climate (Surová and Pinto-Correia, 535 

2008), livestock systems associated with these two species of oaks were found distributed 536 

accordingly: Cork oak-associated systems prevail more to the coast and north of the study area, 537 

where summer temperatures are milder, annual rainfall is higher and soils are sandy and light-538 

textured; Holm oak-associated systems are further inland an south, where summers are 539 

warmer, annual rainfall is lower and soils are frequently poor and fairly thin. 540 

 541 

4.4.  Farming system prediction at the farm and landscape levels 542 

Although the model's ability to predict individual FS was quite varied, depending on the FS, when 543 

applied to predicting FS patterns at the landscape-level the model revealed a much higher hit 544 

rate. The random forest approach applied in the model estimation proved to be a valuable 545 

choice, particularly in dealing with such high dimensional data (Strobl et al., 2009).  546 

The fact that some FS showed little relation to the selected socioeconomic and biophysical 547 

drivers, presenting very high error rates in model FS predictions, may be due to effects not 548 

controlled by the variables examined. One such case would be the Pastures without livestock 549 

system, whose choice is probably mostly determined by the presence of livestock farms in the 550 

nearby, with whom the farm can negotiate grazing land renting, rather than by the 551 



characteristics of the farm itself. As a consequence, it presents an apparently random spatial 552 

distribution, little associated with the socioeconomic or biophysical features. 553 

Farming systems with lower error rates in the model were those who most depend on the 554 

chosen socioeconomic or biophysical factors, such as the Rice, Irrigated cereals and horticulture 555 

or Rainfed cereals and oilseed systems (where cereals are an autumn-winter rainfed crop and 556 

oilseeds are grown in spring-summer season, often irrigated) that highly depend on irrigation 557 

water provided by public irrigation systems in this region. Or the Vineyards system, whose 558 

location is highly dependent on the availability of regional labour supply, to meet peaks of labour 559 

needs at certain times of the year, related to certain crop operations (e.g. harvesting or pruning). 560 

In the present market, policy and technological context, these FS revealed greater dependence 561 

on farm structure and “territorial embeddedness” (sensu Cerceau et al., 2018). 562 

At the landscape level, the model was very effective in predicting farming systems patterns, i.e., 563 

the shares of FS composition within hexagon-shaped landscape units. For agricultural landscape 564 

planning focused on agroecosystem services provision, this may be the right scale of analysis, 565 

since a minimum share of farmland managed under the FS delivering those services should be 566 

sufficient to ensure the socially desired level of service, rather than requiring the service to be 567 

provided by a specific set of farms over a period of time (Andersen, 2017), as is typically the case 568 

with many agri-environment schemes requiring multi-annual contracts with individual farmers. 569 

 570 

4.5.  Shortcomings of the approach and recommendations for future 571 

research 572 

Despite the valuable advantages evidenced by the proposed approach, some limitations 573 

werethere is still room for future improvement. identified, mostly related to shortcomings in the 574 

baseline data and peculiarities of the study area, some of which may call for future work. 575 

Improvements mostly relate to characteristics of the IACS and LPIS datasets and methodological 576 

options that are dependent on the geographic context of our study area.  577 

While recognized as having high potential for supporting data .driven research, the In defiance 578 

of their high potential to develop research work like in the present study, IACS / LPIS datasets 579 

present have some limitations, such as the lack of information to carefully characterize farmers’ 580 

socioeconomic profile, or information on complementarity relationships between farms, such 581 

as the rental or sale of pastures, which can mislead the computation of farms’ stock density.. 582 

Such information , which would be valuable to include in the FS choice models. 583 



The fact that the empirical work was carried out in a region where the landscape is largely 584 

dominated by agriculture, makes it possible to closely link FS choice with landscape modelling. 585 

Where this is not the case, such as many mountain and less favoured regions across the EU, this 586 

approach may not deliver the same results, given the smaller share of agriculture in the 587 

landscape. Additionally, in such regions a significant part of agriculture is probably outside any 588 

CAP support system, so that an approach based on IACS / LPIS data can only partially capture an 589 

agricultural reality that is itself marginal at the landscape scale. Paradoxically, these regions 590 

often include significant shares of high nature value farmlands at the EU level (Lomba et al., 591 

2014). Nevertheless, it should be worth trying to reproduce the approach in such regions in the 592 

future, to test the generalization of the framework. 593 

Because our farm characterization variables report to a single year, the effect of economic or 594 

policy variables such as prices or subsidies can only be assumed as underpinning the farmers' 595 

choices reflected on the observed 2017 IACS / LPIS data. However, the use of this type of 596 

variables in the model, provided that time-series of farm-level data can be made available, 597 

would significantly extend the scope of this approach, allowing its use to evaluate policy and 598 

price change scenarios. Even without additional temporal data, the framework can take 599 

advantage of the wide extension of the study area to perform, e.g., climate-change scenarios 600 

assessment, by adopting a space-for-time substitution approach. 601 

The selection of candidate variables to be tested as drivers of FS choice is also a key step in the 602 

modelling approach. The misspecification or the absence of key variables can substantially 603 

undermine models’ performance. The problems observed with variable WPRIVATE may be one 604 

such case, as this variable only reported access to small private surface water sources, which are 605 

mostly torrential regime in this region, with insufficient water guarantees to encourage investing 606 

in irrigation systems, and not taking into account that a significant portion of private irrigation 607 

in this region is probably resorting to groundwater sources. This premise, which we could not 608 

test due to lack of data, would be worth further investigation, should spatially explicit data on 609 

groundwater uptakes becomes available. 610 

Another issue deserving further investigation concerns the dimension of the grid of landscape 611 

analysis units. It is possible that the size of these units (i.e. the hexagons, in the current case) 612 

influences the accuracy of the model, so future investigation focused on determining its optimal 613 

size could prove to be of high value. 614 

Also, one aspect that has not been explored in the present study and should merit further 615 

investigation is the occurrence of interaction effects between drivers. Although the way random 616 
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forests deal with these effects is still subject to discussion (Wright et al., 2016), its likely existence 617 

recommends additional analysis. 618 

Finally, the fact that the prediction error rate has shown significant disparities across the FS 619 

should not be seen as a flaw in the conceptual approach, but rather as an indicationsuggests 620 

that the choice of some of these FS may be due to effects not controlledmeasured by the 621 

variables examined, including factors related to farmers' desires, attitudes and motivations, or 622 

with their socioeconomic profile which, as mentioned above, cannot be assessed on the basis of 623 

IACS data. One such case would be the Pastures without livestock system, whose choice is 624 

probably mostly determined by the presence of livestock farms in the nearby, with whom the 625 

farm can negotiate grazing land renting, rather than by the biophysical characteristics of the 626 

farm or its socioeconomic context. On the other hand, Farming systemsFS with lower error rates 627 

in the model were those who most depend on the chosen socioeconomic or biophysical factors, 628 

such as the Rice, Irrigated cereals and horticulture or Rainfed cereals and oilseed systems (where 629 

cereals are an autumn-winter rainfed crop and oilseeds are grown in spring-summer season, 630 

often irrigated) that highly depend on irrigation water provided by public irrigation systems in 631 

this region. OrThe same applies to the Vineyards system, whose location is highly dependent on 632 

the availability of regional labour supply, to meet peaks of labour needs at certain times of the 633 

year, related to certain crop operations (e.g. harvesting or pruning). In the present market, policy 634 

and technological context, these FS revealed greater dependence on farm structure and 635 

“territorial embeddedness” (sensu Cerceau et al., 2018). 636 

 637 

 638 

4.5.4.6.  Concluding remarks 639 

Our framework proved to be a suitable approach to investigate the role of human and physical 640 

factors in farmers' decisions regarding the choice of the FS, providing effective contributions to 641 

improve our understanding of the spatial distribution of FS when observed at a regional scale. 642 

This research led to a better understanding of how each of the considered socioeconomic and 643 

biophysical factors influences the spatial location of a wide range of FS, a subject seldom 644 

explored in such detail in the literature. Results showed that both socioeconomic and 645 

biophysical factors exert a high influence on the spatial distribution of FS, clearly revealing the 646 

shortcomings of planning proposals exclusively confined to the agroecological aptitude 647 
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perspective (Nguyen et al., 2015; Pirovani et al., 2018). That influence, however, is not 648 

comparable across FS, being decisive for the location of some FS and marginal for others. 649 

Contrasting relationships were found between the agricultural intensity level and the degree of 650 

dependence on biophysical drivers among the FS, with the simultaneous existence of intensive 651 

FS with strong connection to biophysical factors (e.g. Rice system), and others similarly intensive 652 

FS but where this relation is much weaker (e.g. Fruit trees system). This finding shows the 653 

shortcomings of the assimilation between agricultural intensity and degree of artificialization of 654 

the farm’s conditions, largely dominant in the literature on the relationship between agriculture 655 

and biodiversity/natural resources (Keenleyside et al., 2014). This assimilation ignores the 656 

distinction between land and labour productivity and the fact that intensity differences may be 657 

due to labour intensity levels rather than higher levels of external outputs. Our results point thus 658 

to the need of not reducing farming systems diversity to an intensity gradient, when  comparing 659 

across distinct productions (Ribeiro et al., 2016). 660 

The use of IACS / LPIS data proved to be an invaluable asset for the research, enabling a high-661 

detailed farm-level analysis, not achievable using official statistics and usually only possible 662 

through expensive and time-consuming farm surveys, often unfeasible for research works 663 

developed at regional scales like the one used in this study. Therefore, it is worth renewing an 664 

appeal previously made (Santos et al., 2020; Tóth and Kučas, 2016), addressed at the EU bodies 665 

responsible for maintaining the IACS databases, to make them more accessible to the scientific 666 

community, while safeguarding confidentiality duties. 667 

Because our farm characterization variables report to a single year, the effect of economic or 668 

policy variables such as prices or subsidies can only be assumed as underpinning the farmers' 669 

choices reflected on the observed 2017 IACS/LPIS data. However, the use of this type of variables 670 

in the model, provided that time-series of farm-level data can be made available, would 671 

significantly extend the scope of this approach, allowing its use to evaluate policy and price 672 

change scenarios. Even without additional temporal data, the framework can take advantage of 673 

the wide extension of the study area to perform, e.g., climate-change scenarios assessment, by 674 

adopting a space-for-time substitution approach. All these possibilities, coupled withOverall,  675 

the model's ability to perform scenario simulations and to predict patterns of farming systems, 676 

assigns this approach with a high potential to support information-based policy design to 677 

improve agricultural landscape planning and ensure the provision of socially valued 678 

agroecosystem services. 679 

 680 

Formatted: Font color: Blue



Acknowledgments 681 

This work was funded by project “FARSYD– FARming SYstems as tool to support policies for 682 

effective conservation and management of high nature value farmlanDs” – POCI-01-0145-683 

FEDER-016664 (PTDC/AAG-REC/5007/2014), supported by Norte Portugal Regional Operational 684 

Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the 685 

European Regional Development Fund (ERDF). This research was also supported by the Forest 686 

Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), 687 

Portugal (UID/AGR/00239/2019). FM was supported by FCT (contract IF/01053/2015). AL was 688 

supported by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the 689 

context of the Transitory Norm - DL57/2016/CP1440/CT0001 690 

 691 



 

5. References 

Andersen, E., 2017. The farming system component of European agricultural landscapes. Eur. J. 

Agron. 82, 282–291. doi:10.1016/j.eja.2016.09.011 

Arnalte-Alegre, E., Ortiz-Miranda, D., 2013. The “southern model” of european agriculture 

revisited: Continuities and dynamics, Research in Rural Sociology and Development. 

Emerald Group Publishing Limited. doi:10.1108/S1057-1922(2013)0000019005 

Baptista, F.O., Rolo, J.C., 2017. Trabalho agrícola: percursos e modelos. Cultiv. n.o 10 27–35. 

Benoît, M., Rizzo, D., Marraccini, E., Moonen, A.C., Galli, M., Lardon, S., Rapey, H., Thenail, C., 

Bonari, E., 2012. Landscape agronomy: A new field for addressing agricultural landscape 

dynamics. Landsc. Ecol. 27, 1385–1394. doi:10.1007/s10980-012-9802-8 

Birch, C.P.D., Oom, S.P., Beecham, J.A., 2007. Rectangular and hexagonal grids used for 

observation, experiment and simulation in ecology. Ecol. Modell. 206, 347–359. 

doi:10.1016/j.ecolmodel.2007.03.041 

Breiman, L., 2001. Random Forests. Eur. J. Math. 45, 5–32. doi:10.1023/A:1010933404324 

Canadas, M.J., Novais, A., 2014. Bringing local socioeconomic context to the analysis of forest 

owners’ management. Land use policy 41, 397–407. 

doi:10.1016/J.LANDUSEPOL.2014.06.017 

Cerceau, J., Mat, N., Junqua, G., 2018. Territorial embeddedness of natural resource 

management: A perspective through the implementation of Industrial Ecology. Geoforum 

89, 29–42. doi:10.1016/j.geoforum.2018.01.001 

Cornia, G.A., 1985. Farm size, land yields and the agricultural production function: An analysis 

for fifteen developing countries. World Dev. 13, 513–534. doi:10.1016/0305-

750X(85)90054-3 

Debolini, M., Marraccini, E., Dubeuf, J.P., Geijzendorffer, I.R., Guerra, C., Simon, M., Targetti, 

S., Napoléone, C., 2018. Land and farming system dynamics and their drivers in the 

Mediterranean Basin. Land use policy 75, 702–710. doi:10.1016/j.landusepol.2017.07.010 

Deffontaines, J.-P., 2004. L’objet dans l’espace agricole. Le regard d’un géoagronome. Natures 

Sci. Sociétés 12, 299–304. doi:10.1051/nss:2004041 

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)



Deffontaines, J.P.P., Thenail, C., Baudry, J., 1995. Agricultural systems and landscape patterns: 

how can we build a relationship? Landsc. Urban Plan. 31, 3–10. doi:10.1016/0169-

2046(94)01031-3 

Deininger, K., Jin, S., Liu, Y., Singh, S.K., 2018. Can Labor-Market Imperfections Explain Changes 

in the Inverse Farm Size–Productivity Relationship? Longitudinal Evidence from Rural 

India. Land Econ. 94, 239–258. doi:10.3368/le.94.2.239 

Egea, P., Pérez y Pérez, L., 2016. Sustainability and multifunctionality of protected designations 

of origin of olive oil in Spain. Land use policy 58, 264–275. 

doi:10.1016/j.landusepol.2016.07.017 

Ferraz-de-Oliveira, M.I., Azeda, C., Pinto-Correia, T., 2016. Management of Montados and 

Dehesas for High Nature Value: an interdisciplinary pathway. Agrofor. Syst. 90, 1–6. 

doi:10.1007/s10457-016-9900-8 

Friedman, J.H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 

29, 1189–1232. doi:10.1214/009053606000000795 

Grigg, D., 2005. An Introduction to Agricultural Geography, Second Edition, Second edi. ed. 

Routledge, London and New York. 

Hazell, P., Wood, S., 2008. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. 

Sci. 363, 495–515. doi:10.1098/rstb.2007.2166 

Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B.M., Gräler, B., 2018. Random forest as a 

generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 

6, e5518. doi:10.7717/peerj.5518 

Januszewski, J., 1968. Index of land consolidation as a criterion of the degree of concentration. 

Geogr. Plonica 14, 291–296. 

Kahil, M.T., Connor, J.D., Albiac, J., 2015. Efficient water management policies for irrigation 

adaptation to climate change in Southern Europe. Ecol. Econ. 120, 226–233. 

doi:10.1016/j.ecolecon.2015.11.004 

Keenleyside, C., Beaufoy, G., Tucker, G., Jones, G., 2014. High Nature Value farming throughout 

EU-27 and its financial support under the CAP. Report Prepared for DG Environment, 

Contract No ENV B.1/ETU/2012/0035, Institute for European Environmental Policy. 

London. doi:10.2779/91086 

Formatted: English (United States)



Kristensen, S.B.P., Busck, A.G., van der Sluis, T., Gaube, V., 2016. Patterns and drivers of farm-

level land use change in selected European rural landscapes. Land use policy 57, 786–799. 

doi:10.1016/j.landusepol.2015.07.014 

Lacoste, M., Lawes, R., Ducourtieux, O., Flower, K., 2018. Assessing regional farming system 

diversity using a mixed methods typology: the value of comparative agriculture tested in 

broadacre Australia. Geoforum 90, 183–205. doi:10.1016/j.geoforum.2018.01.017 

Landis, D.A., 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. 

Basic Appl. Ecol. 18, 1–12. doi:10.1016/j.baae.2016.07.005 

Latruffe, L., Piet, L., 2014. Does land fragmentation affect farm performance? A case study 

from Brittany, France. Agric. Syst. 129, 68–80. doi:10.1016/j.agsy.2014.05.005 

Levers, C., Butsic, V., Verburg, P.H., Müller, D., Kuemmerle, T., 2016. Drivers of changes in 

agricultural intensity in Europe. Land use policy 58, 380–393. 

doi:10.1016/j.landusepol.2016.08.013 

Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News 2, 18–22. 

Lomba, A., Guerra, C., Alonso, J., Honrado, J.P., Jongman, R., McCracken, D., 2014. Mapping 

and monitoring High Nature Value farmlands: challenges in European landscapes. J. 

Environ. Manage. 143, 140–50. doi:10.1016/j.jenvman.2014.04.029 

Lomba, A., Strohbach, M., Jerrentrup, J.S., Dauber, J., Klimek, S., McCracken, D.I., 2017. Making 

the best of both worlds: Can high-resolution agricultural administrative data support the 

assessment of High Nature Value farmlands across Europe? Ecol. Indic. 72, 118–130. 

doi:10.1016/j.ecolind.2016.08.008 

Martel, G., Aviron, S., Joannon, A., Lalechère, E., Roche, B., Boussard, H., 2019. Impact of 

farming systems on agricultural landscapes and biodiversity: From plot to farm and 

landscape scales. Eur. J. Agron. 107, 53–62. doi:10.1016/j.eja.2017.07.014 

Nguyen, T.T., Verdoodt, A., Van Y, T., Delbecque, N., Tran, T.C., Van Ranst, E., 2015. Design of a 

GIS and multi-criteria based land evaluation procedure for sustainable land-use planning 

at the regional level. Agric. Ecosyst. Environ. 200, 1–11. doi:10.1016/j.agee.2014.10.015 

Pirovani, D.B., Pezzopane, J.E.M., Xavier, A.C., Pezzopane, J.R.M., de Jesus Júnior, W.C., 

Machuca, M.A.H., dos Santos, G.M.A.D.A., da Silva, S.F., de Almeida, S.L.H., de Oliveira 

Peluzio, T.M., Eugenio, F.C., Moreira, T.R., Alexandre, R.S., dos Santos, A.R., 2018. Climate 

change impacts on the aptitude area of forest species. Ecol. Indic. 95, 405–416. 

Formatted: English (United States)



doi:10.1016/j.ecolind.2018.08.002 

Plieninger, T., Draux, H., Fagerholm, N., Bieling, C., Bürgi, M., Kizos, T., Kuemmerle, T., 

Primdahl, J., Verburg, P.H., 2016. The driving forces of landscape change in Europe: A 

systematic review of the evidence. Land use policy 57, 204–214. 

doi:10.1016/j.landusepol.2016.04.040 

R Development Core Team, 2017. R: A language and environment for statistical computing. 

[WWW Document]. R Found. Stat. Comput. URL http://www.r-project.org (accessed 

11.12.18). 

Rada, N.E., Fuglie, K.O., 2019. New perspectives on farm size and productivity. Food Policy 84, 

147–152. doi:10.1016/j.foodpol.2018.03.015 

Reboul, C., 1989. Monsieur le capital et madame la terre - Fertilité agronomique et fertilité 

économique 1989. 

Reboul, C., 1976. Mode de production et systèmes de culture et d’élevage. Économie Rural. 

112, 55–65. doi:10.3406/ecoru.1976.2413 

Ribeiro, P.F., Nunes, L.C., Beja, P., Reino, L., Santana, J., Moreira, F., Santos, J.L., 2018. A 

Spatially Explicit Choice Model to Assess the Impact of Conservation Policy on High 

Nature Value Farming Systems. Ecol. Econ. 145, 331–338. 

doi:10.1016/j.ecolecon.2017.11.011 

Ribeiro, P.F., Santos, J.L., Bugalho, M.N., Santana, J., Reino, L., Beja, P., Moreira, F., 2014. 

Modelling farming system dynamics in High Nature Value Farmland under policy change. 

Agric. Ecosyst. Environ. 183, 138–144. doi:10.1016/j.agee.2013.11.002 

Ribeiro, P.F., Santos, J.L., Santana, J., Reino, L., Leitão, P.J., Beja, P., Moreira, F., 2016. 

Landscape makers and landscape takers: links between farming systems and landscape 

patterns along an intensification gradient. Landsc. Ecol. 31, 791–803. 

doi:10.1007/s10980-015-0287-0 

Rizzo, D., Marraccini, E., Lardon, S., Rapey, H., Debolini, M., Benoît, M., Thenail, C., 2013. 

Farming systems designing landscapes: land management units at the interface between 

agronomy and geography. Geogr. Tidsskr. J. Geogr. 113, 71–86. 

doi:10.1080/00167223.2013.849391 

Ruiz-Martinez, I., Marraccini, E., Debolini, M., Bonari, E., 2015. Indicators of agricultural 

intensity and intensification: a review of the literature. Ital. J. Agron. 10, 74. 

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)



doi:10.4081/ija.2015.656 

Santos, J.L., Moreira, F., Ribeiro, P.F., Canadas, M.J., Novais, A., Lomba, A., 2020. A farming 

systems approach to linking agricultural policies with biodiversity and ecosystem services. 

Front. Ecol. Environ. in press, fee.2292. doi:10.1002/fee.2292 

Schaller, L., Targetti, S., Villanueva, A.J., Zasada, I., Kantelhardt, J., Arriaza, M., Bal, T., 

Fedrigotti, V.B., Giray, F.H., Häfner, K., Majewski, E., Malak-Rawlikowska, A., Nikolov, D., 

Paoli, J.-C., Piorr, A., Rodríguez-Entrena, M., Ungaro, F., Verburg, P.H., van Zanten, B., 

Viaggi, D., 2018. Agricultural landscapes, ecosystem services and regional 

competitiveness—Assessing drivers and mechanisms in nine European case study areas. 

Land use policy 76, 735–745. doi:10.1016/j.landusepol.2018.03.001 

Shmueli, G., 2010. To Explain or to Predict? Stat. Sci. 25, 289–310. doi:10.1214/10-STS330 

Silva, J.F., Santos, J.L., Ribeiro, P.F., Canadas, M.J., Novais, A., Lomba, A., Magalhães, M.R., 

Moreira, F., 2020. Identifying and explaining the farming system composition of 

agricultural landscapes: the role of socioeconomic drivers under strong biophysical 

gradients. Landsc. Urban Plan. 202, 103879. doi:10.1016/j.landurbplan.2020.103879 

Strobl, C., Malley, J., Tutz, G., 2009. An introduction to recursive partitioning: Rationale, 

application, and characteristics of classification and regression trees, bagging, and 

random forests. Psychol. Methods 14, 323–348. doi:10.1037/a0016973 

Surová, D., Pinto-Correia, T., 2008. Landscape preferences in the cork oak Montado region of 

Alentejo, southern Portugal: Searching for valuable landscape characteristics for different 

user groups. Landsc. Res. 33, 311–330. doi:10.1080/01426390802045962 

Tóth, K., Kučas, A., 2016. Spatial information in European agricultural data management. 

Requirements and interoperability supported by a domain model. Land use policy 57, 64–

79. doi:10.1016/j.landusepol.2016.05.023 

van de Steeg, J.A., Verburg, P.H., Baltenweck, I., Staal, S.J., 2010. Characterization of the spatial 

distribution of farming systems in the Kenyan Highlands. Appl. Geogr. 30, 239–253. 

doi:10.1016/j.apgeog.2009.05.005 

van Vliet, J., de Groot, H.L.F., Rietveld, P., Verburg, P.H., 2015. Manifestations and underlying 

drivers of agricultural land use change in Europe. Landsc. Urban Plan. 133, 24–36. 

doi:10.1016/j.landurbplan.2014.09.001 

Wilson, G.A., 2009. The spatiality of multifunctional agriculture: A human geography 

Formatted: English (United States)

Formatted: English (United States)



perspective. Geoforum 40, 269–280. doi:10.1016/j.geoforum.2008.12.007 

Wright, M.N., Ziegler, A., König, I.R., 2016. Do little interactions get lost in dark random 

forests? BMC Bioinformatics 17, 145. doi:10.1186/s12859-016-0995-8 

 



  

Title page

Click here to access/download
Supplementary Material

TitlePage_AS_PFR_22092020.docx

https://www.editorialmanager.com/agsy/download.aspx?id=96348&guid=91ef84d5-1159-4ac3-a27e-7e865fd24153&scheme=1


  

Supplementary Material

Click here to access/download
Supplementary Material

Revised_SupInformation_AS_PFR_21032021.docx

https://www.editorialmanager.com/agsy/download.aspx?id=96352&guid=f612a318-e780-4e1a-b810-913b8a0e3667&scheme=1


Declaration of interests 
 

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

 

Conflict of Interest


