Solving applications of Integer Linear Programming with Excel

Isabel Martins

ISA - Applied Operations Research - 2020/2021

- 1. Hiring rangers
- 2. Sheet cutting planning

Hiring rangers

The forest service of a country needs to set up sites for district rangers. The forest is made up of a number of districts, as illustrated below. A district ranger can be placed in any district and is able to handle the job of protecting the forest resources for future generations and to protect visitors for both its district and any adjacent districts. Consider that two districts are adjacent if they share one point at least. The objective is to minimize the number of district rangers hired.

The problem

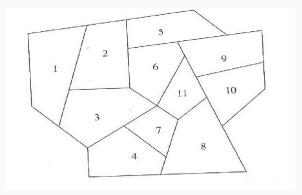


Figure 1: Forest.

Indicate the districts that a ranger can protect

Districts		Distr	ricts	whe	re th	e ra	nger	s cai	n be	place	d
	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											

Table 1: Districts that a ranger can protect.

Indicate the districts that a ranger can protect

		•								
	Distr	icts	whe	re th	e ra	nger	's ca	n be	place	d
1	2	3	4	5	6	7	8	9	10	11
1	1	1	0	0	0	0	0	0	0	0
1	1	1	0	1	1	0	0	0	0	0
1	1	1	1	0	1	1	0	0	0	1
0	0	1	1	0	0	1	1	0	0	0
0	1	0	0	1	1	0	0	1	0	0
0	1	1	0	1	1	1	0	1	0	1
0	0	1	1	0	1	1	1	0	0	1
0	0	0	1	0	0	1	1	0	1	1
0	0	0	0	1	1	0	0	1	1	1
0	0	0	0	0	0	0	1	1	1	1
0	0	1	0	0	1	1	1	1	1	1
	1 1 1 0 0 0 0 0 0 0	1 2 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

Table 2: Districts that a ranger can protect.

The decision variables are as follows:

The decision variables are as follows:

$$x_j = \begin{cases} 1 & \text{if a ranger is placed in district} \\ 0 & \text{otherwise.} \end{cases}$$

number of rangers hired

number of rangers hired

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers hired

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

number of rangers hired

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

 $X_1 + X_2 + X_3$

number of rangers hired

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

 $X_1 + X_2 + X_3$

number of rangers that protect district 2

number of rangers hired

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

 $X_1 + X_2 + X_3$

number of rangers that protect district 2

 $X_1 + X_2 + X_3 + X_5 + X_6$

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

 $X_1 + X_2 + X_3$

number of rangers that protect district 2

 $x_1 + x_2 + x_3 + x_5 + x_6$

number of rangers that protect district 3

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

 $X_1 + X_2 + X_3$

number of rangers that protect district 2

 $x_1 + x_2 + x_3 + x_5 + x_6$

number of rangers that protect district 3

 $X_1 + X_2 + X_3 + X_4 + X_6 + X_7 + X_{11}$

••••

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

 $X_1 + X_2 + X_3$

number of rangers that protect district 2

 $x_1 + x_2 + x_3 + x_5 + x_6$

number of rangers that protect district 3

 $X_1 + X_2 + X_3 + X_4 + X_6 + X_7 + X_{11}$

••••

number of rangers that protect district 11

 $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

number of rangers that protect district 1

 $X_1 + X_2 + X_3$

number of rangers that protect district 2

 $X_1 + X_2 + X_3 + X_5 + X_6$

number of rangers that protect district 3

 $X_1 + X_2 + X_3 + X_4 + X_6 + X_7 + X_{11}$

••••

number of rangers that protect district 11

 $X_3 + X_6 + X_7 + X_8 + X_9 + X_{10} + X_{11}$

$$\min Z = \sum_{j=1}^{11} x_j$$
 (1)

subject to

$$\min Z = \sum_{j=1}^{11} x_j$$
 (1)

subject to

<i>X</i> ₁	$+X_{2}$	$+X_{3}$									≥ 1
<i>X</i> ₁	$+x_{2}$	$+x_{3}$		$+x_{5}$	+x ₆						≥ 1
<i>X</i> ₁	$+X_{2}$	$+X_{3}$	$+X_{4}$		+ <i>X</i> 6	$+X_{7}$				$+X_{11}$	≥ 1
		<i>X</i> ₃	$+X_{4}$			$+X_{7}$	$+x_{8}$				≥ 1
	<i>X</i> ₂			$+X_{5}$	+ <i>X</i> 6			$+X_{9}$			≥ 1
	<i>X</i> ₂	$+X_{3}$		$+X_{5}$	+ <i>X</i> 6	$+X_{7}$		$+X_{9}$		+ <i>X</i> ₁₁	≥ 1
		<i>X</i> ₃	$+X_{4}$		+ <i>X</i> 6	$+X_{7}$	$+x_{8}$			+ <i>X</i> ₁₁	≥ 1
			X4			$+X_{7}$	$+x_{8}$		+X ₁₀	$+X_{11}$	≥ 1
				X_5	+ <i>X</i> 6			$+X_{9}$	+X ₁₀	+ <i>X</i> ₁₁	≥ 1
							X8	$+X_{9}$	+X ₁₀	$+X_{11}$	≥ 1
		<i>X</i> ₃			+ <i>X</i> 6	$+X_{7}$	$+x_{8}$	$+X_{9}$	+X ₁₀	+ <i>X</i> ₁₁	≥ 1
$X_1,$	X_2 ,	$X_3,$	$X_4,$	X_5 ,	Х _б ,	Х7,	X_8 ,	Х9,	$X_{10},$	<i>X</i> ₁₁	$\in \! \{0, 1\}$

Expression (1) minimizes the number of rangers hired

All constraints bebore the last ensure that each district is protected

The last constraints state the nature of the variables

heiro	4) * (4 * Base	_	Esquema de	e Página	Fórmulas	Dados	Rever	Ver Pr	ogramador	Team					
1	🔏 Cortar		Calibri	-	11 * A*	A* = =	= 😑 🗞	- 🗊 N	loldar Texto	Geral					
lar	Incel de	Formatação Encia 5		S → 🔛					Inir e Centrar			00, 00, 0,4 00,	Formatação Condicional		Estilo: Célul
Area	L5		fx					lamento		¹ 8	Numero	121 K1		ESUIDS	
8	Class_March	125 - pre.xlsx													
	A	В	С	D	E	F	G	н	1	J	K	L	M	N	
1	x1	x2	х3	x4	x5	хб	x7	x8	x9	×10	×11				
2	0	0	0	0	0	0	0	C	0		D	0			
3															
4												0	bj		
5	1	1	1	1	1	1	1	1	. 1		1	1	0		
6															
7	1	1	1		1	1							0 >=		1
8	1	1	1		1	1							0 >=		1
9	1	1	1	1		1	1					1	0 >=		1
10			1	1			1	1					0 >=		1
11		1			1	1			1				0 >=		1
12		1	1		1	1	1		1			1	0 >=		1
13			1	1		1	1	1				1	0 >=		1
14				1			1	1			1	1	0 >=		1
15					1	1			1		1	1	0 >=		1
16								1	. 1		1	1	0 >=		1
17			1			1	1	1	. 1		1	1	0 >=		1
18															
19															

Figure 2: Excel.

X	=) - (=	* T											Micro	soft Excel (A Acti	vação do Produto	Falhou)	
	Base	Inser	ir Es	quema d	e Página	Fórr	mulas	Dados	Rever	Ver	Pro	gramador	Team					
A Partir do Acces	s da Web	ter Dados I	ixternos	Existe	jões Act intes ti	tualizar udo *	sə Edit Ligaçõe	priedades Jar Ligações S		denar	Filtrar lenar e F	W Limpar Go Reapli Go Acrançi Itrar	car E	to para R	plicad	r Validação Cor os de Dados - rramentas de Dado	Hipótes	e de Agrupar Desagrupar Subtotal
			. (*	f _x	=SOM4	ARPRO	DUTO(A5:K5;A\$	2:K\$2)									Parâmetros do Solver
8	Class_Ma	irch25 - pri	extex												_			
	A	8		С	D		E	F	G		н	1	J	K		L M	N	Defnir Objectivo: \$1.\$5
1	x1	×2	×3		x4	x5		x6	x7	×8		x9	×10	×11				Para: Máximo 🛞 Minimo 🔘 Yalor de: 0
2		0	0	0		0	0)	0	0		D	0	0			
3																		Alterando as Células de Variável:
4																Obj		\$4\$2:\$K\$2
5		1	1	1		1	1		ι	1	1		1	1	1	0		
6			_			_								_	_			Syjeito às Restrições:
7		1	1	1										_		0 >=		1 SA\$2:9X\$2 = binário S.\$7:5X.\$17 >= 9X\$7:9X\$17
8		1	1	1			1		L							0 >=		1
9		1	1	1		1			L	1					1	0 >=		1 Alterer
10				1		1				1	1					0 >=		1 Elginar
11	-		1				1		1				1			0 >=		1
12			1	1			1		1	1			1		1	0 >=		1
13				1		1			1	1	1				1	0 >=		1 Repor <u>T</u> ur
14						1				1	1			1	1	0 >=		1 Carregar/Gu
15							1		1				1	1	1	0 >=		1 V Tornar Não Negativas Variáveis Não Constrangidas
16											1		1	1	1	0 >=		<u> </u>
17				1					1	1	1		1	1	1	0 >=		1 Selec. Método Resolução: LP Simplex Opções
18																		
19																		Métado de Resolução
20																		Seleccione o motor GRG Não Linear para problemas não lineares uniformes do Solver. Seleccion motor LP Simplex para problemas lineares do Solver, e seleccione o motor Evolutionary para pro
21																		não uniformes do Solver.
22																		
23																		
24																		Aguda Resolver Ee
25																		

Figure 3: Excel.

X I.	13) - (24										Microso	ft Excel (A.A	tnação do	Pedulo Fals	ou)								
Fichei	o Base	Instri	r Esque	ra de Págira	Fómula	e Dade	Reset	Vei	Program	nator	Team												
A Par do Ax	ess da Web	er Dados E	Drigens / E	bistentes t			es XIC	denar Fi	T B	Linpar Resplica A xinçad		para Reno nas Dupic	ver Valida idos de Dai Feiramenta:	çio Consoli Ics *	dar Análse de Hipóleses	Ajru		upar Subtoral Destaques	♥¶ Moitrar ™] Oceltar I	Petallie	Andlise		
ß	Class_Ma	10925 - MI	why																				. 3
1Ē	-	B	C	D	E	F	6	н		1	1	K	1	М	N	0	P	Q	2	S	т	0	V
	31	×2	×3	:4	x5	xé	0	x8	x3		×10	×11				_		ų					
		0	1	1	C	0	0	0	0	0		0				Result	tados co Si	over					-×-)
1																							
4													Obj			0	Selver ance	ontrouumas	lução. Toda	s as restr			
2		1	1	1	1	1	1	- 1	1	1		ι :		3		co	néições de	e optimização	foram satisf	eitas.	Relator		_
0		_	_		_		_	_	_								Manter S	oução do Soive	r			/518	
		1	1	1	_	_		_	_					2>=	1								
8		1	1	1	_	1	1	_						2 >=	1	1	ORestaura	r Valores Origin	ais				
9		1	1	1	1	_	1	- 1						3>=	1								- 18
1		_	-	1	1	-	-		1					1>=	1		Fegressar	so Diáloge d	e Parânetro	s do solv	er 🗌 Rela	tórios de De	staqje
1		-	1		-	1	1		-	1				1>=	1			-	. 1				
1		-	-	1	4	1	1	-	1	- 1				s >= 2 >=	1		<u>O</u> K	Çanc	elar		_	Gua <u>r</u> dar Ce	iáric
1		-	-	1	1	-	1	-	1	-				1 >=	1						ções e conciçã		
1		-	-	-	-	1	1	-	-	1				1 >=	1	for	am satisfe	itas.	nuçao. Iodas	ann	çies e consiçu	es de cpuin	14643
1		-	-	-	-	-	-	-	1	1				12=	1	Qu	ando e uti	I zado o meto	r CRG, e Soh	er ercon	tou pelo ner	os uma sola	ião
1		-		1			1	3	1	1	_	L I		2>=	1	ide	et local. C	anda é utili Ideal plobal.	zado o IP Sir	plex sig	prifica que o S	olver encont	ou
1	8			-			-	-	-			-		-		0.	ie solução	Deargroun.					
1	9																_	_	_			_	
2	0															_	_	_	_		_	_	_
2	1																						
2	2																						

Figure 4: Excel.

eiro	Base	Inserir	Esq.	Jema (de Págir	na Fór	mulas	Dados	Rever	Ver		ramad	
A artir		Texto O			ções entes	Actualizar tudo *	68 Edit	riedades ar Ligaçõe	Ž↓ Ž Ž↓ Orde	_	T 3	Rea Ava	pli
		er Dados Ex	~		_		Ligaçõe			Order	nar e Filt	ar	_
	D62	•	(*	fx	1								
2)	Class_Mar	ch25 - pre.	xlsx										
1	A	В		С		D		E	F		G		
34	Restriçã	es											
35		Célula	No	ome	Valor	da Célula	Fó	mula	Estad	lo	Marge	m	
36	\$L\$7					2	\$L\$7>	\$N\$7	Sem Enla	ce		1	
37	\$L\$8					2	\$L\$8>	\$N\$8	Sem Enla	ce		1	
38	\$L\$9					3	\$1.\$9>	\$N\$9	Sem Enla	ce		2	
39	\$L\$10)				1	\$L\$10	>=\$N\$10	Enlace			0	
40	\$L\$11					1	\$L\$11	>=\$N\$11	Enlace			0	
41	\$L\$12					3	\$L\$12	>=\$N\$12	Sem Enla	ce		2	
42	\$L\$13					1	\$L\$13	>=\$N\$13	Sem Enla	ce		1	
43	\$L\$14	ł				1	\$L\$14	>=\$N\$14	Enlace			0	
44	\$L\$15							>=\$N\$15				0	
45	\$L\$16							>=\$N\$16				0	
46	\$L\$17					2	\$L\$17	>=\$N\$17	Sem Enla	ce		1	
47	\$A\$2	\$K\$2=Bir	nário									_	
48													
49													
50													
51													
52													
53													
54													

Figure 5: Excel.

The optimal solution is obtained with three rangers, placed in districts 2, 3 and 11.

This problem has alternative optimal solutions. Can you list some?

Sheet cutting planning

A pulp mill cuts sheets of 48 cm \times 96 cm paper into smaller sheets. This company received an order with the characteristics indicated in Table 3. Figure 6 and Table 4 indicate the possible cutting patterns on a 48 cm \times 96 cm sheet. The goal is to determine the cutting plan in order to minimize the number of 48 cm \times 96 cm sheets used.

-	Sheet of paper	
Туре	Dimensions	Number
	$\rm cm \times \rm cm$	
1	36 × 50	800
2	24 × 36	1300
3	20×60	500
4	18×30	1500

Table 3: Characteristics of the order.

The problem

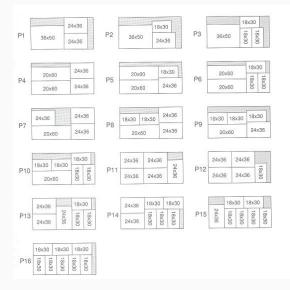


Figure 6: Possible cutting patterns on a 48 cm \times 96 cm sheet.

Sheet of																
paper	P1	P2	P ₃	Ρ4	P5	P ₆	P7	P8	P ₉	P ₁₀	P ₁₁	P ₁₂	P ₁₃	P ₁₄	P ₁₅	P ₁₆
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2	1	0	2	1	0	3	2	1	0	5	4	3	2	1	0
3	0	0	0	2	2	2	1	1	1	1	0	0	0	0	0	0
4	0	1	3	0	1	3	0	2	3	5	0	1	3	5	6	8

Table 4: Possible cutting patterns on a 48 cm \times 96 cm sheet.

The decision variables are as follows:

The decision variables are as follows:

 x_j – number of 48 cm × 96 cm sheets assigned to cutting pattern P_j , j = 1, ..., 16.

Formulate this problem as an IP model and solve the model

total number of sheets of 48 cm \times 96 cm

Formulate this problem as an IP model and solve the model

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

no. of sheets of type 1

 $X_1 + X_2 + X_3$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

no. of sheets of type 1

 $X_1 + X_2 + X_3$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

no. of sheets of type 1

 $X_1 + X_2 + X_3$

no. of sheets of type 2

 $2x_1 + x_2 + 2x_4 + x_5 + 3x_7 + 2x_8 + x_9 + 5x_{11} + 4x_{12} + 3x_{13} + 2x_{14} + x_{15}$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

no. of sheets of type 1

 $X_1 + X_2 + X_3$

no. of sheets of type 2

 $2x_1 + x_2 + 2x_4 + x_5 + 3x_7 + 2x_8 + x_9 + 5x_{11} + 4x_{12} + 3x_{13} + 2x_{14} + x_{15}$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

no. of sheets of type 1

 $X_1 + X_2 + X_3$

no. of sheets of type 2

 $2x_1 + x_2 + 2x_4 + x_5 + 3x_7 + 2x_8 + x_9 + 5x_{11} + 4x_{12} + 3x_{13} + 2x_{14} + x_{15}$

no. of sheets of type 3

 $2x_4 + 2x_5 + 2x_6 + x_7 + x_8 + x_9 + x_{10}$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

no. of sheets of type 1

 $X_1 + X_2 + X_3$

no. of sheets of type 2

 $2x_1 + x_2 + 2x_4 + x_5 + 3x_7 + 2x_8 + x_9 + 5x_{11} + 4x_{12} + 3x_{13} + 2x_{14} + x_{15}$

no. of sheets of type 3

 $2x_4 + 2x_5 + 2x_6 + x_7 + x_8 + x_9 + x_{10}$

total number of sheets of 48 cm imes 96 cm

$$Z = \sum_{i=1}^{16} x_i$$

no. of sheets of type 1

 $X_1 + X_2 + X_3$

no. of sheets of type 2

 $2x_1 + x_2 + 2x_4 + x_5 + 3x_7 + 2x_8 + x_9 + 5x_{11} + 4x_{12} + 3x_{13} + 2x_{14} + x_{15}$

no. of sheets of type 3

 $2x_4 + 2x_5 + 2x_6 + x_7 + x_8 + x_9 + x_{10}$

no. of sheets of type 4

 $x_2 + 3x_3 + x_5 + 3x_6 + 2x_8 + 3x_9 + 5x_{10} + x_{12} + 3x_{13} + 5x_{14} + 6x_{15} + 8x_{16}$

$$\min Z = \sum_{i=1}^{16} x_i$$

min
$$Z = \sum_{i=1}^{16} x_i$$

subject to

$$x_{1+}$$
 $x_{2}+x_{3}$ = 800
 $2x_{1+}$ $x_{2}+$ $2x_{4}+x_{5}+$ $3x_{7}+$ $2x_{8}+x_{9}+$ $5x_{11}+$ $4x_{12}+3x_{13}+$ $2x_{14}+x_{15}$ = 1300
 $2x_{4}+2x_{5}+$ $2x_{6}+x_{7}+$ $x_{8}+x_{9}+$ x_{10} = 500
 $x_{2}+3x_{3}+$ $x_{5}+$ $3x_{6}+$ $2x_{8}+3x_{9}+$ $5x_{10}+$ $x_{12}+3x_{13}+$ $5x_{14}+6x_{15}+$ $8x_{16}=1500$
 $x_{i} \in \mathbb{N}$ $i = 1, ..., 16$

The first expression minimizes the number of 48 cm \times 96 cm sheets used.

All constraints before the last ensure that the characteristics of the order are satisfied.

The last constraints state the integer requirements on the variables.

X 🛃	17 · (2)	-								Microsoft	t Excel (A Ac	tivação do P	roduto Falho	vu)						
Ficheiro	Base	Inserir	Esquema c	le Página	Fórmulas	Dados	Rever	Ver Pr	ogramador	Team										
A Partir do Acces	s da Web	Do De C Texto Orig r Dados Exter	outras Liga iens * Existo	cões Act	ualizar ido v ee Ed	opriedades itar Ligações	출↓ <u>호</u> 素 素↓ Orden		Mançai	Texto p	ara Remov as Duplica		ão Consolic os *		e Agrupa	r Desagrupa		♥]] Mostrar [™]] Ocultar D	Detalhe	Análise
	Q21	+ (f_x																	
2	Class_Mare	:h25 - prexis	x																	
	A	В	С	D	E	F	G	н	1	J	K	L	M	N	0	Ρ	Q	R	S	T
1	x1	x2	x3	x4	xS	x6	x7	x8	x9	x10	x11	x12	x13	x14	x15	x16				
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
3																				
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		0 Obj		
5	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0		= 0	800	
6	2	1	0	2	1	0	3	2	1	0	5	4	3	2	1	0		0 =	1300	
7	0	0	0	2	2	2	1	1	1	1	0	0	0	0	0	0		0 =	500	
8	0	1	3	0	1	3	0	2	3	5	0	1	3	5	6	8		0 =	1500	
9																				
10																				
11																				
12																				

Figure 7: Excel.

The optimal number of 48 cm \times 96 cm sheets used is 1088.

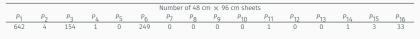


Table 5: Optimal solution.

-	5.6.	1.00						Microsoft E	
neiro	Base	Inserir Esq	uema de Págir	ia Fórmulas	Dados R	ever Ver	Programador	Team	
Partir	is da Web	Do De Outras Texto Origens * r Dados Externos	Ligações Existentes		riedades ar Ligações	Ordenar Filtr	y Avançada:	Texto par- colunas	
_	127	+ (=	f _x						
37									
38	Boctrica								
38 39 40	Restriçõ	es Célula	Nom	e Valor da Célu	la Fórmula	Estado	Margem		
39			Nom		la Fórmula 10 SQS5=SSS5		Margem 0		
39 40	Restriçõ \$Q\$5 \$Q\$6		Nom	8		Enlace			
39 40 41	\$Q\$5		Nom	8 13	0 \$Q\$5=\$S\$5	Enlace Enlace	0		
39 40 41 42 43 44	\$Q\$5 \$Q\$6 \$Q\$7 \$Q\$8	Célula		8 13 5	00 \$Q\$5=\$S\$5 00 \$Q\$6=\$S\$6	Enlace Enlace Enlace	0		
39 40 41 42 43 44 45	\$Q\$5 \$Q\$6 \$Q\$7 \$Q\$8			8 13 5	00 \$Q\$5=\$S\$5 00 \$Q\$6=\$S\$6 00 \$Q\$7=\$S\$7	Enlace Enlace Enlace	0 0 0		
39 40 41 42 43 44 45 46	\$Q\$5 \$Q\$6 \$Q\$7 \$Q\$8	Célula		8 13 5	00 \$Q\$5=\$S\$5 00 \$Q\$6=\$S\$6 00 \$Q\$7=\$S\$7	Enlace Enlace Enlace	0 0 0		
39 40 41 42 43 44 45	\$Q\$5 \$Q\$6 \$Q\$7 \$Q\$8	Célula		8 13 5	00 \$Q\$5=\$S\$5 00 \$Q\$6=\$S\$6 00 \$Q\$7=\$S\$7	Enlace Enlace Enlace	0 0 0		

Figure 8: Excel.

Exam1_2017.pdf Exercise 1 in Extra Support Material - Integer Linear Programming from 2019/2020.

Bom estudo!