Caderno de apoio às aulas práticas das Unidades Curriculares de Geomática e SIGDR

Última modificação: 28 de abril de 2021 (Manuel Campagnolo)

Actualizações

- Manuel Campagnolo (fevereiro 2019). Revisto, ampliado, exercícios de cada aula individual compilados num documento único, e adaptado para QGIS versão 3. Exemplos em QGIS versão 3.4.3 "Madeira" ou 3.6 "Noosa".
- 2. Manuel Campagnolo (fevereiro 2020). Revisão e ampliação. Compatibilidade com QGIS 3.10 "A Coruña"
- 3. Manuel Campagnolo (fevereiro 2021). Revisão e ampliação. Compatibilidade com QGIS 3.16 "Hannover"

Índice

1	Intr	Introdução ao QGIS				
	1.1	Instalação de QGIS versão 3				
	1.2	Inte	rface de QGIS	8		
	1.3	Ace	der aos conjuntos de dados para os exercícios	9		
	1.4	Exp	olorar dados geográficos em QGIS	9		
	1.4.1 1.4.2		Adicionar conjunto de dados geográficos do tipo vectorial ao projecto	.10		
			"Toolbar" de navegação	.11		
1.4.3 1.4.4 1.4.5 1.4.6 1.4.7 1.4.8		.3	"Toolbar" de selecção de "features".	.11		
		.4	Obter os valores dos atributos de uma feature	.12		
		.5	Observar tabela de atributos	.12		
		.6	Etiquetas	.12		
		.7	Criar legendas "qualitativas" para um cdg vectorial	.13		
		.8	Criar legendas "quantitativas" para um cdg vectorial.	.15		
	1.4	.9	Adicionar conjunto de dados geográficos do tipo matricial (raster) ao projecto	.16		
	1.4	.10	Transparência da imagem	.17		
	1.4	.11	Contraste da imagem e "stretch using current extent"	.17		
	1.4	.12	Cores na legenda de um cdg matricial	.18		
	1.5	Sele	ecção de features por atributos e por localização	.19		
	1.5	.1	Selecção por atributos: selecção de features usando expressões	.19		
	1.5	.2	Selecção por localização: selecção de features usando relações espaciais	.22		
	1.6	Ope	erações com tabelas de atributos	.24		
	1.6	.1	Leitura de tabelas simples (e.g. txt, csv) de dados em QGIS	.24		
	1.6	.2	Cruzamento de tabelas	.26		
	1.6	.3	Operar com os atributos da tabela	.27		
	1.6	.4	Representação de atributos numéricos com diagramas sobre a carta	.28		
	1.6	.5	Exercício extra: produção de vinho branco por concelho, dados Pordata (***)	.29		
	1.6	.6	Exercício extra: incidência de Covid por região administrativa NUTS na UE (***)	.29		
	1.7	Intro	odução a Layout Manager para criação de cartas ou mapas	.30		
2	Edi	ição o	de dados e digitalização vectorial sobre imagem	.35		
	2.1	Ace	esso interactivo a imagens de muito boa resolução e outros dados "web"	.35		
2.1.1 2.1.2		.1	Acesso via protocolo XYZ para imagens Google, Bing, e outras	.36		
		.2	Acesso WMS e WFS a dados abertos do Registo Nacional de Dados Geográficos	.37		
	2.2	Exe	rcício de edição para objectos vectoriais do tipo "linha"			
	2.2	.1	Criar novo conjunto de dados geográficos do tipo "linha"	.39		
2.2.2		.2	Entrar em modo de edição e cria novas features			
	2.2	.3	Aceder às coordenadas dos pontos com "Vertex editor"	41		

	2.2	2.4	Opções de "snapping"	42
	2.2	2.5	Funções \$length e sum	44
	2.3	Da	dos GPS em QGIS	44
	2.3	3.1	Obtenção de ficheiro gpx num dispositivo móvel e leitura em QGIS	44
	2.3	3.2	Exportação de pontos e linhas de um projecto QGIS para um ficheiro gpx	46
	2.4	Exe	ercício de edição de objectos vectoriais do tipo polígono	46
	2.4	4.1	Criar novo conjunto de dados geográfico do tipo "polígono"	47
	2.4	1.2	Dividir features do tipo "polígono" para criar novas features com "split feature"	48
	2.4	1.3	Validade de features de tipo "polígono"	50
	2.4	1.4	Ferramentas de edição e topologia: evitar "gap", "overlap" e outros erros	52
	2.4	1.5	Criar uma tabela de dados não geográficos	55
	2.4	4.6	Funções \$area e sum	55
3	Ar	nálise	espacial sobre conjuntos de dados geográficos vectoriais	57
	3.1	Da	dos e descrição do problema	57
	3.2	Rej	presentar uma resolução do problema com um diagrama de operações	58
	3.3	Alg	gumas operações de sobreposição vectorial e de restruturação de dados vectoriais	60
	3.3	3.1	Features inválidas	60
	3.3.2		Operação de recorte ("clip") e de intersecção	61
	3.3	3.3	Operação de geração de "buffers"	61
	3.3	3.4	Operação de diferença	62
	3.3	3.5	Operação de dissolução	62
	3.3	3.6	Operação de conversão "multipart" para "singlepart"	63
	3.4	Sol	ução do exercício	63
4	Ar	nálise	de dados matriciais (raster) e conversão vectorial/matricial	65
	4.1	Da	dos para o exercício	65
	4.2 Criação e manipulação de legendas para dados matricia		ação e manipulação de legendas para dados matriciais	65
	4.3	Res	struturação de "raster" para formato vectorial com "polygonize"	68
	4.4 Restruturação vectorial para "raster", reclassificação e sobreposição matricial		70	
	4.4	4.1	Exercício: calcular índice de risco de poluição com nitratos	70
	4.4	1.2	Restruturação de formato vectorial para formato matricial ("raster")	70
	4.4	1.3	Operações de reclassificação e sobreposição matricial	72
	4.4.4		Solução do exercício e regulação de transparência na carta	73
	4.5	Exe	ercício sobre quantificação da alteração do solo	74
	4.6	Inte	erpolação espacial	74
	4.6	5.1	Problema e dados	74
	4.6		Interpolação espacial com IDW (inverse distance weighted interpolation)	
5	Sis	stema	as de coordenadas de referência e projecções	78
	5.1		dos para o exercício	
	5.2	Sis	tema de coordenadas de referência (CRS) do projecto QGIS	78

	5.3 Sistema de coordenadas de referência (CRS) do projecto e do conjunto de dados geográficos				
5.4					
5.5	5.5 Possíveis distorções nas distâncias na criação de buffers		81		
5.6	6 C	álculo correcto de distâncias e áreas em QGIS com ferramenta "measure"	82		
5.7	7 R	eprojectar cdg com sistema de coordenadas obsoleto, com transformação de datum	n84		
5.8	8 C	orrigir o CRS de um conjunto de dados geográfico (tópico avançado)	85		
5.9	9 C	riação de um novo sistema de coordenadas de referência (tópico avançado)	85		
5.	10	Notas finais	86		
6	Repre	sentação cartográfica do relevo	90		
6.	1 C	álculos sobre carta topográfica em papel	90		
6.2	2 O	perações sobre dados topográficos e modelos digitais do terreno com QGIS	91		
	6.2.1	Dados para o exercício	91		
	6.2.2	Extrair coordenadas com funções \$x e \$y e expressões em etiquetas	91		
	6.2.3	Obter o modelo digital de elevações (MDE) usando interpolação TIN	91		
	6.2.4	Derivar curvas de nível a partir de um MDE	95		
	6.2.5	Observação de perfis do terreno com "Profile tool plugin"	96		
	6.2.6	Derivação de declives, orientações e iluminação a partir de um MDE	98		
6.3	3 A	cesso a dados abertos de altimetria em formato raster (SRTM)	101		
6.4	4 R	eamostragem e comparação de SRTM com dados topográficos	101		
	6.4.1	Dados para o exercício	101		
	6.4.2	Criação e recorte de MDE pelo limite da região	102		
	6.4.3	Reamostragem e alinhamento de rasters com "align rasters"	103		
	6.4.4	Solução do exercício	106		
7	Introd	ução à análise de imagens multiespectrais	107		
7.	1 D	ados para o exercício	107		
7.2	2 In	nagens multiespectrais e metadados	107		
7.3	3 A	ssinaturas espectrais e composições coloridas	109		
7.4	4 In	terpretação automática de imagens	109		
7.5	5 C	álculo e interpretação de um índice de vegetação	111		

<u>Nota prévia</u>. Nas aulas práticas das UC em que sejam necessários conjuntos de dados geográficos, os alunos terão acesso a esses dados na página fénix da UC.

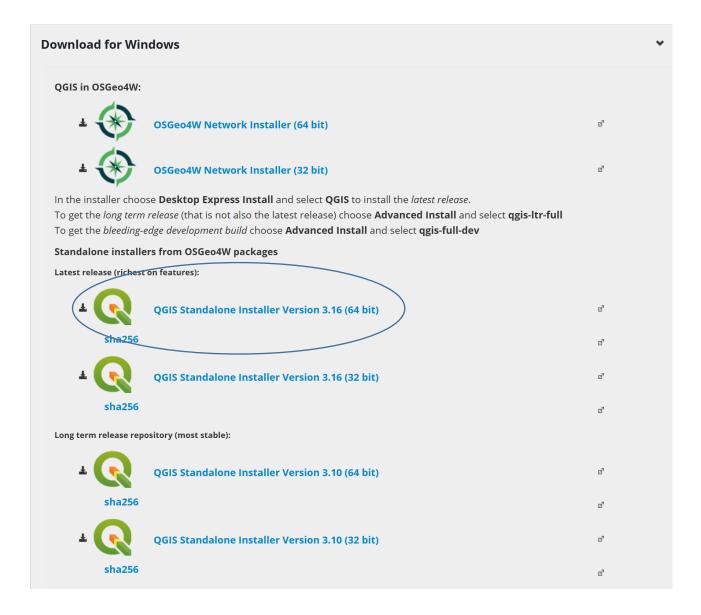
No texto abaixo refere-se como *pasta de trabalho* a uma pasta de dados onde são guardados os dados de entrada e de saída dos exercícios propostos.

Sugere-se que sejam criadas para cada exercício duas pastas, como, por exemplo,

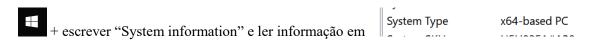
- F:\geomatica\seccao1\dadosIn, e
- F:\geomatica\seccao1\dadosOut,

sendo a primeira a pasta onde são copiados os dados da entrada disponíveis na página da UC e a segunda a pasta onde são guardados os passos intermédios e resultados do processamento de dados realizado.

Cada capítulo deste caderno corresponde tipicamente a um conjunto de dados. Em cada capítulo, os exercícios a realizar são numerados por 1,2, 3, etc


Os exercícios indicados por (***) são exercícios adicionais que não serão resolvidos nas aulas práticas e que poderão possivelmente sser discutidos nas aulas teóricas.

1 Introdução ao QGIS


1.1 Instalação de QGIS versão 3

O guia de utilizador está disponível em https://docs.qgis.org/3.16/pdf/en/QGIS-3.16-DesktopUserGuide-en.pdf.

QGIS é um sistema de informação geográfica de acesso aberto que pode ser descarregado em https://www.qgis.org/en/site/forusers/download.html (Para Windows pode ser instalado OSGeo4W que contém o QGIS ou apenas o QGIS "standalone"). Para Windows, a escolha é tipicamente a assinalada abaixo.

A escolha "64 bit" ou "32 bit" depende do processador do computador, e pode ser identificado em Windows com a seguinte sequência, que neste caso indica que o processador é de 64 bits:

1.2 Interface de QGIS

Ao executar a aplicação por exemplo com ' + QGIS desktop' surge a interface do QGIS com aspecto da Figura 1 (que se altera em função da versão e das opções escolhidas).

É conveniente **utilizar o QGIS em idioma inglês** por facilidade de pesquisa na internet: sempre que se pretende alterar o idioma é necessário fechar e voltar a abrir QGIS para a modificação tomar efeito. O idioma pode ser alterado em **Configurações** (em inglês **Settings**), no sub-menu de **Opções**. No fiinal não se esqueça de fazer OK na parte inferior da interface Opções|Geral.

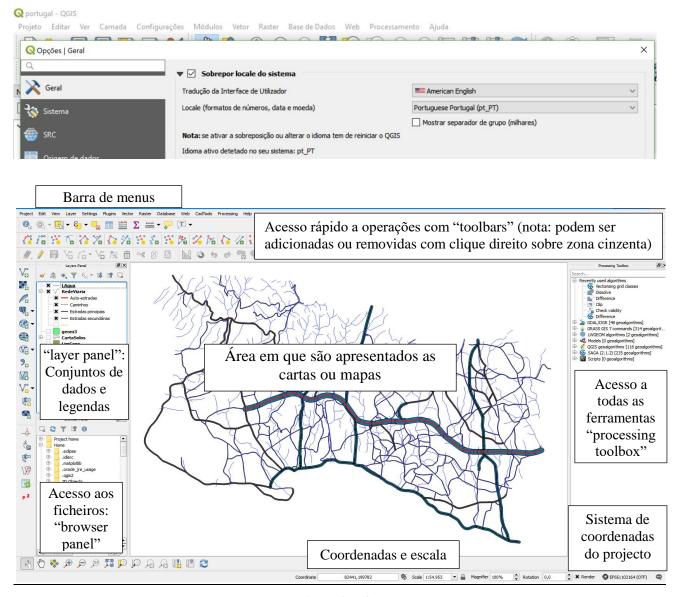
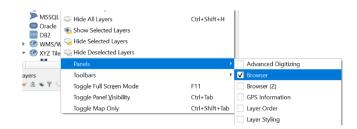
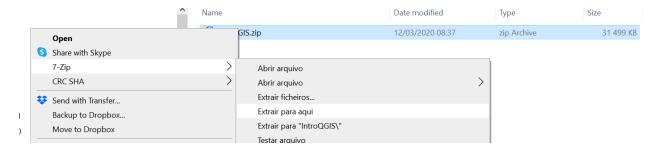



Figura 1: Interface de QGIS

As várias janelas podem ser movidas e a sua ordem pode ser alterada. A escolha de "Panels" e "Toolbars" visíveis pode ser feita no menu "View":

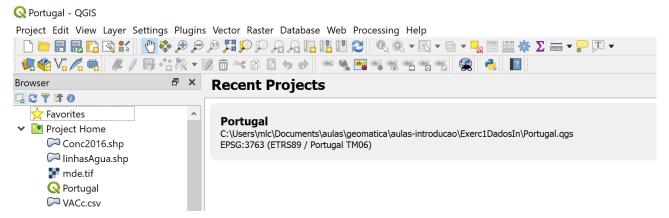

1.3 Aceder aos conjuntos de dados para os exercícios

 Como referido no início deste caderno, deve criar uma pasta da trabalho para cada conjunto de exercícios. Para o presente capítulo, de introdução a QGIS, pode ser por exemplo uma pasta criada em "Documents", com caminho

C:\Users\nome-utilizador\Documents\geomatica\aulas-introducao

Pode, em alternativa, criar a pasta de trabalho numa "pen". Note que o caminho para a pasta foi escolhido por forma **a não ter acentos ou caracteres especiais** como espaços, vírgulas, etc. Recomenda-se vivamente que seja seguida essa regra na criação de pastas e subpastas quando se trabalha com QGIS.

2. Os dados a usar para os exercícios de introdução ao QGIS estão disponíveis na página da UC no ficheiro **Exerc1DadosIn.zip**. Este ficheiro deve ser descarregado da página da UC e copiado para a pasta de trabalho. O ficheiro (com extensão "zip") está comprimido e pode ser descomprimido por exemplo com o programa 7-zip (www.7-zip.org).

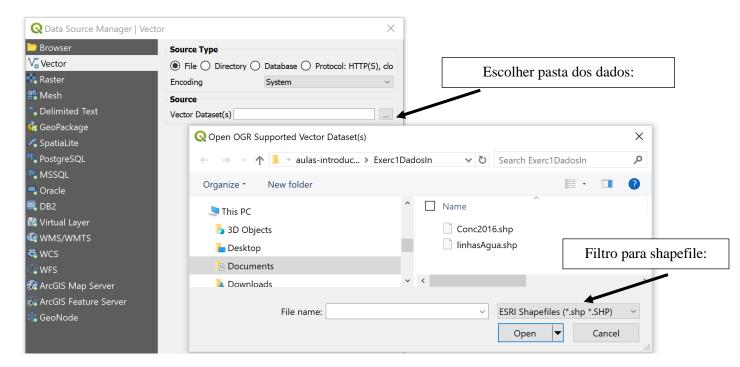


- 3. Como resultado, aparecerá na pasta de trabalho uma nova pasta chamada "Exerc1DadosIn". Nessa pasta está, para além dos ficheiros de dados, o ficheiro de projecto QGIS Portugal.qgs que será automaticamente aberto na aplicação QGIS (a extensão qgs está automaticamente associada à aplicação QGIS). Inicialmente, o projecto está vazio. Veremos em seguida como adicionar ao projecto os seguintes conjuntos de dados:
- Conc2016 Mapa de concelhos em formato vectorial para o ano 2016;
- mde modelo digital de elevações para Portugal Continental em formato matricial ("raster");
- **linhasAgua:** mapa de linhas de água para Portugal Continental;
- VACc: tabela simples com valores acrescentados do sector agrícola e silvícola para os concelhos de Portugal Continental

1.4 Explorar dados geográficos em QGIS

1.4.1 Adicionar conjunto de dados geográficos do tipo vectorial ao projecto

- 4. O projecto **Portugal.qgs** está vazio. Em seguinda mostra-se como adicionar um conjunto de dados em formato vectorial e, em particular, o conjunto de dados geográficos que representa os concelhos de Portugal Continental **conc2016**.
- A. usar o "Browser panel" e inspeccionar os **conjuntos de dados geográficos** (cdg) que estão na mesma pasta do ficheiro de projecto e escolher o(s) cdg que se quer adicionar ao projecto:



B. No menu "Layer" escolher "add vector layer"

C. Se estiver disponível a "toolbar" "manage layer" Volta o botão "add vector layer".

Com as opções B e C (ver acima) usa-se a interface abaixo para escolhar a pastas em que estão os dados. Pode seleccionar-se um filtro (com "ESRI shapefile" no exemplo abaixo para observar apenas um subconjunto de ficheiros de dados de interesse).

O conjunto de dados geográfico dos concelhos a adicionar designa-se por **conc2016.shp**. *Encoding* deve ser **System** (default) ou **ISO-8859-1** (Latin 1) para ler caracteres portugueses (acentos, cedilhas...).

5. Para salvar a nova versão do projecto usar simplemente CRTL-S ("save") ou, caso se queira mudar o nome ou a pasta, "save as". Alternativamente pode usar-se o menu "Project" e as funções "Save" ou "Save as ...".

NOTA IMPORTANTE: O ficheiro de projecto (.qgs) não contém informação geográfica. Serve apenas para recuperar o aspecto da interface do QGIS quando se volta a abrir esse projeto — deverá estar sempre acompanhado dos ficheiros de dados. Para enviar dados de um projecto por email, sugere-se "zipar" a pasta de trabalho e enviar o único ficheiro (com extensão .zip) resultante.

1.4.2 "Toolbar" de navegação

Esta barra contém botões de uso muito frequente para exploração do mapa: permitem em particular mover o mapa, fazer zoom in ou zoom out (fazendo pressão no botão direito do rato pode desenhar-se um rectângulo para zoom) e recuperar a escala original.

1.4.3 "Toolbar" de selecção de "features".

Um conjunto de dados geográficos (cdg) vectorial é uma colecção de objectos geométricos e informação tabular associada que representam entidades do mundo real. Para o cdg **Conc2016.shp** cada feature (entidade e objecto geométrico) corresponde a um concelho de Portugal Continental. Para realizar ou cancelar uma selecção através do mapa podem usar-se os botões

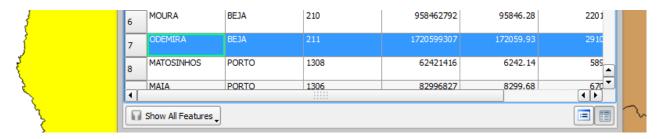
O primeiro permite seleccionar uma ou mais features com o rato, o segundo permite fazer uma selecção baseada nos valores da tabela de atributos do cdg e o terceiro permite cancelar a selecção corrente.

- 6. Seleccione o município de Odemira (o maior município português em área). Faça depois "zoom" para esse município usando o botão respectivo da barra de navegação.
 - (1) seleccionar feature com; (3) clicar na feature; e (3) fazer zoom com

1.4.4 Obter os valores dos atributos de uma feature

Com o botão . Activando a funcionalidade no botão respectivo pode então clicar-se sobre uma feature e obter os valores dos atributos para essa feature.

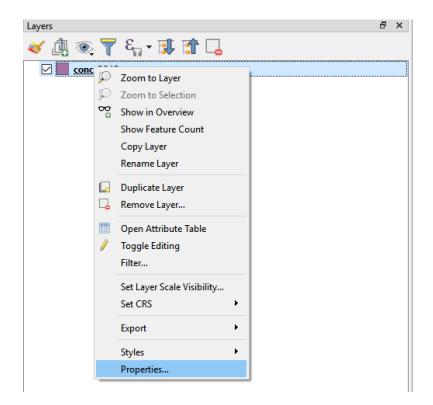
7. Identifique o valor do atributo DTCC do município de Odemira (resposta: 211).


1.4.5 Observar tabela de atributos

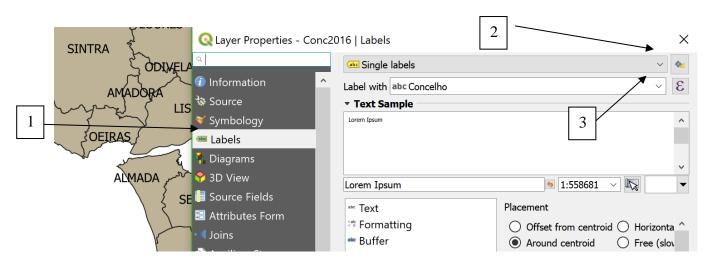
Com o cdg activo (a azul) no "layer panel"

- 8. Clicar no botão de "attributes toolbar" para abrir a tabela de atributos do cdg. **Cada linha da tabela corresponde a 1 e uma e só uma feature do mapa**. Assim é possível seleccionar uma ou mais features ou com o botão de selecção visto atrás ou clicando no índice da(s) linha(s) da tabela das features que se quer seleccionar.
- 9. Clicar na linha do concelho de Odemira e verificar que também selecciona o polígono deste concelho no mapa.

O botão "Show all features" pode ser mudado para observar apenas as linhas da tabela de atributos correspondente às features seleccionadas.



Feche a janela da atributos e cancele a selecção de features com botão

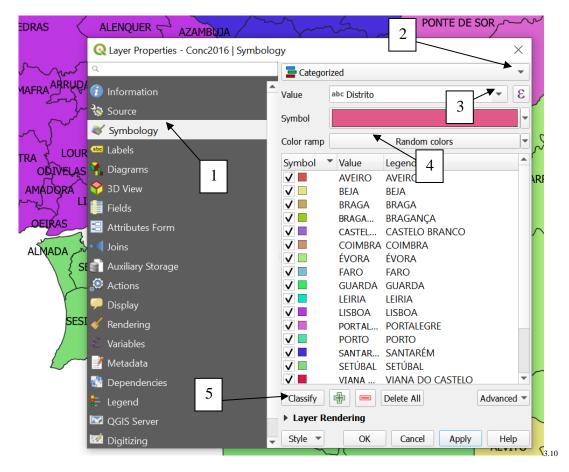


1.4.6 Etiquetas.

Clicando com o botão direito do rato sobre o nome do cdg em "layer panel" abre um menu que permite aceder a muitas funcionalidades. Em particular, a entrada "Open attribute table" é equivalente ao botão

O botão Properties permite aceder à janela "Layer Properties" com um grande número de funcionalidades entre as quais a definição de **etiquetas** (**Labels**) a serem colocadas sobre as features respectivas. No exemplo abaixo definem-se etiquetas com o nome de cada concelho:

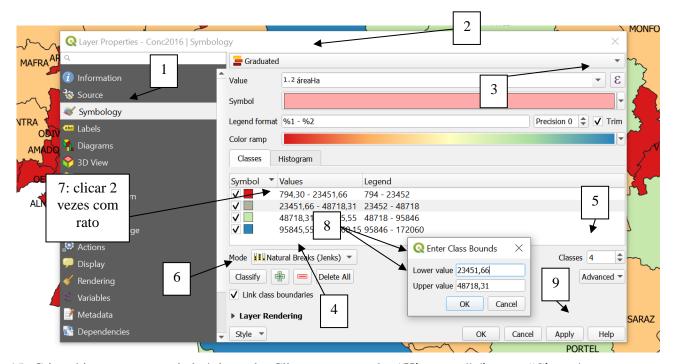
Existem muitas opções para as etiquetas (tamanho, posição, tipo de letra, ...). Experimente alterar o tamanho da letra por forma que as etiquetas se ajustem melhor ao mapa.


1.4.7 Criar legendas "qualitativas" para um cdg vectorial.

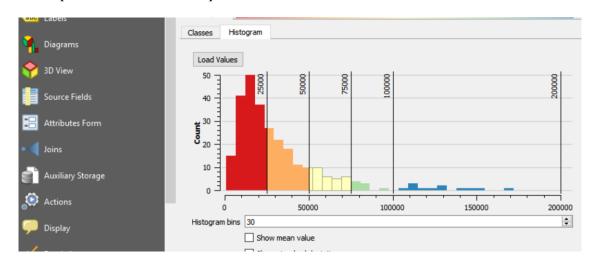
O objectivo deste exercício é criar uma legenda para o mapa dos concelhos. Pretende-se que cada polígono tenha uma cor que depende do distrito a que o concelho pertence, ou seja, pretende-se que concelhos do mesmo distrito sejam representados pela mesma cor.

10. Observar quais são os atributos do cdg **Conc2016**: na janela Layer Properties, escolhar a opção "**Fields**" para ver a lista dos atributos e os seus domínios:

11. Os atributos "qualitativos" são "Concelho", "Distrito" e "DTCC". O atributo que vamos usar para a legenda é "Distrito". Para criar a legenda deve usar-se a opção "Symbology" da mesma janela Layer Properties e escolher no topo o tipo de legenda como "Categorized", a coluna da tabela de atributos que irá definir a legenda ("Distrito"), o conjunto de cores pretendido ("Color Ramp") e, finalmente, clicar no botão "Classify" para obter a legenda. As cores podem ser alteradas individulmente clicando no botão respectivo.

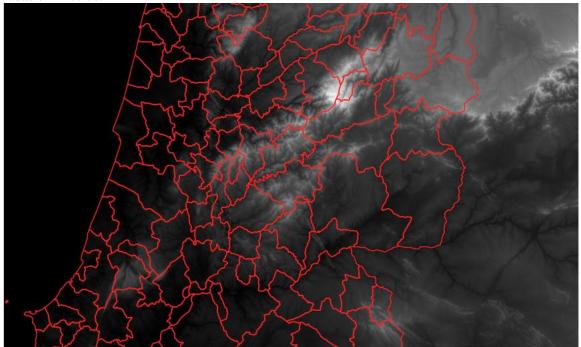


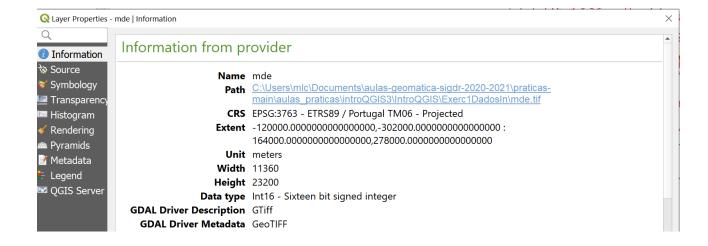
- 12. Depois de fazer OK ou Apply verá o mapa com os polígonos coloridos. Para ver a legenda no "layer panel" basta clicar no "+" junto a "Conc2016".
- 13. Experimente uma legenda que não seja do tipo "random colors".


1.4.8 Criar legendas "quantitativas" para um cdg vectorial.

O objectivo do exercício é criar uma legenda que dê uma indicação da área do concelho. Vamos considerar um legenda com 5 classes de área com extremos 0ha, 25000 ha, 50000 ha, 75000 ha, 100000 ha e 200000 ha usando o atributo "areaHa".

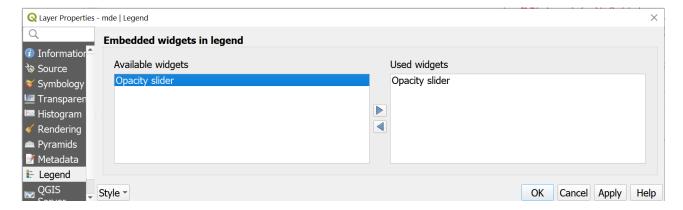
14. Crie a legenda no menu "symbology".


- 15. Crie o histograma associado à legenda. Clique no separador "Histogram" (junto a "Classes) e no botão Load values para observar o histograma das áreas dos polígonos do mapa com . O QGIS associa a esse histograma as cores da legenda.
- 16. Pela observação do histogram determine aproximadamente a área do Concelho de Odemira e compare com o valor exacto que está na tabela de atributos.


17. Salve a legenda que criou usando o botão style e opção **Save as Default**. Esta opção permite guardar os parâmetros da legenda criada num ficheiro que pode designar por "**Conc2016.qml**" na mesma pasta em que se encontra **Conc2016.shp**. Esse ficheiro que define a legenda do cdg será automaticamente carregado quando se adiciona **Conc2016** ao projecto.

1.4.9 Adicionar conjunto de dados geográficos do tipo matricial (raster) ao projecto

18. Clique duas vezes no cdg ou use o botão na toolbar "Manage layers" para adicionar um cdg do tipo matricial (uma imagem, ou "raster") ao seu projecto. Escolha o cdg **mde** (de modelo digital de elevações) em formato **Geotiff**. Este é uma imagem que cobre Portugal Continental e em que as elevações são indicadas em metros.

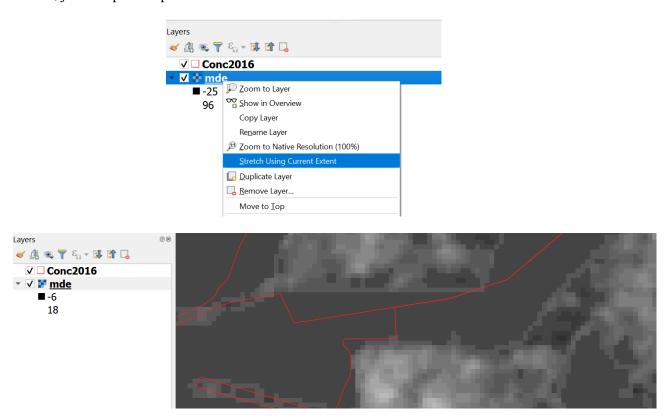


- 19. Nas propriedades desse cdg observe os metadados desse cdg (Information) e verifique que os valores dos pixels variam entre -20 m e 1991 m, com média de 320.42 m.
- 20. Verifique que a extensão da imagem é de -120000 m a 164000 m (em x) e de -302000 m a 278000 m (em y).
- 21.Quantas linhas e colunas tem a imagem? Confirme que cada pixel corresponde aproximadamente a 25 m por 25 m como indicado por 'Pixel Size'.
- 22. Que valor é devolvido pelo botão quando clica sobre o oceano dentro do rectângulo de extensão da imagem? Uma imagem é sempre um arranjo regular de pixels. Os valores dos pixels podem ser numéricos mas também podem ser do tipo "no data".

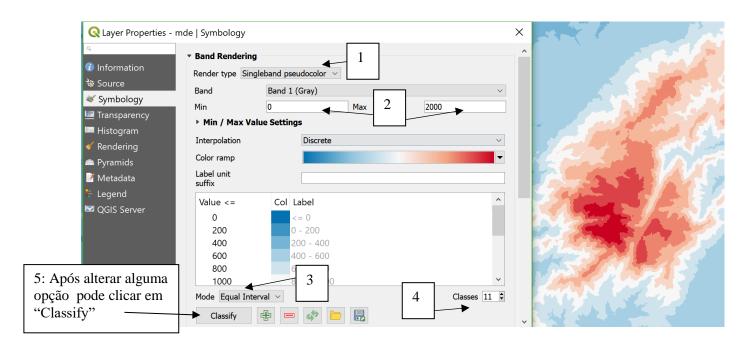
1.4.10 Transparência da imagem

Quando se trabalha com várias camadas ("layers") de dados é útil dar transparência a uma camada para poder observar a camada abaixo. Para dados do tipo matricial, pode adicionar-se um botão de transparência junto ao cdg no "**Layers panel**" com a seguinte opção disponível nas propriedades de "layer".

1.4.11 Contraste da imagem e "stretch using current extent"


23. Nas propriedades do cdg **mde**, escolha a opção "Style" e verifique e altere os valores indicados para Min e Max. Por exemplo, se Min=0, então todos os pixels da imagem com valor inferior a 0 ficam com cor preta e se Max=800, todos os pixels da imagem com valor acima de 800 ficam com cor branca.

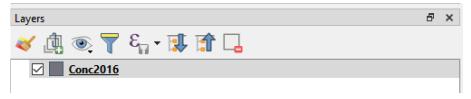
Ao aplicar a escolha de usar os verdadeiros mínimo e máximo (meste caso -20 e 1991), a imagem fica mais escura pois a gama de tons de cinzento (preto até branco) cobre uma maior gama de valores dos pixels.


Se se usarem os quantis 2% e 98% dos valores da imagem para ajustar o contraste, todos os pixels com valores acima do quantil 98% ficam brancos (diz-se que a imagem fica saturada acima desse valor) e todos os pixels com valor abaixo do quantil 2% ficam pretos. Os valores intermédios ficam com um ton de cinzento segundo um ajustamento linear. Ao alterar os valores extremos para aumentar o contraste (escolhendo os valores que correspondem ao preto e ao branco), o contraste da globalidade da imagem é alterado.

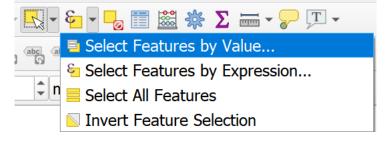
24. A funcionalidade "Stretch using current extent" está disponível no menu do cdg matricial (clique do lado direito sobre o nome da "layer" mde) e é muito útil pois permite ajustar e aumentar o contraste na zona a ser observada. Faça "zoom" para uma pequena região junto à Ria de Aveiro e use essa ferramenta para aumentar o contraste nessa região. Encontrará nessa zona valores negativos. Os valores mais negativos devem-se a erros de medição das elevações (medições do espaço por RADAR): experimente fazer zoom na área junto às docas de Santo Amaro, junto ao pilar da ponte.

1.4.12 Cores na legenda de um cdg matricial

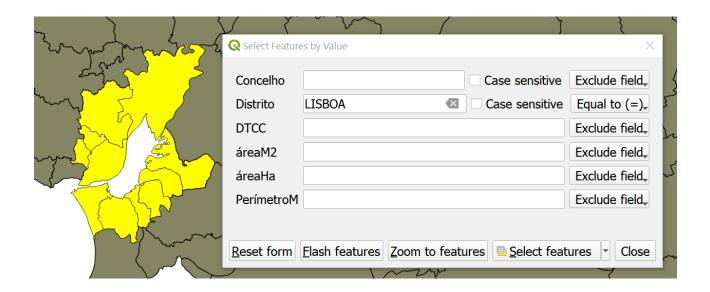
25. Altere a gama de cores por forma a obter um carta hipsométrica de Portugal Continental, ou seja uma carta em que cada classe de elevação é representada por uma cor diferente. Ajuste o número de classes e respectivos intervalos para representar as classes 0-200 m, 200-400 m,...,1800-2000 m.

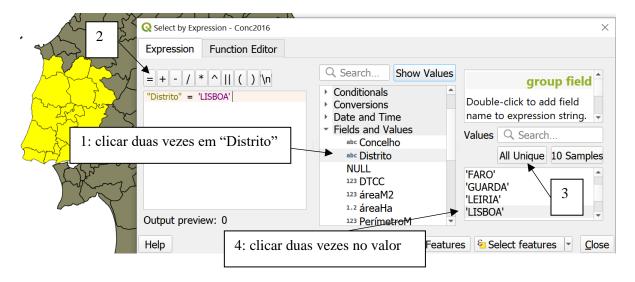


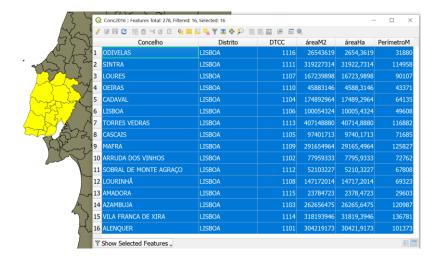
1.5 Selecção de features por atributos e por localização

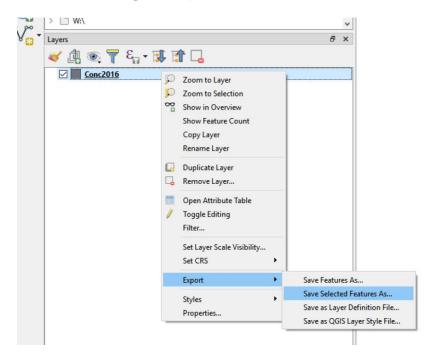

1.5.1 Selecção por atributos: selecção de features usando expressões

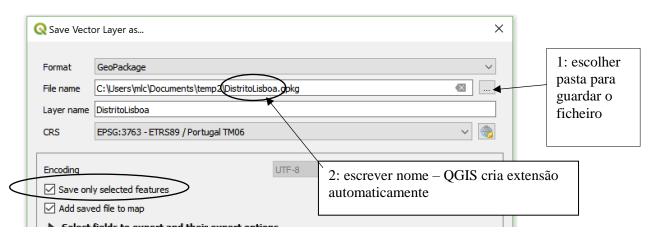
Considere de novo o cdg **Conc2016** para explorar a forma de seleccionar "features". Uma "feature" referese a um concelho que é representado no SIG por um objecto geométrico (do tipo polígono) e uma linha da tabela de atributos que lhe está associada.

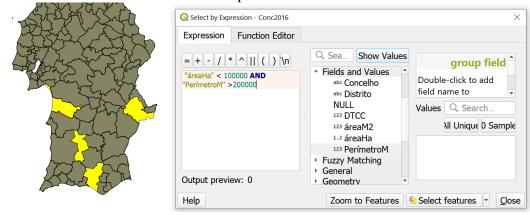

A "selecção por atributos" é uma operação de selecção de features no SIG, usando expressões que envolvem os atributos do cdg. Em primeiro lugar deve activar-se o cdg onde se quer fazer a selecção.


26. Seleccionar todos os concelhos do Distrito de Lisboa: clicar em


A opção mais simples consiste em escolher simplesmente o valor do atributo para as features a serem seleccionadas:


27. Para pesquisas mais complexas, deve-se abrir a janela "Select Features by Expression". A expressão pode usar uma grande variedade de operadores. Neste caso a expressão é muito simples e consiste em indicar que o valor do atributo ("field") "Distrito" toma o valor "LISBOA". Note que após aplicar a selecção com o botão destaque no mapa.


28. Feche a janela "Select by expression" e abra a tabela de atributos do cdg **Conc2016**. Escolha a opção "Show selected Features" para ver quais são as 16 linhas da tabela de atributos seleccionadas:

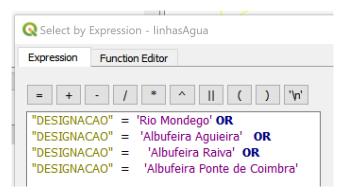

29. Pode criar um novo cdg designado por exemplo por **Lisboa** que contém unicamente os objectos seleccionados, usando a opção "**Export**" e indicando "Save Selected Features as".

O QGIS 3 usa por omissão o formato aberto **GeoPackage** adoptado pelo OGC (Open Geospatial Consortium) que também pode ser lido por outros SIGs (como o aplicativo comercial ArcGIS). Em alternativa pode escolher-se guardar os dados em formato "**ESRI shapefile**" ou outro formato. Uma das vantagens do formato **GeoPackage** é que consiste num único ficheiro, enquanto que o formato "shapefile" é guardado em vários ficheiros de dados.

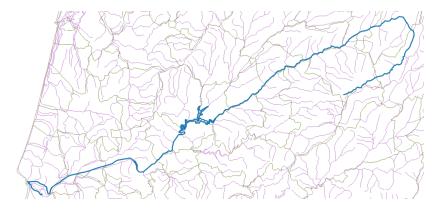
- 30. Proceda de forma análoga ao ponto 20 para fazer uma selecção dos concelhos com área superior a 100000ha usando duas expressões distintas:
 - i. Uma que contenha o atributo areaHa
 - ii. Uma que contenha a função geométrica \$area (nota: a área é devolvida em m2)
- 31. Considere a selecção abaixo. Verifique que corresponde a concelhos com um perímetro elevado mas com uma forma relativamente complexa.

Existem muitos operadores que permitem fazer pesquisas (também conhecidas por "queries") em tabelas de atributos. No exemplo seguinte, usam-se operações sobre sequências de caracteres ("strings"). A operação **regexp_match** devolve FALSO se a primeira string não contém a segunda string. A operação **left** extrai um certo número de caracteres no início da string.

- 32. Teste o resultado das seguintes expressões e determine a diferença entre as duas:
 - iii. regexp_match("Concelho", 'AL')
 - iv. regexp_match(left("Concelho", 2), 'AL')

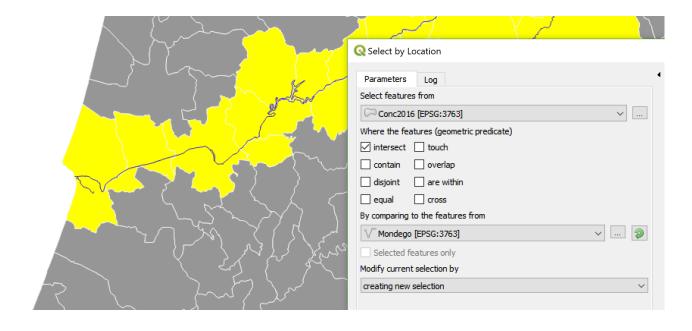

1.5.2 Selecção por localização: selecção de features usando relações espaciais

Pode obviamente incluir mais do que um cdg vectorial no seu projecto.

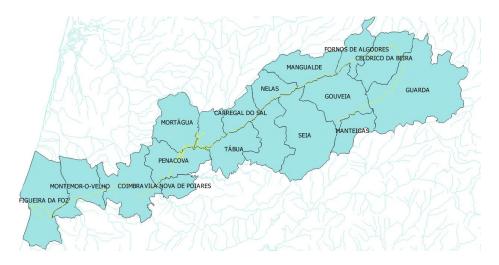

33. Adicionar ao projecto o cdg **linhasAgua** que representa linhas de água, albufeiras e as fronteiras marítima e terrestre de Portugal Continental. É fácil trocar a ordem das "layers" em "Layers panel" arrastando os nomes das layers.

Neste exercício, vai ser feita a selecção dos concelhos que são intersectados pelos objectos geométricos do cdg **linhasAgua** que correspondem ao curso do Rio Mondego.

- 34. O primeiro passo é seleccionar as features que correspondem ao Rio Mondego no cdg <u>linhasAgua</u> usando a condição **"DESIGNACAO" = 'Rio Mondego'.**
- 35. Use o botão para fazer "zoom" sobre as linhas seleccionadas. Verifique que existem interrupções no curso do rio que correspondem a albufeiras.
- 36. Com o botão verifique que se trata de "Albufeira Aguieira", "Albufeira Raiva" e "Albufeira Ponte de Coimbra". Adicione esses valores à condição sobre atributos usando o operador lógico OR por forma a seleccionar todos os objectos que correspondem ao curso do rio:



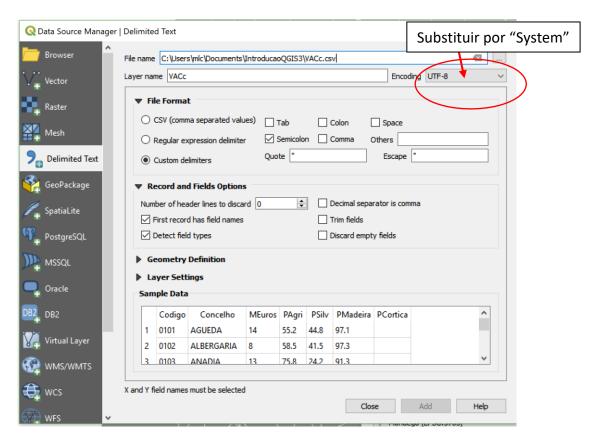
37. Exporte o resultado da selecção crie um novo cdg designado por **Mondego** que contém unicamente esses objectos.


A parte seguinte do exercício consiste em fazer uma "selecção por localização" ("spatial query") usando os cdg **Conc2016** e **Mondego**. O objectivo será seleccionar um subconjunto dos objectos de **Conc2016** (representando concelhos) que intersectam algum dos objectos de **Mondego** (representando o curso do rio Mondego). O resultado será um novo cdg que representa os concelhos atravessados pelo rio Mondego e que será designado por **concMondego**.

38. A selecção de concelhos é feita com "Select by location" disponível no menu "Vector/Research tools". É necessário indicar em primeiro lugar o cdg onde é realizada a selecção (Conc2016), e em seguida, o cdg auxiliar (Mondego neste caso). A condição espacial a usar é intersect, para serem seleccionados os concelhos que intersectam o cdg Mondego.

Nota: na janela de "**Selection by Location**" é visível que se pode realizar a operação apenas sobre as features seleccionadas de cada um dos cdg. Assim, em QGIS, não seria necessário criar o cdg **Mondego** bastando efectuar a selecção sobre as features seleccionadas de **linhasAgua**.

39. Finalmente pode salvar o resultado com o nome **concMondego** usando "Export" como visto na Secção 1.5.1.


1.6 Operações com tabelas de atributos

A aplicação QGIS, como qualquer SIG, permite fazer operações relacionais sobre tabelas. Em particular, permite combinar informação existente em várias tabelas usando **chaves**, i.e. atributos comuns às tabelas. Vamos considerar apenas o caso em que uma das tabelas é a tabela de atributos associado a um cdg e a outra tabela é uma tabela simples, não associada a objectos geométricos.

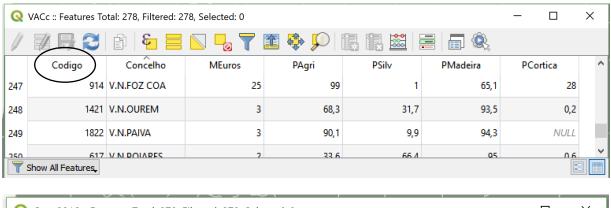
A tabela associada a um cdg será a tabela de atributos de **conc2016**. A outra tabela é uma tabela simples do INE, que se designa **VACc**, que contém valores acrescentados do sector primário agrícola e silvícola, por concelho. O objectivo é representar a informação do INE como um mapa.

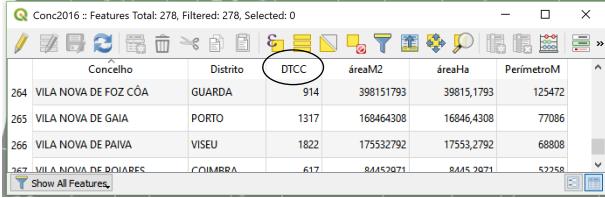
1.6.1 Leitura de tabelas simples (e.g. txt, csv) de dados em QGIS

40. Importar a tabela **VACc** para o projecto QGIS. Usar o botão o menu "Layer/Add layer".

As opções de leitura dependem do tipo de tabela. Neste exemplo, os valores da tabela estão separados por ";" (semicolon) e a primeira linha da tabela contém os nomes dos atributos. A tabela é do tipo "**No geometry**" (a seleccionar em **Geometry Definition**) pois não são usados atributos que indicam a localização para georreferenciação dos dados da tabela (poderia haver por exemplo atributos Lat e Long que indicassem o centroide de cada concelho, o que não acontece neste caso).

Se as opções de leitura estiverem correctas, a tabela deve aparecer bem formatada na janela. Nessa altura pode então clicar Add para a tabela aparecer em "Layers Panel" com ícone de tabela.

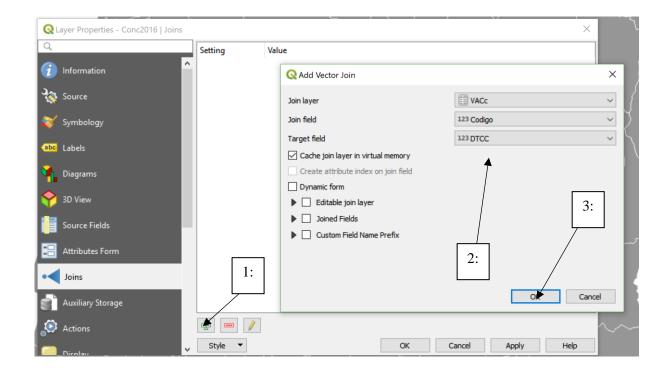

Note que na tabela de atributos, os valores numéricos devem estar *encostados à direita* da coluna respectiva. Se tal não acontecer, isso significa que QGIS interpretou esses valiores como "strings" (i.e. "texto") e não como números. Uma forma de resolver esse problema consiste na criação, fora do QGIS, de um ficheiro com uma única linha e com nome idêntico a **VACc**, mas com extensão **csvt**, ou seja, é necessário criar (por exemplo, com a app Notepad) na pasta dos dados um ficheiro com nome **VACc.csvt** e com apenas uma linha que será por exemplo



indicando que a primeira coluna (Codigo) é do tipo "inteiro", a segunda coluna (Concelho) é do tipo "texto", e as restantes colunas são do tipo "real", isto é números com casas decimais. Caso esse ficheiro existe na pasta de trabalho, as operações descritas acima para ler **VACc.csv** irão produzir dados em QGIS dos tipos indicados.

1.6.2 Cruzamento de tabelas

41. Chaves para cruzar tabelas. É necessário identificar o atributo comun às tabelas de VACc e de Conc2016 que permite cruzar as tabelas. Esses atributos (um em cada tabela, mas com a mesma informação) designam-se por chaves. O atributo da tabela simples (VACc) será a chave primária e o atributo da tabela associada a um cdg (Conc2016) será a chave estrangeira. A chave primária é um atributo que não toma valores repetidos, e por isso permite identificar de forma única cada linha da tabela (é por isso que se chama "chave").



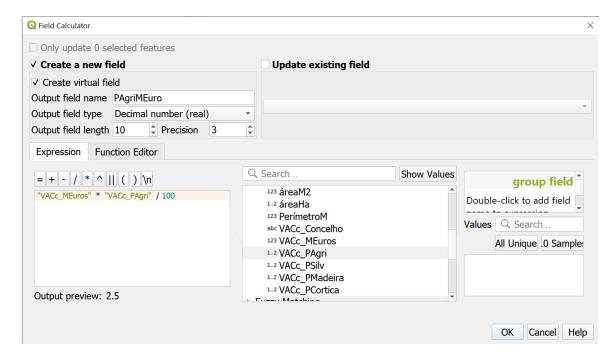
Observando os atributos das tabelas, verifica-se que existem dois tipos de informação que poderiam ser eventualmente usados para cruzar as tabelas: a designação do concelho e o código **DTCC**. No entanto, o nome não é uma boa escolha pois pode não existir uma correspondência exacta entre as duas tabelas (ver exemplo de Vila Nova de Paiva). Assim,

- a. A chave primária deve ser o atributo "Codigo" da tabela VACc;
- b. A chave estrangeira deve ser o atributo "DTCC" da tabela de atributos de Conc2016.

Cruzar as tabelas usando as chaves escolhidas. Esta operação (conhecida por "join") é realizada no menu de propriedades do cdg Conc2016.

Depois da operação de cruzamento estar concluida, a tabela de atributos de **Conc2016** fica aumentada com os valores provenientes da tabela **VACc** como era pretendido.

42. Fazer um mapa de Portugal Continental com uma legenda que indica o valor acrescentado do sector primário agrícola e silvícola, isto é o valor do atributo **VACc_MEuros** (use uma legenda com 5 classes).


1.6.3 Operar com os atributos da tabela

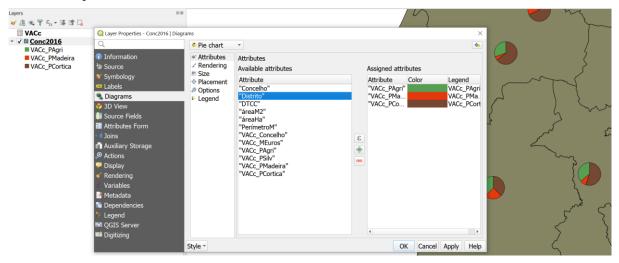
QGIS permite fazer operações sobre os atributos de uma tabela e criar novos atributos. No exemplo acima, os dados do INE contém o valor acrescentado por concelho (em MEuros) e as percentagens desse valor que correspondem ao sector agrícola (VACc_Pagri) e ao sector silvícola (VACc_PSilv). Neste último sector, ainda é possível distinguir a percentagem correspondente a madeira e a cortiça. Neste exercício, cria-se um novo atributo que contém os valores acrescentados do sector agrícola em MEuros.

43. Colocar cdg **Conc2016** em "modo de edição": isto pode ser realizado directamente no menu do cdg com a opção "Toggle editing" ou na tabela de atributos com essa mesma opção (ver figura acima).

Nessa altura tanto a informação da tabela de atributos como os limites dos objectos geométricos pode ser alterada. Logo que a edição estiver concluída deve fechar-se o modo de edição para evitar alterações indesejadas.

44. Criar um novo atributo designado por **PAgriMEuros** usando o botão que fica disponível na tabela de atributos em modo de edição ou que está no "attributes toolbar". Este atributo será numérico e decimal (do tipo "decimal number") e terá 10 dígitos, dos quais 3 correspondem a casas decimais (precisão). A expressão para calcular o valor do atributo é

Após a operação concluída, desligue o modo de edição com "**Toggle editing**" e salve as alterações realizadas.


Em resultado da operação de criação de um novo atributo, a tabela de atributos de **Conc2016** tem agora o aspecto seguinte:

- 45. Defina um novo atributo que indique o valor acrescentado devido à cortiça em cada concelho. Construa um mapa de Portugal Continental com uma legenda relativa a esses valores.
- 46. Verifique que, se cancelar o cruzamento das tabela **Conc2016** com **VACc** (em "join" pode eliminar esse cruzamento), o atributo **PAgriMEuros** é preservado na tabela de **Conc2016** mas os atributos provenientes da tabela **VACc** são eliminados.
- 1.6.4 Representação de atributos numéricos com diagramas sobre a carta

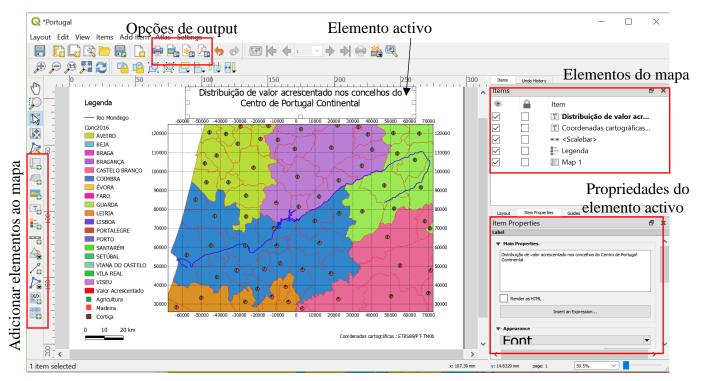
A aplicação QGIS permite incluir, para além de etiquetas, diagramas que sintetizam a informação numérica de cada feature. Em particular, é possível definir histogramas e diagramas do tipo "pie chart". Para isso deve usar-se o menu properties, escolher o tipo de diagrama, e as variáveis que o compõem, havendo diversas opções (tamanho, cores, entre outras) que podem ser definidas.

No exemplo abaixo, cada diagrama indica o peso da agricultura, madeira e cortiça no valor acrescentado do concelho respectivo.

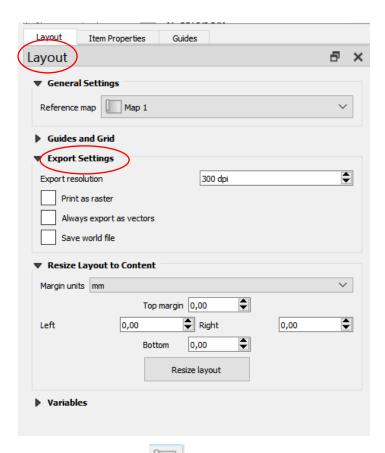
1.6.5 Exercício extra: produção de vinho branco por concelho, dados Pordata (***)

O objectivo deste exercício é construir uma representação da distribuição nacional da produção de vinho branco em 2019 (ao nível da unidade administrativa Município). Os dados não geográficos estão disponíveis no portal Pordata (https://www.pordata.pt/Municipios/Produ%c3%a7%c3%a3o+de+vinho+por+cor-975) e descrevem a produção de vinho por cor ("Onde são produzidos mais e menos hectolitros de vinho branco, tinto e rosé?").

- 47. Descarregar o ficheiro Excel com os dados
- 48. A folha "Quadro" tem as produções de vinho branco entre 2009 e 2019. A folha códigos tem os códigos DTCC dos municípios. Os dados devem ser convertidos para um ficheiro de texto de extensão "txt" ou "csv" para poderem ser importados no QGIS.
- 49. Descarregar a mais recente Carta Administrativa Oficial de Portugal (CAOP2019) no site da DGTerritório (https://www.dgterritorio.gov.pt/cartografia/cartografia-tematica/caop). O cdg que interessa é a Área Administrativa (Polígonos). [Nota: caso tenha dificuladade, pode usar o cdg conc2016 em vez do CAOP2019]. Importar esse cdg em QGIS.
- 50. EM QGIS fazer dois cruzamento de tabelas: um primeiro entre o cdg de municípios (CAOP2019 ou conc2016) e a tabela "códigos" da Pordata; um segundo cruzamento entre a tabela resultante e o quadro das produções de vinho branco
- 51. Construir uma carta cuja legenda descreva a produção total de vinho branco por município.
- 52. Construir uma outra carta cuja legenda descreva a produção de vinho branco por km2 de área do município.
- 1.6.6 Exercício extra: incidência de Covid por região administrativa NUTS na UE (***)
 - 53. Visite a página https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units para obter o cdg vectorial que representa as unidades administrativas da UE (NUTS, dos níveis 0 a 3). Escolha, por exemplo, os dados de 2021 NUTS_RG_01M_2021_3857.shp.zip
 - 54. Visite a página https://www.ecdc.europa.eu/en/covid-19/data para obter, por exemplo, os dados referentes a << Data on the weekly subnational 14-day notification rate of new COVID-19 cases >>. Pode escolher o ficheiro de extensão csv (nota: o ficheiro não tem extensão: pode renomear o ficheiro para ficar com extensão csv).

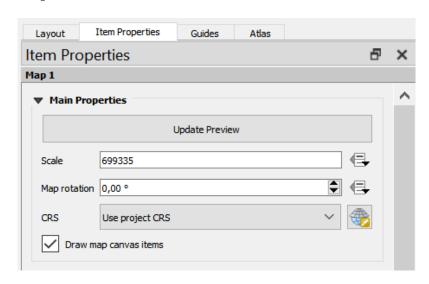

- 55. Importe a tabela (ficheiro csv) para QGIS e faça uma selecção por atributos para obter uma nova tabela com os casos para a semana mais recente (por exemplo '2021-W05'). Designe a tabela resultante como, por exemplo, **W5-2021** (pode expoortar como ficheiro csv, sem geometria).
- 56. Cruze o cdg das regões administrativas com a tabela **W5-2021** para criar um mapa da UE que descreva o número de casos por 14 dias.

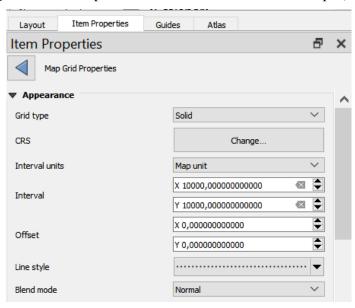
1.7 Introdução a Layout Manager para criação de cartas ou mapas


Um mapa ou carta deve ser completada com elementos que contribuem para a leitura e interpretação do produto cartográfico: o **título**, a **orientação geográfica**, o **sistema de coordenadas de referência**, a **escala** e a **legenda**.

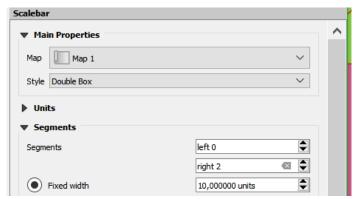
No menu view/decorations tem alguma opções para colocar a escala, a indicação da orientação e também pode adicionar uma grelha regular sobre a carta.

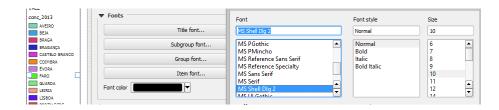
Uma alternativa muito mais completa é o "Layout Manager" que pode activar no menu Project, em "New Print Layout" (ou CRTL-P). Existem inúmeras opções que pode explorar para por exemplo criar uma carta como a seguinte que tem a indicação de coordenadas, escala, legenda, e elementos gráficos.

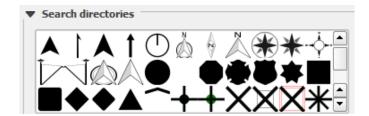

- 57. Fazer zoom para a região de interesse para a carta e ajustar a dimensão da janela de visualização dos mapas do QGIS desktop à área para a qual se quer compor a carta.
- 58. Abrir **Layout Manager** -- no menu Project, em "**new print layout**" (ou CRTL-P) e escolher um nome (e.g. Portugal)
- 59. No janela de **Layout manager**, no menu **Layout**, escolher o tamanho e orientação da carta em **Layout properties**, resolução para impressão em **Export Settings**, como ilustrado abaixo.


60. No botão à esquerda **Add new map**, desenhar uma janela onde vai ser colocado o conteúdo da zona de visualização do QGIS desktop.

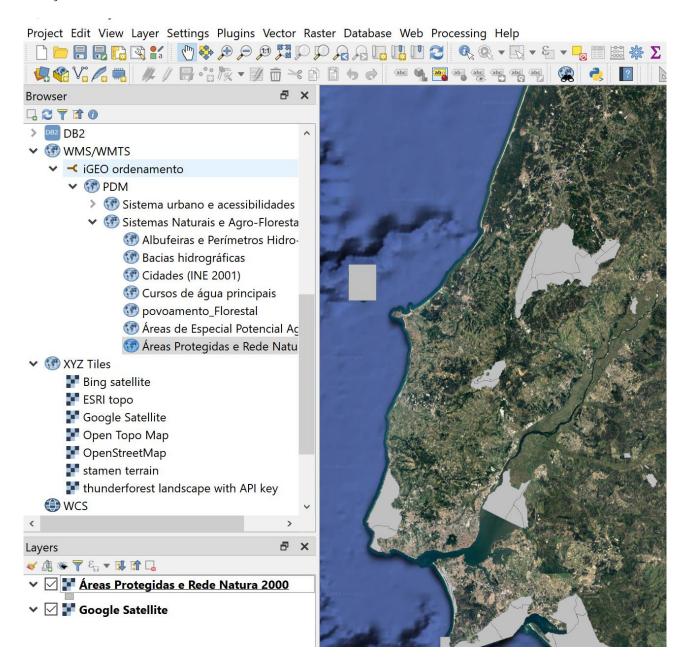
Acabou de criar um **elemento** da carta. *Cada elemento da carta (imagem, legenda, escala, etc) pode ser seleccionado com o cursor activado em*Nessa altura, o **menu Item properties** ajusta-se ao elemento respectivo da carta.


61. Para que a imagem (map) em **Layout** corresponda ao que é visível na janel do QGIS desktop ("canvas"), selecciona-se esse elemento, e em **Item properties**, em **Main properties**, escolhe-se a opção **Draw map canvas item:**


- 62. Definir escala. Nessa mesma janela **Item properties** pode escolher a escala da carta a ser usada (vai alterar o "zoom" sobre a imagem da carta)
- 63. Grelha. Para criar uma grelha usa-se a opção **Grids** também no menu **Item properties**. Podem ser criadas grelhas, tendo cada uma um nome propriedades. O botão **Modify grid** permite editar a grelha respectiva.
- 64. Pode escolher-se uma medida para a grelha sobre a carta (mms ou cms) ou fazer uma grelha sobre o mapa original nas unidades do sistema de coordenadas. O exemplo seguinte mostra como se escolhe uma grelha de 10 km por 10 km sobre as coordenadas do mapa (em metros):


- 65. Para inserir coordenadas junto à grelha deve usar-se a opção **Draw Coordinates** em **Map Grid Properties**.
- 66. Desenhar escala: Inserir escala com botão e desenhar o rectangulo onde vai estar a escala. Em **Item properties**, surgem as opções da escala. Pode escolher os troços da escala em **Units:**

67. Inserir legenda: A legenda deve ser criada na zona de visualização do QGIS desktop. Em **Layout**manager, usar botão
para inserir legenda na carta. No menu **Item properties** pode então editar-se mudar-se o aspecto da legenda (tamanho de letra, etc).


- 68. Inserir tabela de atributos com botão
- 69. Inserir imagem de ficheiro com botão
- 70. Inserir símbolos cartográficos e norte da carta: usa-se o mesmo botão acima (inserir imagem) mas escolhe-se a opção **Search directories** em **Item properties**.

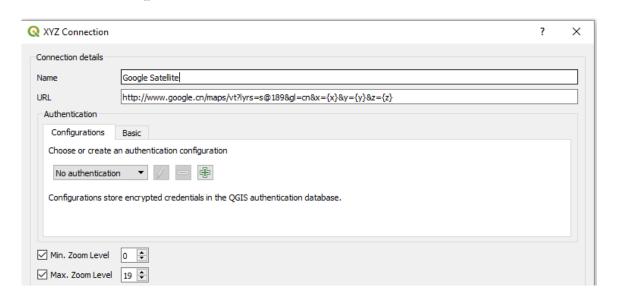
2 Edição de dados e digitalização vectorial sobre imagem

2.1 Acesso interactivo a imagens de muito boa resolução e outros dados "web"

QGIS possibilita o acesso a dados geográficos disponíveis em servidores ligados à internet através de um conjunto de serviços. Estes dados não são copiados localmente: são acedidos e visualizados através de serviços web.

Na figura acima mostram-se duas de três possibilidades mais usuais:

- O acesso via protocolo XYZ que permite observar e usar vários níveis de "zoom" em imagens disponíveis num endereço indicado.
- O acesso via serviço WMS (Web Map Service) permite aceder a imagens ou possivelmente informação limitada sobre "features" (para mais funcionalidades para "features" deve ser usado o serviço WFS "web feature service" descrito abaixo);
- O acesso via serviço WFS (em que F refere-se a "features") que permite observar e pesquisar cdg do tipo vectorial e a sua tabela de atributos.

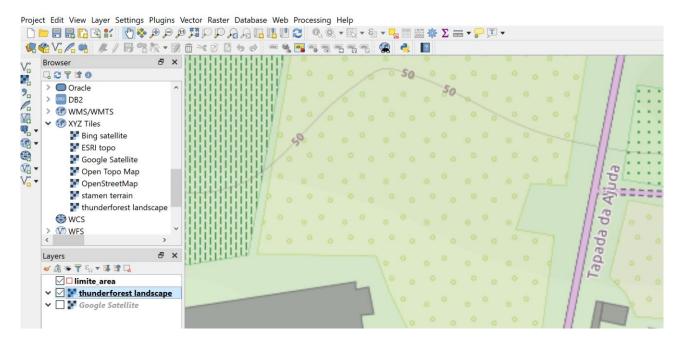

No separador respectivo deve clicar no lado direito e abrir **new connection** para colocar o endereço web (ver abaixo)

2.1.1 Acesso via protocolo XYZ para imagens Google, Bing, e outras

Os acessos acima podem ser realizados com ou sem necessidade de uma chave ("API-key"), dependendo das regras estabelecidas pelos fornecedores de informação. Por exemplo, as imagens "Google Satellite" não requerem "API-key". Para aceder a essas imagens via protocolo XYZ é suficiente introduzir o endereço (URL) abaixo numa nova conexão em "XYZ Tiles"

Project Edit View Layer Settings Plugins Vector Raster Database Web Processing Help Browser SpatiaLite PostGIS MSSQL Oracle DB2 **W** XYZ Tile New Connection WCS Save Connections... WFS WFS Load Connections.. ▶ ⊕ ows

http://mt0.google.com/vt/lyrs=s&hl=en&x= $\{x\}$ &y= $\{y\}$ &z= $\{z\}$



Na janela acima, a opção Max. Zoom Level pode ser em certos casos alterada.

Se a conexão exigir uma chave, essa chave deve ser acrescentada ao endereço como por exemplo em (nota: essa chave particular não funcionará: terá que obter a sua própria chave):

 $https://tile.thunderforest.com/landscape/{z}/{x}/{y}.png?apikey=x147xdea2e965421a80a7e4d9869c5030$

Essa chave deve ser obtida junto ao fornecedor de informação. No seguinte exemplo, trata-se de um mapa de elevações com indicação de curvas de níveis, e a chave pode ser obtido através de registo em https://www.thunderforest.com/.

Indicam-se na tabela seguinte alguns exemplos de endereços (URL) para acesso a diferentes dados geográficos.

Bing Virtual Earth: http://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=1		
Google Satellite: https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}		
Google Hybrid: https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z}		
Google Terrain: https://mt1.google.com/vt/lyrs=t&x={x}&y={y}&z={z}		
Google Roads: https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}		
OpenTopoMap : https://tile.opentopomap.org/{z}/{x}/{y}.png		
ESRI satellite: https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}		

2.1.2 Acesso WMS e WFS a dados abertos do Registo Nacional de Dados Geográficos

Para Portugal, é possível explorar desta forma um grande conjunto de dados disponíveis Registo Nacional de Dados Geográficos (RNDG):

https://snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/home

Os conjuntos de dados acessíveis por serviço WMS (Web Map Service) ou WFS (Web Feature Service) são indicados e a URL a usar é acessível no site da forma exemplificada abaixo:

Registo Nacional de Dados Geográficos

Pesquisar em 4523 registos...

O resultado da pesquisa é um conjunto de dados geográficas, alguns dos quais podem ser acedidos no QGIS através de um serviço web (WMS ou WFS). Por exemplo, os mapas de áreas ardidas podem ser acedidos por WFS:

2 resultados encontrados

Áreas ardidas

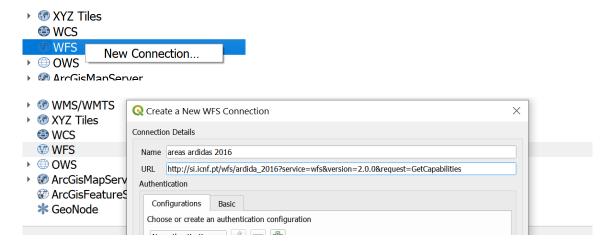
Instituto da Conservação da Natureza e das Florestas, I.P.

Data de Referência (Revisão): 13-08-2019

Tema(s): Ambiente

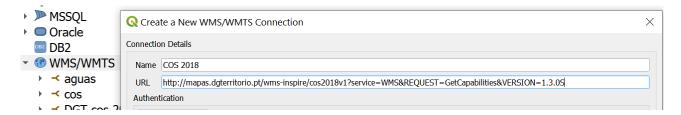
Cobertura: Portugal Continental

O Instituto da Conservação da Natureza e das Florestas divulga a cartografia nacional de áreas ardidas dos anos 1990 à data atual em conformidade co junho, na redação dada pelo Decreto-Lei n.º 17/2009, de 14 de janeiro.



O botão permite encontrar o endereço web a introduzir em QGIS:

Basta copiar o endereço, como por exemplo

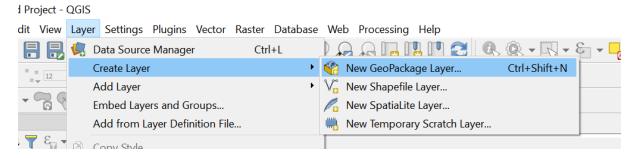

http://si.icnf.pt/wfs/ardida 2016?service=wfs&version=2.0.0&request=GetCapabilities) e inseri-lo em browser panel da forma seguinte.

Nota: para testar, e se a ligação internet não for muito rápida, evite o ano 2017 pois o cdg para esse ano é muito pesado.

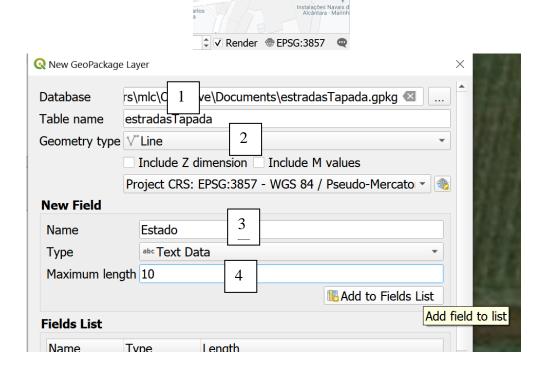
Em alternativa, o serviço a usar pode ser WMS. Por exemplo, se se pesquisar "COS" (Carta de ocupação do solo) e escolher um dos anos disponíveis o serviço WMS tem um endereço como

http://mapas.dgterritorio.pt/wms-inspire/cos2018v1?service=WMS&REQUEST=GetCapabilities&VERSION=1.3.0

Para alguns conjuntos de dados, há a possibilidade de descarregar do RNDG os dados e usá-los localmente, como no exemplo abaixo para os dados COS, em que se obtém os endereços respectivos na lista que se obtem clicando no botão . Cada um dos links permite descarregar o ficheiro zip respectivo que contém os ficheiros shapefile necessários.


Figura 2: links para descarregar os ficheiros da COS2018 para as regiões de Portugal (RNDG/SNIG)

2.2 Exercício de edição para objectos vectoriais do tipo "linha"


2.2.1 Criar novo conjunto de dados geográficos do tipo "linha"

1. Em QGIS crie um novo cdg para registar as estradas da Tapada da Ajuda. Existem vários formatos disponíveis: use por exemplo o formato aberto GeoPackage (é um formato aberto adoptado pelo OGC). Em

alternatica pode criar o novo cdg em formato ESRI Shapefile, que é muito usado mas que tem limitações que GeoPackage não tem.

Ao criar um novo cdg para representar as estradas da Tapada da Ajuda, deve definir-se o tipo de objecto geométricos que será "linha", e pretende-se criar um <u>atributo</u> para registar o estado das estradas, que pode estar em alguma das seguintes categorais: "mau", "regular" e "bom". Assim, ao criar o novo cdg será necessário criar um atributo <u>estado</u> que poderá ter algum desses três valores (neste caso os valores são <u>texto</u>). **O sistema de coordenadas a usar será o da imagem de muito boa resolução sobre a qual é feita a digitalização** que está disponível no canto inferior direito da interface (por exemplo, EPSG: 3857)

- 2. Adicione ao projeto a imagem de alta definição da região (por exemplo Bing Virtual Earth ou Google Satellite) como indicado na Secção 2.1.
- 3. Faça "zoom" para a zona da Tapada da Ajuda, e para um primeiro troço de estrada que queira digitalizar.

2.2.2 Entrar em modo de edição e cria novas features

4. Seleccione **EstradasTapada** que acabou de criar e inicie o modo de edição com botão . Nessa altura o menu de edição ("digitizing toolbar") fica activo.

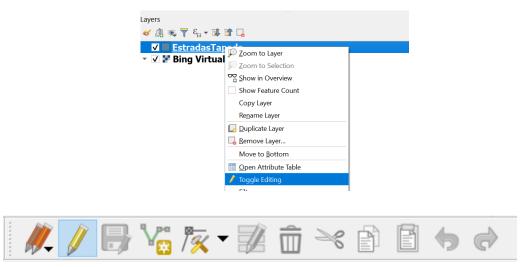
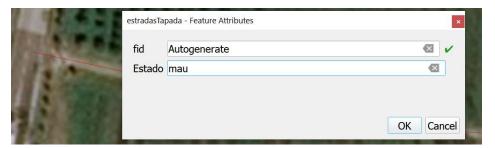



Figura 3: "digitizing toolbar" em QGIS3

5. Use o botão para criar uma nova primeira feature, usando o cursor para clicar nos pontos. Se se enganar use [DELETE] para voltar atrás. No final clique no lado direito do rato para registar a nova feature.

Pode optar entre:

- a) registar uma linha que representa a localização de uma estrada e, imediatamente de seguida, registar os valores dos seus atributos, como no exemplo acima, ou
- b) registar várias (ou mesmo todas) as linhas que representam as estradas e, só depois, abrindo a janela de atributos do layer registar os valores respetivos dos atributos de todas elas.

Por omissão o QGIS disponibiliza a opção a). Para a opção b) deve, no menu Settings → Options → Digitizing, ativar a opção **Suppress attributes form pop-up after feature creation**. Pode começar por utilizar a opção a) mas depois de registar uma ou duas linhas desta forma, passe para a opção b). Regra geral, esta última opção é a que se mostra mais rápida, embora exija algum cuidado adicional na fase de edição dos valores dos atributos para associar o cada valor à feature correcta.

2.2.3 Aceder às coordenadas dos pontos com "Vertex editor"

Para visualizar ou alterar usando o teclado as coordenadas x,y dos pontos digitalizados usa-se o menu "Vertex editor". Para abrir esse menu é necessário estar em modo de edição ("toggle editing"), clicar no botão "vertex

tool" passar com o rato sobre a feature a editar até ver os vértices a vermelho, e clicar no botão direito do rato para abrir o painel "**vertex editor**", como ilustrado abaixo.

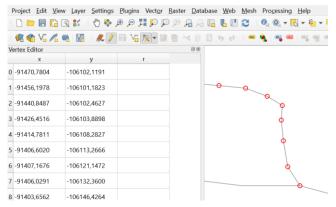
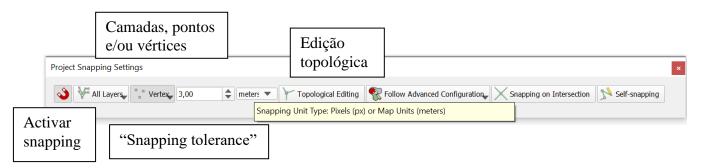



Figura 4: Painel "vertex editor" e representação geométrica dos pontos respectivos em QGIS 3

As coordenadas dos vértices podem ser alteradas directamente nesse painel caso haja necessidade.

2.2.4 Opções de "snapping"

6. Para criar novas features (as restantes estradas) deve fixar em primeiro as opções de "snapping" na "toolbar" de "Snapping" que encontra no menu **Project/Snapping Options**. Neste exemplo, pode considerar-se por exemplo uma distância de "snapping" de 3 metros, e estabelecer que "snapping" é realizado sobre os vértices já digitalizados. A opção "Topological editing" deve estar activada:

"Snapping" (que é representado por um íman, pois "atrai" o cursor para um ponto já existente) permite limitar a densidade de pontos distintos sobre o mapa: caso esteja definido um valor para snapping tolerance (em pixels ou em unidades no mapa), todas as ferramentas de edição **impedem a individualização de novos vértices sobre o mapa que estejam a uma distância inferior a snapping tolerance** de um vértice já existente. O objectivo da definição de "snapping tolerance" é garantir que existindo um vértice no ponto P, a criação de um novo vértice a uma distância de P inferior à snapping tolerance, é equivalente a digitalizar precisamente sobre P, i.e. exactamente com as mesmas coordenadas de P.

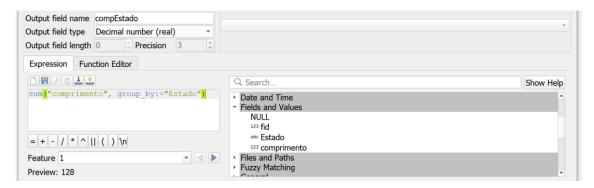
"Advanced configuration": define-se os cdg cujos vértices e/ou arestas serão considerados para snapping.

Indicar: quais os pontos ou linhas relativamente aos quais o snapping actua:

As opções de snapping também podem ser acedidas em "snapping toolbar":

7. Continue a digitalizar novas features. Agora, a mira do cursor irá ser atraída por pontos a menos de 3 metros, e

- 8. Para alterar vértices mal digitalizados de alguma feature já registada, deve usar posteriormente a ferramenta "Vertex tool". Clique-esquerdo num vértice ou numa aresta da feature a alterar para seleccionar (o vértice fica assinalado por uma círculo); liberte o botão do rato e mova o cursor para o local correcto; clique-esquerdo novamente. Caso se tenha enganado, use CRTL-Z.
- 9. A opção de edição topológica permite preservar a localização relativa das features sem criar interrupções na rede de estradas. Por exemplo, pode mover-se o seguinte vértice que pertence a 3 features:


Figura 5: mover um vértice que pertence a várias features com opção "topological editing"

- 10. Pode **adicionar vértices** clicando-esquerdo duas vezes no local pretendido e deslocando o vértice para o local pretendido, ou em alternativa clicando-esquerdo sobre "+" no meio da aresta e clicando-esquerdo de novo no local pretendido para "+". Pode **eliminar vértices** seleccionando primeiro o vértice e depois apagando com [DELETE].
- 11. Quando já tiver digitalizado uma feature de cada estado ("bom", "regular" e "mau"), pode criar uma legenda como indicado na Secção 1.4.7 para facilitar a visualização do mapa. Deve ir salvando as alterações realizadas com
- 12. Quando concluir a digitalização deve ter uma carta de estradas algo como a abaixo (ou de preferência mais extensa). Conclua a digitalização com o botão e [SAVE].

2.2.5 Funções \$length e sum

13. Calcule o comprimento das estradas editando a tabela como indicado na Secção 1.6.3 usando a função **\$length** que devolve o comprimentos (em metros) de cada feature do cdg. Para obter o comprimento total das estradas com estado "bom", "regular" e "mau", pode criar um novo atributo na tabela cujo valor é definido por **sum("comprimento", group_by:="Estado").**

2.3 Dados GPS em QGIS

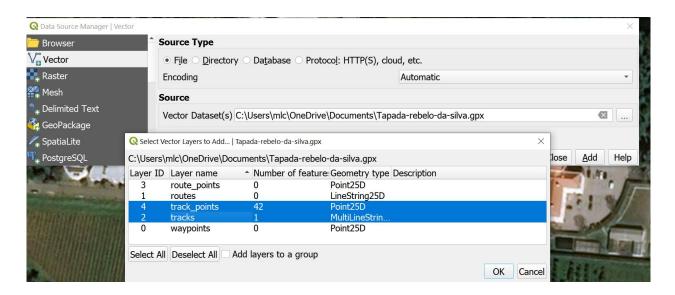
Os aparelhos GPS criam ficheiros com extensão **.gpx** (GPS exchange) que podem armazenar informação de três tipos:

- "waypoints" (wpt) : conjunto de pontos com localização (lat/long) e atributos adicionais (ele=elevação, time=tempo, name=descrição, etc);
- routes" (rte): caminho para percorrer uma sucessão de "waypoints".
- "tracks" (trk): linhas poligonais, em que cada linha ("track segment") liga vértices ("track points") com localização (lat/long) e outros atributos; esta informação é geralmente obtida pelo GPS no modo "active track log";

2.3.1 Obtenção de ficheiro gpx num dispositivo móvel e leitura em QGIS

14. Instale num dispositivo móvel equipado de módulo GPS uma applicação que permita registar "tracks". Por exemplo , a aplicação android "A-GPS Tracker" permite fazer o registo de posições num telemóvel com precisão grosseira de 10-20 metros, dependendo das características do aparelho e das condições de observação. O prefixo "A-" refere-se a

- "Assisted GPS" que permite incorporar informação do sinal de transmissão do operador de telecomunicações.
- 15. No exterior, e de preferência em localizações afastadas de edifícios e de copas de árvores, registe um percurso. Salve e exporte o resultado como um ficheiro **gpx**.
- 16. Em QGIS, leia o ficheiro resultante com extensão gpx com "Add Vector Layer" (ver Secção 1.4.1). É-lhe pedido para seleccionar "layers" que quer adicionar ao projecto: neste caso apenas existem dados do tipo "track". Existem cdg de dois tipos vectoriais: cdg de pontos ("track points") e cdg de linhas ("tracks")
- 17. Observe os pontos sobre a imagem de boa resolução da Tapada e verifique que podem existir desvios significativos na posição dos pontos.



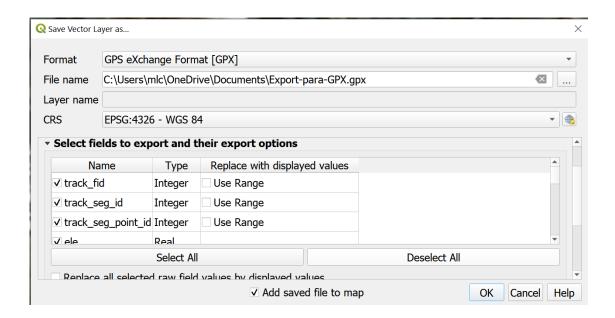


Figura 6: Conjunto de dados geográficos de tipo ponto e linha representando medições GPS junto ao edifício Rebelo da Silva

18. (***) Explore a opção "Temporal" no menu properties da layer "track-points" para criar uma animação que mostra o movimento captado pelo aparelho de GPS.

2.3.2 Exportação de pontos e linhas de um projecto QGIS para um ficheiro gpx

19. Exporte o cdg de estradas da Tapada da Ajuda criado na Secção 2.2 como ficheiro do tipo **gpx** que poderá depois ser lido num dispositivo móvel. Clique no botão "**Deselect All**" e escolha o CRS 4326 para que as coordenadas sejam criadas em longitude/latitude.

2.4 Exercício de edição de objectos vectoriais do tipo polígono

Neste exercício, pretende-se criar um cdg com informação sobre a ocupação do terreno na Tapada da Ajuda. Esta informação deve ser obtida por digitalização sobre imagens de muito boa resolução espacial da Tapada.

O objetivo é criar um novo cdg do tipo polígono, e digitalizar cada parcela cuja ocupação é homogénea, preenchendo a respetiva tabela de atributos. As parcelas devem constituir uma cobertura da zona a digitalizar, isto é, os polígonos que representam as parcelas não se podem sobrepor e entre eles não podem existir "buracos".

Para construir o novo cdg tenha em conta que a seguinte informação terá de estar disponível no resultado final, embora apenas a informação "Nível 2" seja necessária na construção do cdg. As restantes colunas poderão ser adicionadas através de um "cruzamento de tabelas" como foi exemplificado na Secção 1.6.2.

Nivel 1	Nível 2	Cultura agrícola	Rendimento €/ha
AS	AS		0
AF	AF		0
AA	TR	Trigo	900
AA	LG	Leguminosa	1800
AA	НО	Hortícola	3500
AA	PA	Pastagem	300
AA	PO	Pousio	0
AA	VI	Vinha	17000
AA	PM	Pomar	10000
AA	OL	Olival	10000

A ocupação do terreno tem portanto dois níveis de classificação. O 1º nível inclui 3 classes: Área social (código: AS; inclui edifícios, logradouros, jardins e estradas); Área florestal e meio natural (código: AF; inclui as matas e incultos); Área agrícola (código: AA; inclui as culturas arvenses, pomares, vinha, olival, pastagens, pousios).

A classe de 1º nível Área agrícola (AA) subdivide-se nas classes de 2º nível indicadas na tabela, e as classes AS e AF têm um único nível com o mesmo código.

Como exemplo de interpretação da ocupação considere a seguinte figura que inclui a porção mais a Sul da Tapada da Ajuda. Faça a sua própria interpretação atendendo à semelhança da textura e cor da imagem e assumindo que as parcelas sem vegetação ou com vegetação incipiente serão da classe "pousio" (PO).

Figura 7: Algumas classes de ocupação do terreno na Tapada da Ajuda

2.4.1 Criar novo conjunto de dados geográfico do tipo "polígono"

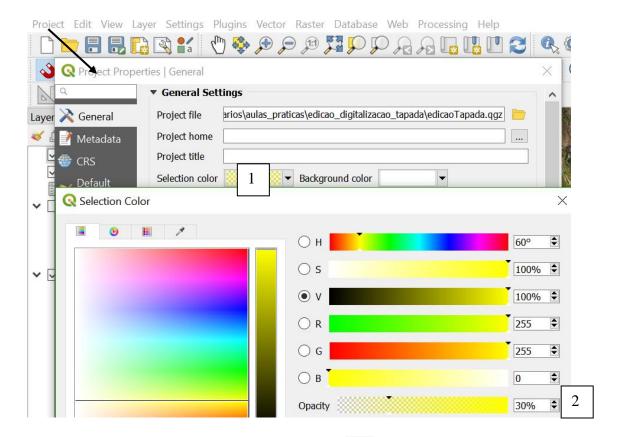
20. Tal como foi feito para Estradas Tapada, crie na pasta de trabalho um novo cdg vectorial mas agora do tipo geométrico "MultiPolygon" em formato GeoPackage com o nome Parcelas Tapada. Note que existem duas escolhas possíveis: "Polygon" e "MultiPolygon". A principal distinção é que as features no primeiro são espacialmente conexas, enquanto que features em "MultiPolygon" podem ser colecções de um ou mais "Polygon".

Crie um atributo com o nome **usoSolo2N** (tipo Texto, comprimento 2) onde irá registar os códigos de 2º nível das ocupações do terreno, exemplificados na Figura 7.



Figura 8: Criar um novo cdg do tipo "polígono". Neste caso é multi-polígono para permitir a criação de features com mais do que uma parte.

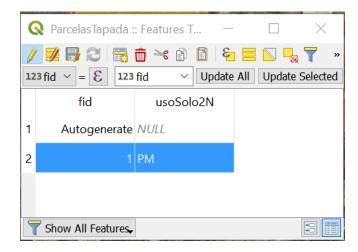
- 21. Comece por criar um polígono com que delimita a zona a digitalizar (pode corresponder ao polígono a vermelho na Figura 7. A conclusão do polígono faz-se clicando duas vezes no lado direito tal como na Secção 2.2.
- 2.4.2 Dividir features do tipo "polígono" para criar novas features com "split feature"
 - 22. Depois de criar o contorno, pode então começar a digitalizar as parcelas de terreno. A regra principal na digitalização de polígonos é


a mesma fronteira não deve ser digitalizada mais do que uma vez.

Por forma a garantir a aplicação desta regra, pode usar ferramentas adequadas de digitalização disponíveis na "Advance Digitizing Toolbar":

Em particular pode usar ("split feature") para dividir a feature do contorno em duas partes, em que uma das partes será uma das parcelas a digitalizar. Ao proceder dessa forma, cada fronteira das parcelas é digitalizada apenas uma vez.

Antes de prosseguir, altere a cor de selecção de features para conferir transparência. Isso é efectuado no menu de propriedades do projecto:



Em seguida deve selecionar a feature do contorno com para indicar que será essa feature a ser dividida com a ferramenta . Use então essa ferramenta: deve começar por clicar no exterior do polígono e concluir a digitalização (clique do lado direito) também no exterior do polígono:

Figura 9: A ferramenta "split feataure" permite partir o polígono original em dois polígonos. O novo polígono corresponde a um pomar e pode então ser rotulado com "PM" na tabela de atributos (atributo usoSolo2N).

Finalmente, associe o código correcto ao atributo usoSolo2N na tabela de atributos de ParcelasTapada:

Prossiga a digitalização até obter uma cobertura da área do contorno inicial, preenchendo a tabela de atributos por forma a que todas as parcelas tenham um código "usoSolo2N"

Se necessário, corrija a localização das parcelas que criou utilizando a alteração de nós de arestas comuns a polígonos adjacentes com seleccionado mantêm os polígonos adjacentes.

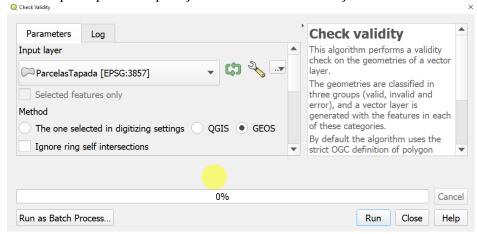
Nas duas secções seguintes, serão discutidas formas de garantir que as features criadas são válidas e que respeitam regras topológicas como evitar sobreposições e espaços ("gaps").

	Validade (2.4.3)	Regras topológicas (2.4.4)
Ao criar o cdg: digitalização	Desenhar os "rings" de acordo com as regras	Usar ferramentas de snapping e digitalização avançadas
Ao criar o cdg: propriedade "Digitizing" da layer	Verificar validade	Verificar vértices duplicados, "gaps", "overlaps" e "missing vertices"
Para um cdg já criado	"Check validity" no menu "Vector/Geometry Tools"	Plugins "Topology Checker" e "Check Geometries" no menu "Vector"

2.4.3 Validade de features de tipo "polígono"

Os objectos geométricos de tipo "polígono" criados com a ferramenta "add polygon feature" têm que respeitar algumas regras para serem **válidos.** Um objecto geométrico do tipo polígono (que corresponde a uma **única feature**) tem sempre um polígono envolvente exterior (que irá ser designado por "**ring**" **envolvente**) e um número arbitrário (0, 1, 2...) de buracos (cada um designado por "**ring**" **envolvido**). Informalmente, as regras são as seguintes:

- 1. Cada "ring" tem que estar fechado e não pode ter intersecções ("self-intersection" ou "loop"). Isto visa garantir que quando um "ring" é digitalizado no sentido dos ponteiros do relógio a parte interior fica sempre para a direita e quando é digitalizado no sentido oposto fica sempre para a esquerda;
- 2. Os "rings" envolvidos não devem cruzar a fronteira do "ring envolvente";
- 3. Os "rings" envolvidos não se devem cruzar entre si.


É essencial garantir que as features criadas são válidas. Caso contrário, muitas funções do QGIS irão dar mensagem de erro quando aplicadas aos cdg com features inválidas, ou irão devolver resultados errados.

Há duas estratégias possíveis:

- 1. A estratégia recomendada é garantir o respeito das regras de validação ao criar o cdg.
- 2. Identificar as features não válidas para depois poder editá-las e corrigi-las.

Esta última estratégia (2) pode ser aplicada de duas formas diferentes:

2.1 Usar o menu e a função **Vector/Geometry Tools/Check Validity** para verificar que não há erros de validade nas features que impedem a aplicação das ferramentas de edição.

Por omissão esta ferramenta devolve 3 novos cdg: um do tipo ponto que indica os locais em que há problemas de validade (se existirem), um de polígonos que indica as features válidas, e outro de polígonos que indica as features inválidas (Nota: pode desligar a criação desses outputs e ler apenas o diagnóstico depois de fazer "Run").

2.2 Usar a propriedade "Digitizing" da layer que está a ser editada. O menu tem três opções: "automatic fixes" e "topology checks" (discutidos mais abaixo) e "**Geometry checks**" que é opção que testa a validade das features.

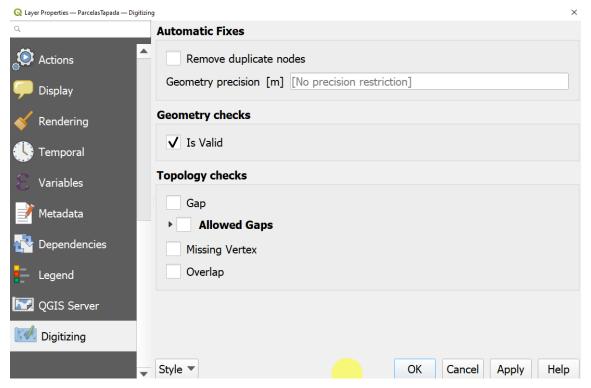


Figura 10: propriedade "Digitizing" da layer que permite verificar "em tempo real" se as features que estão a ser digitalizadas são válidas e/ou se verificam regras topológicas referentes a "gap", "overlap", "duplicate nodes", e "missing vertex.

Caso uma feature que esteja a ser digitalizada não respeitar as regras de validade, o QGIS indicará e explicará o erro para poder ser corrigido. Nesse caso, **não será possível salvar as modificações** na layer até o problema estar resolvido.

Ferramentas de edição e topologia: evitar "gap", "overlap" e outros erros 2.4.4

Para além do problema da validade de features, outras regras podem ser importantes para criar um cdg de boa qualidade, que representa correctamente a realidade e que pode ser utilizado para aplicações em SIGs.

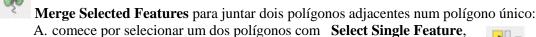
Tal como para a validade das features, há 2 estatégias possíveis, que serão deenvolvidas em seguida.

2.4.4.1 "Advanced digitizing"

A estratégia recomendada para aplicação de regras topológicas na criação de um novo cdg é preservar a topologia ao editar a layer. Esta estratégia passa por usar a opção de snapping, e outras opções disponíveis no menu de snapping (em particular, activar a edição topológica e a opção "avoid overlap"), e também por utilizar as ferramentas disponíveis em "Advanced Digitizing Toolbar".

é muito útil para criar uma nova feature do interior de uma Em particular, a ferramenta "Fill ring" feature já existente.

Reshape Features para, por exemplo, alterar um polígono: primeiro, clique no interior do polígono perto do ponto onde pretende adicionar o novo nó, depois adicione nós no exterior do polígono, para terminar clique no botão do lado direito do rato novamente no interior do polígono; também é possível retirar parte de um polígono iniciando a linha no exterior do polígono, adicionando nós no seu interior e terminando com um clique no botão do lado direito do rato novamente no exterior do polígono.


Add Part para criar um polígono multiparte / adicionar uma parte a um polígono multiparte: primeiro terá que selecionar o polígono a que pretende adicionar uma nova parte utilizando Select Single Feature.

Delete Part para apagar uma parte de um polígono multiparte: terá que clicar sobre um dos vértices da parte a apagar.

Add Ring para criar um polígono anel/ring/donut: comece por criar a fronteira exterior do polígono com

Add Feature, depois utilize Add Ring para criar a fronteira interior do polígono.

Delete Ring para criar um buraco no interior de um polígono, i.e. apagar o polígono interior de um polígono anel/ring/donut: terá que clicar sobre um dos nós da polígono interior a apagar.

B. selecione o segundo polígono pressionando a tecla [Ctrl] e,

simultaneamente, clicando sobre este com Select Single Feature;

C. depois registe os valores dos atributos do novo polígono.

Após a digitalização, e após associar uma legenda (ver Secção 1.4.7) e etiquetas (ver Secção 1.4.8) deverá ter um carta de ocupação do solo com um aspecto algo semelhante à carta seguinte:

Figura 11: Exemplo de carta temática do uso do solo da Tapada da Ajuda, com etiquetas correspondentes às classes de nível 2.

Uma forma alternativa de delinear as parcelas, sem digitalizar a fronteira mais do que uma vez, é criar uma nova feature com o modo "avoid overlap". Com essa opção desenha-se livremente a nova feature e o QGIS retira automaticamente as porções do polígono que se sobrepõem a features já existentes.

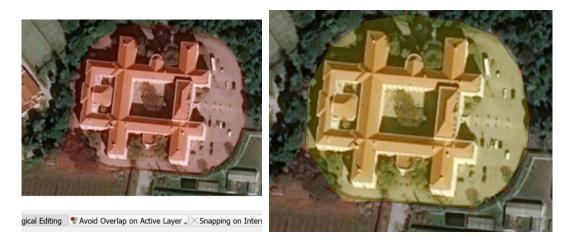


Figura 12: A opção "avoid overlap" retira automaticamente da nova feature (neste caso o Edifício Principal) a parte digitalizada (triângulo em baixo à esquerda) que já pertencia a uma feature existente.

Nesse caso pode criar uma nova feature com sobrepondo-a a uma feature vizinha já existente. Ao fechar o polígono, a aplicação QGIS remove automaticamente a região de sobreposição.



Figura 13: Novo exemplo de aplicação da opção "avoid overlap.

2.4.4.2 Identificar os problemas de topologia num cda para os poder corrigir

Caso o cdg já exista, ou caso esteja a ser criado, a ideia é identificar os problemas topológicos do cdg para poder depois editar e corrigir esses problemas. Existem duas formas principais de aplicar esta estratégia: a execução do plugin "topology checker" ou a propriedade "Digitizing" já discutida acima.

O plugin "topology checker" deverá já estar instalado em QGIS3 mas poderá não estar activado. Nesse caso deve activá-lo no local respectivo (menu **Plugins**) e o plugin fica disponível no menu **Vector**.

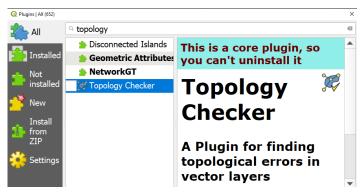
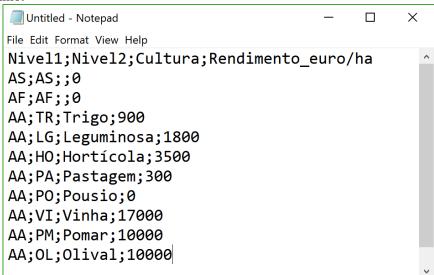


Figura 14: Activar o plug-in Topology Checker

Este plugin¹ permite então verificar a topologia de um cgd já existente. As opções disponíveis em "topology rule settings" são as da Figura 16. Depois de definir a ou as regras a aplicar pode testar-se a totalidade da(s) laver(s) ou apenas a zona visível

Figura 15: Escolha das regras topológicas no plugin Topology Checker.

¹ A aplicação do plug-in Topology Checker é descrita no video https://youtu.be/NtdmOhimU8Y.

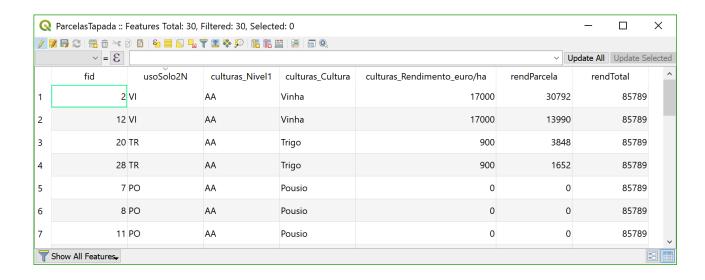

Em alternativa ao plugin "**topology checker**" pode usar-se o plugin "**Check geometries**" que também está disponível sob o nome "Geometry checker" e que também é colocado no menu "Vector" depois de activado. Este módulo tem mais opções do que o anterior dá a possibilidade de corrigir erros topológicos.

A interface da propriedade "**Digitizing**", ilustrada na Figura 10, é mais interactiva do que "Topology Checker" e permite também vários tipos de acções: (1) **Remove duplicate nodes** indica que o QGIS deve automaticamente remover vértices duplicados (que podem ocorrer por, por exemplo, se clicar duas vezes no mesmo ponto no decurso da digitalização); (2) **Geometry checks** discutida na Secção 2.4.3; (3) **Topology checks** indica que o QGIS deverá verificar as regras topológicas de existência de falhas "gaps" entre features, não coincidência dos vértices entre duas features que partilham alguma fronteira comum "missing vertex", ou sobreposição de features "overlap".

2.4.5 Criar uma tabela de dados não geográficos

- 1. Crie uma tabela simples de dados com as colunas "Nivel1", "Nivel2", "Cultura" e "Rendimento" com a informação indicada na tabela no início da Secção 2.4.
- 2. Pode criar esta tabela num programa exterior ao QGIS (por exemplo Excel, OpenOffice, Notepad), e guardá-la como ficheiro de texto com extensão **csv** ou **txt.**

Se criar no editor de texto Windows/**Notepad**, o aspecto do ficheiro criado pode ser como o exemplo abaixo, em que o separador é "ponto e vírgula". Salve com por exemplo nome "**Culturas.txt**" na sua pasta de trabalho.


3. Adicione esta tabela ao projeto com o botão como discutido na Secção 1.6.1 e faça o cruzamento de tabelas usando o atributo ocSolo2N do cdg ParcelasTapada.como na Secção 1.6.2

2.4.6 Funções \$area e sum

4. Calcule o rendimento total agrícola em euros na área considerada editando a tabela de atributos para determinar o rendimento de cada parcela (use a função **\$area** para obter a área de cada parcela). Finalmente pode usar a função **sum** exemplificada na Secção 2.2 para obter uma coluna da tabela com o valor do rendimento total em euros.

O resultado na tabela de atributos de Parcelas Tapada deverá ser algo como abaixo, em que o valor da variável **rendParcelas** é obtido como resultado da expressão

(\$area/10000)* "culturas_Rendimento_euro/ha":

3 Análise espacial sobre conjuntos de dados geográficos vectoriais

O exercício proposto consiste na determinação de regiões aptas à instalação de um equipamento de recreio no concelho de Cascais. Trata-se de um problema de zonagem.

3.1 Dados e descrição do problema

Os dados de entrada são cgd vetoriais relativos ao uso do solo (**UsoSolo**), solos (**CartaSolos**), classes de declives (**DeclivesClasses**), rede viária (**RedeViaria**), linhas de água (**LAgua**), e limites do concelho de Cascais (**LimConc**), e das tabelas **ProdS.csv** e **ProtRV.csv** disponíveis na pasta **CascaisIn** dos dados disponibilizados na página da UC. Pode verificar que o sistema de coordenadas associado aos dados tem como unidades metros, o que é relevante para a resolução do problema proposto.

Pretende-se encontrar zonas adequadas para a instalação de um parque de merendas no concelho de Cascais. Essas zonas têm que cumprir todas as condições seguintes:

Situar-se fora dos limites dos perímetros urbanos (definidas pelo conjunto das áreas ocupadas por habitação plurifamiliar Hp, habitação unifamiliar Hu, loteamentos L e zonas urbanas consolidadas Ca), áreas industriais (área de porto industrial Pi, areeiros ou pedreiras Ap), de equipamentos (grandes equipamentos Ge, instalações militares Im) e zonas costeiras (plano de águas marinhas e salinas Am e praia, costa rochosa e formações rochosas costeiras Pc); Deve também excluir as zonas não identificadas Ni.

Código	Descrição do Uso do Solo
Ap	Areeiros ou pedreiras
Нр	Habitação plurifamiliar
Im	Instalações militares
Ni	Não identificado
Am	Plano de águas marinhas e salinas
Ca	Zonas urbanas consolidadas
Pc	Praia, costa rochosa e formações rochosas
	costeiras
Pi	Área de Porto Industrial
Hu	Habitação unifamiliar
Iv	Terrenos inertes e vazios
A	Área agrícola
Fm	Áreas florestais e matos
M	Mato
Ge	Grandes equipamentos
L	Loteamentos

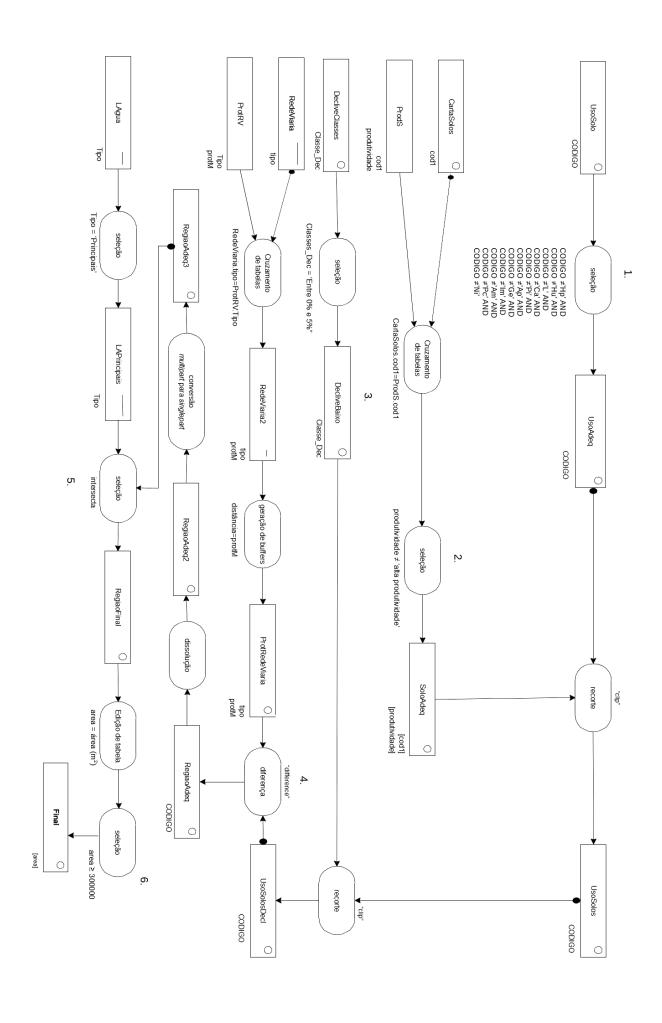
2. Não devem incluir solos de alta produtividade;

Os dados contém uma folha de cálculo **ProdS.csv** com extensão "csv" (comma separated values) que pode ser lido em QGIS. Na leitura Encoding deve ser **System** ou **ISO-8859-1** para ler caracteres portugueses (acentos, cedilhas...) como indicado na Secção 1.4.1.

COD1	produtividade
Rcg	Média produtividade
Ptc(d)	Média produtividade
Psn(d)	Baixa produtividade
Sba(h)	Alta produtividade
Sba	Alta produtividade
Sh(n)	Alta produtividade

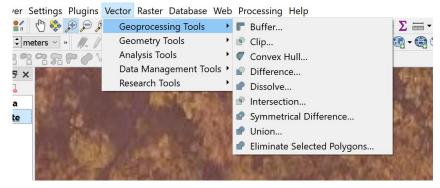
A tabela associa o código de classificação dos solos utilizado no cgd **CartaSolos** à classificação da sua produtividade (baixa, média ou alta). Assim, é necessário efectuar o cruzamento da tabela de atributos do cgd **CartaSolos** e da tabela **ProdS** através do atributo **COD1** que consta em ambas as tabelas tal como foi descrito na Secção 1.6.2.

- 3. Devem situar-se em terreno com pouco declive, isto é, com declives entre 0% e 5%;
- **4.** Devem estar afastadas das vias rodoviárias, de acordo com a distância definida no atributo **protM** da tabela **ProtRV**;

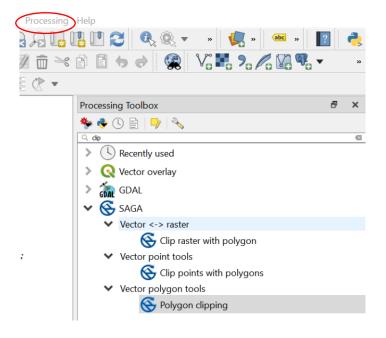

De acordo com a tabela **ProtRV** esta distância de proteção depende do tipo de via rodoviária. Assim, é necessário efetuar o cruzamento da tabela de atributos do cgd **RedeViaria** e da tabela **ProtRV** através do atributo **Tipo** que consta em ambas as tabelas.

- 5. Devem ser atravessadas por uma linha de água principal;
- **6.** Devem ter uma área igual ou superior a 30 hectares;

3.2 Representar uma resolução do problema com um diagrama de operações

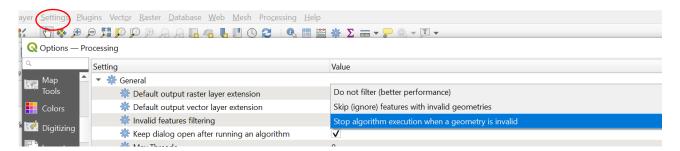

A forma recomendada para resolver um problema de análise espacial é estabelecer uma **sequência de operações** para resolver o problema. Essa sequência de operações pode ser descrita por um **diagrama** que representa cada operação, os atributos relevantes, o tipo de cdg de input (e a sua prioridade) e output, a operação a aplicar e os parâmetros dessa operação.

- 7. Analise e critique a solução para resolver o problema descrito acima que é apresentada no diagrama da página seguinte (cada número no diagrama corresponde aos critérios 1 a 6 enumerados acima). Em particular, justifique a necessidade das operações de dissolução e de conversão de tipo geométrico que são usadas para transformar **RegiaoAdeq** em **RegiaoAdeq3**.
- **8.** Para atingir o objetivo proposto, existem várias soluções alternativas. Em particular:
 - a. Sugira uma expressão lógica alternativa para definir a operação de "selecção por atributos" sobre o cgd **UsoSolo**.
 - b. Verifique que a operação de "intersecção" pode ser utilizada em alternativa às operações de "recorte" ("clip") no modelo. Compare a utilização de uma e outra operação.
- 9. Resolva o problema recorrendo à aplicação QGIS de acordo com o diagrama anexo e guardando todos os cdg que vai criar numa pasta diferente da CascaisIn (por exemplo, na pasta com o nome CascaisOut). Veja as sugestões na secção seguinte antes de tentar resolver o probelema.



3.3 Algumas operações de sobreposição vectorial e de restruturação de dados vectoriais

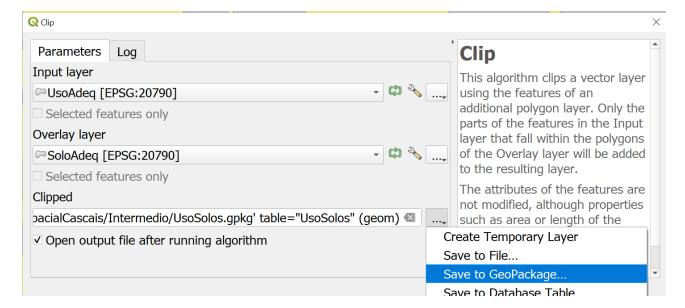
As operações de análise espacial necessárias estão disponíveis no menu "Vector":


O QGIS permite também usar operações de sobreposição espacial alternativa às ferramentas por omissão do QGIS, disponíveis através do menu "**Processing/Processing Toolbox**".

3.3.1 Features inválidas

Infelizmente, um dos problemas comuns em análise espacial de dados geográficos é trabalhar com conjuntos de dados geográficos com features inválidas (daí ser tão importante usar as ferramentas de edição discutidas na Secção 2.4.3 quando se cria nova informação geográfica).

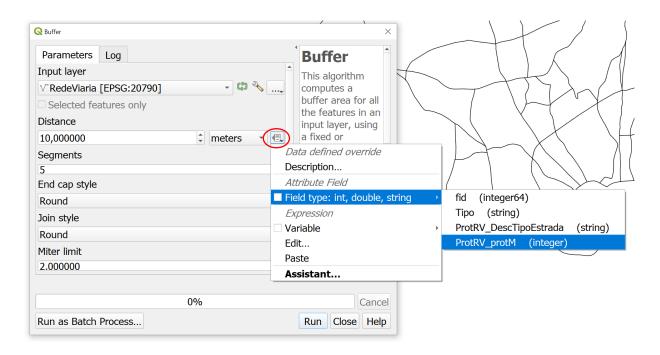
Por omissão, QGIS testa a validade dos objectos geométricos antes de aplicar operações de sobreposição vectorial e interrompe o processo se alguma feature é não válida. Embora seja aconselhado usar apenas geometrias válidas, essa opção pode ser alterada usando o menu abaixo em **Settings/Options/Processing**.



A opção "Skip (ignore) features with invalid geometries" exclui da análise as features não válidas, e por isso os resultados serão em geral diferentes dos que se deveriam obter se todas as features fossem válidas. Esta opção também está disponível em algumas das ferramentas de análise espacial.

Para identificar a existência de features inválidas e as causas para esses erros pode usar a função Vector/Geometry Tools/Check Validity ou então Check geometries (já referidas em 2.4.3). Os outputs dessas funções podem permitir identificar as features não válidas e a localização dos erros. Para ultrapassar os problemas causados por features inválidas, pode-se corrigir is erros editando a geometria das features inválidas identificadas com Vector/Geometry Tools/Check Validity: este é o procedimento recomendado, mas pode ser difícil e demorado. A funcionalidade Check geometries permite aplicar algumas regras que podem seer usadas para corrigir alguns dos problemas. Deve-se sempre trabalhar com cdg que passem o teste de validade das features.

3.3.2 Operação de recorte ("clip") e de intersecção


Recorte de um cdg A por um cdg B. Note que é uma operação em que a ordem dos inputs é relevante, pois apenas o atributos do cdg prioritário são preservados no output. Em alternativa pode ser usada a operação "Intersection" em que a ordem não é relevante, e que cria um output com todos os atributos de A e de B. O output da operação pode ser guardado como uma novo ficheiro ("GeoPackage" por omissão) na pasta de trabalho ou como um ficheiro temporário.

3.3.3 Operação de geração de "buffers"

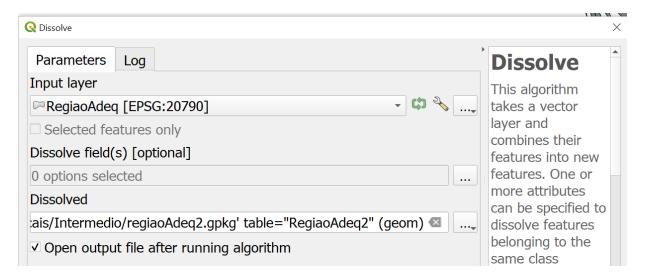
Para cada feature de input é criada uma feature de output que corresponde ao buffer determinado a partir da distância de buffer. Há duas possibilidades:

- a) A distância pode ser constante para todas as features; Neste caso basta escrever o valor de distância a usar na opção "Distance".
- b) A distância é dada pelo valor de um atributo. Neste caso o uso da ferramenta "buffer" deve ser feito da forma seguinte:

No caso do exercício, pode escolher-se a opção "dissolve result" de "Buffer" para fundir todos os buffers gerados numa feature única.

3.3.4 Operação de diferença

Na figura abaixo mostra-se a interface da ferramenta SAGA Difference (acessível em "Processing toolbox"). Como foi dito atrás, esta ferramenta é uma alternativa à função QGIS Difference É de notar que o output desta ferramenta é em formato "shapefile".


3.3.5 Operação de dissolução

A operação de dissolução é permite eliminar a fronteira entre features adjacentes e agrupar todas as features numa única feature (que é tipicamente "multipart"). Pode ser realizada

b) uma dissolução total que não tem em conta os atributos do cdg, ou

c) uma dissolução por atributo (ou atributos) em que apenas features com o mesmo valor do atributo são dissolvidas.

A ferramenta de dissolução SAGA para dissolução total ("All polygons") cria um novo cdg em formato "shapefile" com uma única feature:

3.3.6 Operação de conversão "multipart" para "singlepart"

O resultado da operação anterior é um cdg "multipart" com uma única feature. Para desagregar essa feature em features **espacialmente conexas** é necessário usar uma ferramenta que altera o tipo geométrico de "multipart" para "singlepart" disponível no menu Vector/Geometry Tools.

3.4 Solução do exercício

Figura 16 ilustra a parte final da resolução, mostrando o cdg **RegiaoFinal_** e a selecção (a amarelo) das zonas espacialmente conexas que têm área superior a 30 ha, sobre um mapa de fundo "ESRI topo" (ver Secção 2.1).

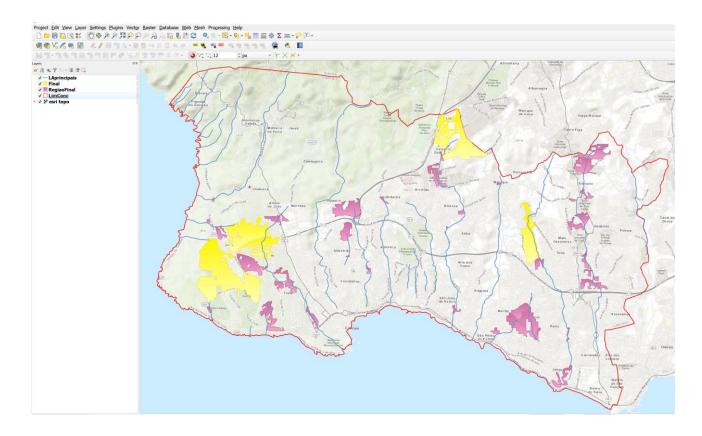


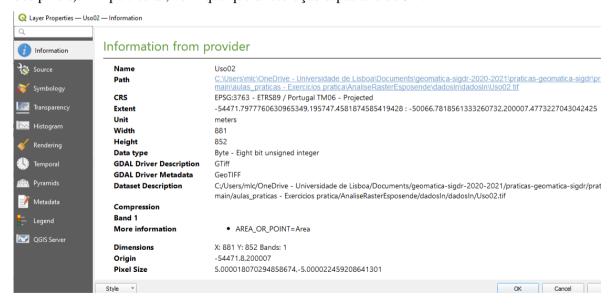
Figura 16. Solução do exercício de análise espacial sobre dados vectoriais, onde se mostram as 5 zonas que satisfazem os critérios 1 a 5 do enunciado do problema de zonagem e a. selecção das zonas com área superior a 30 ha (a amarelo), que corresponde ao 6° e último requisito.No fundo é apresentado um mapa "ESRI topo" da região em torno do Concelho de Cascais.A azul são indicadas as linhas de água principais

4 Análise de dados matriciais (raster) e conversão vectorial/matricial

4.1 Dados para o exercício

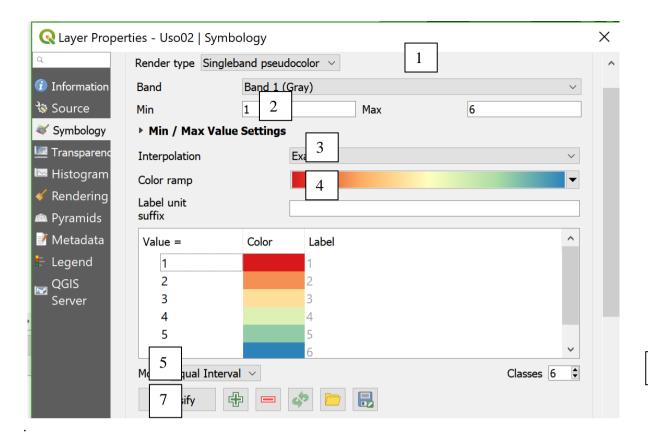
O cdg vectorial do tipo "polígono" **freguesias_litoral_norte** representa as freguesias existentes na área de estudo;

O cdg vectorial de polígonos **Solo** representa o tipo de solo. O significados dos valores do atributo codigo (que podem ser 1,2,3,4,5) encontram-se na tabela **SoloTipo**. Se quiser criar uma legenda para o cdg vectorial **Solo** baseada nos valores do atributo **tipoSolo** que se encontra na tabela **SoloTipo**, terá que executar uma operação de cruzamento de tabelas tal como foi descrito na Secção 1.6.2. No final, o cdg **Solo** terá uma coluna adicional que indica o tipo de solo: Arenossolo, Social, Duna, Cambissolo ou Fluvissolo.


Os cdg matriciais **Uso90**, **Uso02** e **Uso03** representam os tipos de uso do solo nos anos de 1990, 2002 e 2003, respectivamente, tomando em cada pixel valores entre 1 e 9; os nomes dos tipos tipo de uso correspondentes constam da tabela **UsoClassif**.

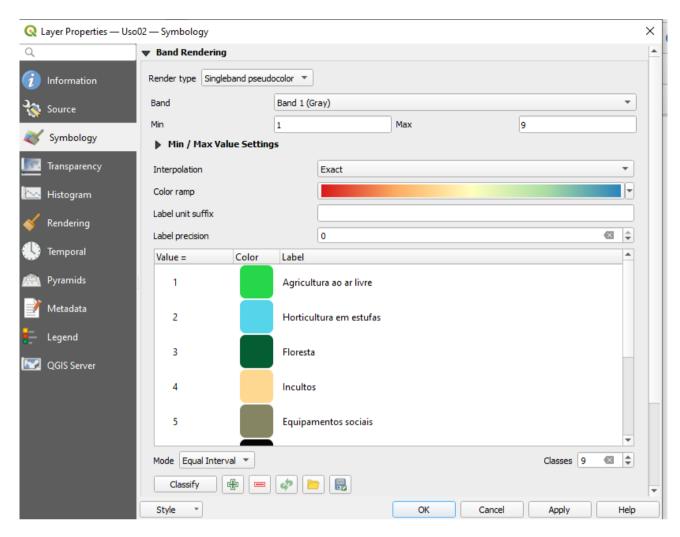
NOTA: a designação do tipo de uso de solo "<u>Agricultura ar livre</u>" usada em 1990 e 2002, em 2003 passou a ser "Agrícola hortícola".

4.2 Criação e manipulação de legendas para dados matriciais

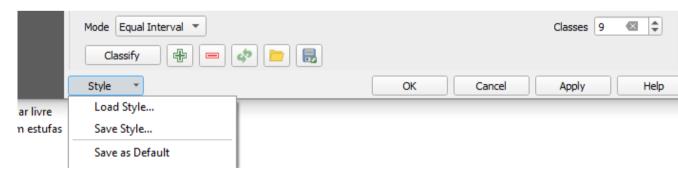

Parte dos procedimentos discutidos nesta secção já foram introduzidos na Secção 1.4.9 e na Secção 1.4.11 mas serão agora mais desenvolvidos.

1. Analise a informação disponibilizada no cdg **Uso02**. Verifique as características destes cdg tais como o número de linhas e de colunas da imagem, o sistema de referência das coordenadas, a dimensão das células nas unidades deste mesmo sistema (resolução espacial) e o tipo dos valores dos pixels). Em particular, verifique que a resolução espacial é de 5m.

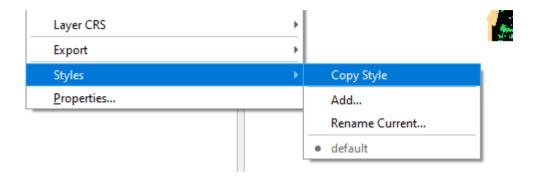
2. Crie uma legenda com cores pré-definidas para a imagem:


3. Crie de uma legenda comum a diversos cdg matriciais: Dado que existem 9 classes de ocupação do solo, comuns aos anos 1990, 2002 e 2003, numeradas de 1 a 9, e com valores "Agricultura ar livre", ..., "Agrícola Hortícola" como indicado na tabela UsoClassif, é útil construir uma legenda com 9 classes, e com cores apropriadas, que possa ser usada para esses três conjuntos de dados.

Neste exemplo, mostra-se como fazer com a opção "Singleband pseudocolor", embora também se possa em alternativa escolher a opção "Palette/Unique values" em que, como o nome indica, se escolhe uma cor e uma etiqueta para cada valor do raster.

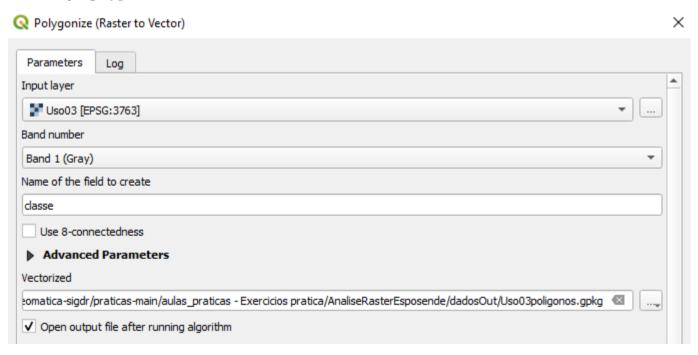

A escolha do modo de interpolação de cores ("Interpolate") com "Singleband pseudocolor" dá as três seguintes possibilidades, explicadas na documentação do QGIS:

<< The shader maps the colors as specified by its color map. The color map is provided as a list of items with pixel value and its associated color. There are three modes of interpolation of values:

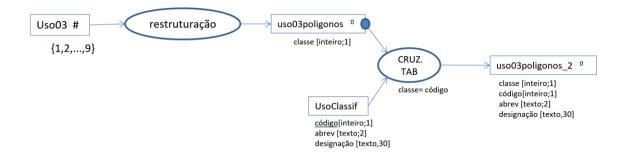

- linear (INTERPOLATED): resulting color is linearly interpolated from the color map entries above and below the actual pixel value
- discrete (DISCRETE): color is used from the color map entry with equal or higher value
- exact (EXACT): color is not interpolated, only the pixels with value equal to color map entries are drawn>>

Na parte inferior da mesma janela tem a opção de salvar a legenda. Se usar "save as default" a legenda será guardada num ficheiro com o mesmo nome do cdg (Uso02) do tipo "QGIS Layer Style file" e terá extensão qml. Existindo o ficheiro qml, este será usado automaticamente para definir a legenda quando carregar o cdg em QGIS.

4. A legenda pode ser facilmente copiada para outros cdg matriciais para que os três anos (1990, 2002 e 2003) tenham a mesma legenda. Usando o botão "style" como no exemplo acima (1°. Load Style; 2° Save as Default) ou pode simplesmente fazer *copy style/paste style* da legenda de um cdg para outro usando o menu direito da layer.



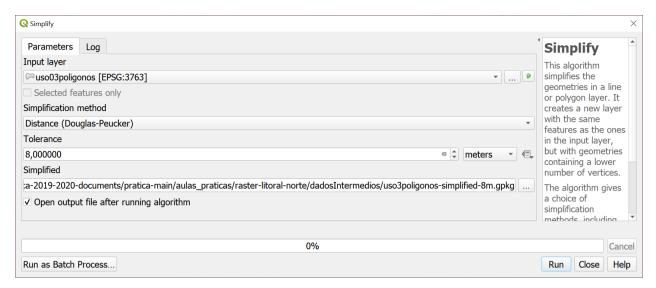
5. Depois de ter estabelecido a legenda comum aos cdg Uso90, Uso02 e Uso03, verifique viusualmente que houve um grande aumento na área de "Horticultura de estufas" e de "Urbanização" entre os anos 1990 e 2002, e a diminuição na área de Floresta. Recorde que a designação do tipo de uso de solo "Agricultura ar livre" usada em 1990 e 2002, em 2003 passou a ser "Agrícola hortícola", o que origina uma alteração muito evidente da legenda da carta.


4.3 Restruturação de "raster" para formato vectorial com "polygonize"

No exercício acima foi necessário construir manualmente a legenda dos cdg matriciais. No entanto, a informação para a legenda já está disponível na tabela **UsoClassif**. Como visto na Secção 1.6.2 os nomes do tipos de uso do solo poderiam ser adicionados ao cdg dos usos do solo fazendo um cruzamento de tabelas se o cdg de uso do solo estivesse em formato vectorial.

6. Converta o cdg **Uso03** de formato matricial (com resolução de 5 metros) em formato vectorial com a função **polygonize** no menu Raster/Conversion.

7. Complete as operações no diagrama seguinte, e no final use o cdg **uso03poligonos_2** para construir uma carta de uso do solo com a legenda correspondente ao atributo **designação**.


8. Observação importante (validade do resultado da operação "polygonize"): no exercício acima, a função de restruturação dos dados "polygonize" foi usada para obter um cdg vectorial. No entanto, esta função pode dar origem a um cdg vectorial que não passa o teste de validade "check validity" (ver Secção 2.4.3), dado que na conversão de pixels para polígonos poderem surgir linhas intersectadas ("self intersection"). Caso o teste "check validity" identificar features não válidas, essas features deverão ser corrigidas antes de serem aplicadas operações de análise espacial. No exercício acima isso não é um problema pois o "cruzamento de tabelas" não é uma operação espacial.

Suponha que pretende determinar os locais da freguesia de Estela (formato vectorial) em que o uso do solo em 2003 foi "Agrícola hortícola" (formato raster) e o tipo de solo é Arenossolo (formato vectorial).

Há duas estratégias possíveis:

(A) converter **uso03** para vectorial e aplicar operações de selecção por atributos (ver Secção 1.5.1) e de sobreposição vectorial (ver Secção 3.3.2). O problema que vai encontrar é que o cdg **uso03poligonos** vai de apresentar problemas de validade (48 casos de "self-intersection) e terá que corrigir esses problemas. Pode editar o cdg para resolver os erros, mas o processo é delicado e muito trabalhoso,

Em alternativa, é possível alterar automaticamente a geometria de **uso03poligonos** para resolver os problemas: isso pode ser feito com a função **Vector/Geometry tools/Simplify** em que se escolhe uma distância de simplificação um pouco maior do que a resolução espacial de **uso03** (que é 5 m), por forma a obrigar a que as linhas não se encontrem na intersecção dos pixels. Neste exemplo, **Simplify** aplicado a **uso03poligonos** devolve de facto um cdg vectorial que é uma boa aproximação a **uso03** que pode ser usado para resolver o problema de forma vectorial.

O output de simplify, aqui designado pro **uso03poligonos-simplified-8m** passa o teste de validade das features "check validity" e constitui uma solução razoável para obter uma carta vectorial do uso do solo.

(B) Converter os cdg vectoriais de Freguesias e Solo para formato raster, e encontrar a solução do problema usando operações sobre rasters (ver abaixo). Para esse tipo de abordagem, é útil usar a função "align rasters", discutida na Secção 6.4.3

4.4 Restruturação vectorial para "raster", reclassificação e sobreposição matricial

4.4.1 Exercício: calcular índice de risco de poluição com nitratos

Pretende-se criar uma carta de risco de poluição com nitratos com base no uso de solo em 2003 e no tipo de solo. Os factores de risco estão associados ao tipo de uso e ao tipo de solo, e são hierarquizados conforme apresentado no quadro (em que o valor mais elevado corresponde a maior risco).

Uso do solo	código	Factor
Horticultura de estufas	2	5
Agrícola hortícola	9	4
Agrícola arvense	8	3
Agricultura ar livre	1	2
Urbanização	6	2
Equipamentos sociais	5	2
Floresta	3	1
Incultos	4	1
Corpos de água	7	0

Tipo de solo	Codigo	Factor
Arenossolos	2	4
Dunas	5	4
Fluvissolos	3	3
Cambissolos	4	2
Social	1	1

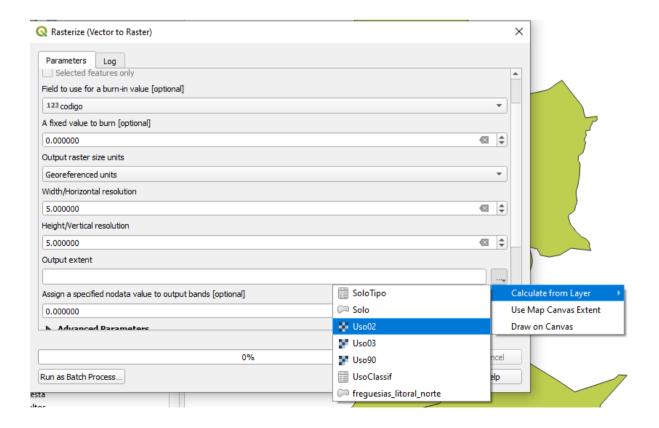
Tabela 1 Factores de risco de poluição com nitratos em função do uso do solo e do tipo de solo

O índice de risco de uma determinada área deve ser calculado pela fórmula:

índice de risco = $0.6 \times factor$ uso do solo+ $0.4 \times factor$ tipo de solo

4.4.2 Restruturação de formato vectorial para formato matricial ("raster")

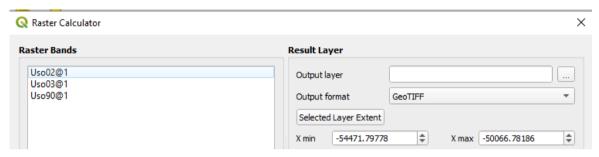
O formato matricial é bem adaptado para resolver este tipo de problemas pois permite efectuar rapidamente cálculos "pixel a pixel". Como o cdg **Solo** está em formato vectorial, o primeiro passo consite em criar um cdg matricial com a informação dos solos.


9. Converta o cdg Solo para formato matricial com uma resolução espacial de 5 metros usando a função **rasterize** no menu **Raster/Conversion**.

Se não forem definidos valores para a extensão do raster (limites superior, inferior, esquerdo e direito), a função rasterize cria um raster com uma extensão rectangular, com os lados passando nos pontos mais extremos dos objetos vectoriais representados. Os pixels das regiões do rectângulo que contêm objectos vectoriais registam o respectivo valor do atributo escolhido para obter o raster. Os pixels das regiões do rectângulo que não contêm objectos vectoriais registam um valor definido para *nodata*. Neste caso, vamos explicitamente criar um raster com a mesma extensão que o raster Uso02.

Esta operação é descrita pelo seguinte diagrama.

Por omissão é criado um ficheiro de output em formato GeoTIFF que é o formato mais comum para cgd do tipo raster. A extensão do raster criado poderá ser desenhada sobre a imagem, ou importada do conjunto de dados a restruturar como neste exemplo.



4.4.3 Operações de reclassificação e sobreposição matricial

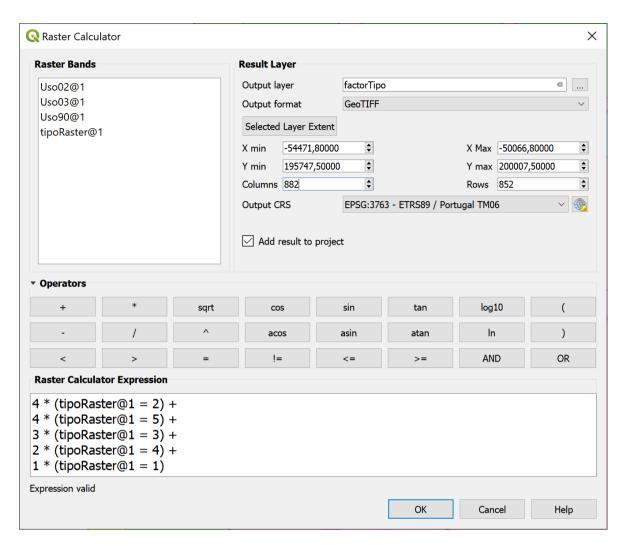
O QGIS permite efectuar de forma rápida cálculos ao nível do pixel. Existem dois tipos de operação que diferem no número de inputs:

- a) Reclassificação: quando há um único input
- b) **Sobreposição matricial**: quando há dois ou mais inputs, tendo todos os inputs o mesmo sistema de coordenadas de referência (CRS), extensão e resolução espacial.

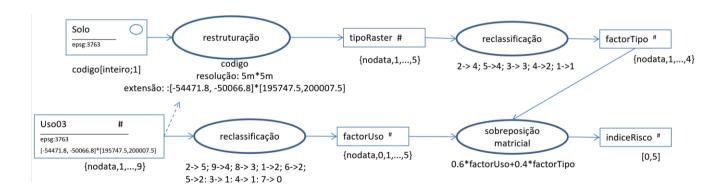
Em QGIS ambos os tipos de operações são realizadas usando a ferramenta "Raster Calculator" do menu Raster.

10. Reclassificar os valores de **tipoRaster** (índices de tipo de solo) em valores do factor de risco associado ao tipo de solo de acordo com a Tabela 1. A reclassificação é realizada usando uma expressão artimética que é aplicada a todos os pixels do "raster" **tipoRaster**. O sufixo @1 indica que se trata da primeira "banda" de **tipoRaster** (neste caso só há uma "banda" mas em geral um raster pode representar uma imagem com várias bandas).

```
4 * (tipoRaster@1 = 2) +

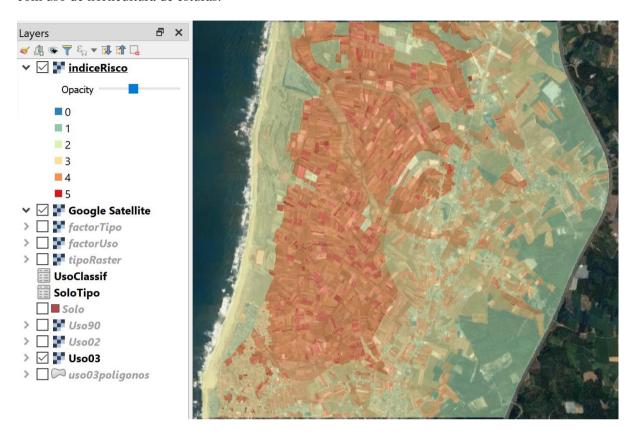

4 * (tipoRaster@1 = 5) +

3 * (tipoRaster@1 = 3) +


2 * (tipoRaster@1 = 4) +

1 * (tipoRaster@1 = 1)
```

A expressão acima converte os valores na condição à direita (índice do tipo de solo) nos valores à esquerda (factor), realizando assim a reclassificação.


11. Aplique as operações do diagrama abaixo para determinar a carta de risco de poluição com nitratos para 2003. A operação de sobreposição matricial também é realizada em "Raster calculator" usando dois inputs na expressão aritmética.

4.4.4 Solução do exercício e regulação de transparência na carta

Nas propriedades de "layer" pode ser adicionado um botão de regulação de transparência que é particularmente útil quando se pretende observar várias cartas sobrepostas (ver Secção 1.4.10).

O resultado do exercício deverá ser uma carta de índice de risco que deverá tomar valores entre 0 e 5, dado que se trata de uma soma ponderada de factores com valores entre 0 e 5, com coeficientes de ponderação positivos que somam 1 (0.6 e 0.4). As zonas de maior risco localizam-se em arenossolos com uso de horticultura de estufas.

4.5 Exercício sobre quantificação da alteração do solo

Pretende-se obter um cdg que represente as variações da área de floresta entre 1990 e 2002. Adicionalmente, pretende-se determinar a área (em ha) perdida de floresta entre 1990 e 2002.

- 12. Escolha a ou as operações que lhe permitem criar um novo cdg matricial em que o valor final da célula é 1 (se há floresta em 1990 e 2002), 2 (se há floresta em 1990 mas não em 2002), 3 (se não há floresta em 1990 mas há em 2002) ou 4 (se não há floresta nem em 1990 nem em 2002). Note que em **Raster calculator**, para representar o operador relacional ≠ (diferente) o símbolo a utilizar é !=.
- 13. Para determinar a redução de área de floresta, converta o cdg *raster* para vectorial, e efetue uma operação de dissolução (ver Secção 3.3.5) seguida de um cálculo de áreas (ver Secção 2.4.6).

4.6 Interpolação espacial

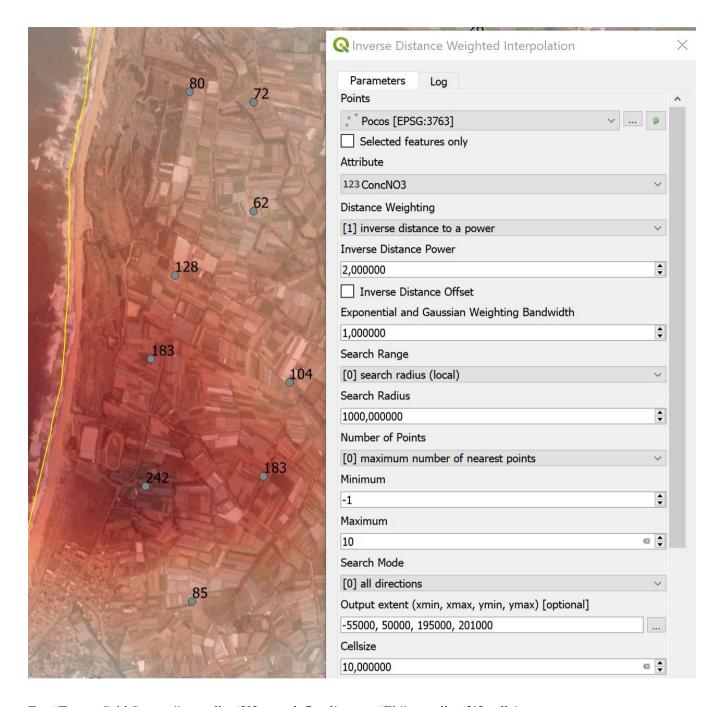
4.6.1 Problema e dados

O cdg vetorial de linhas **AquiferoLim** representa o limite dum aquífero freático. O cdg vetorial de pontos **Pocos** representa a localização de poços no aquífero, com a respetiva concentração de nitratos, expressa em mg/L, no atributo **concNO3**. Sugestão pode criar etiquetas para o layer **Poços** com o valor da respetiva concentração de nitratos para visualizar melhor a distribuição espacial de valores.

Considere o problema de obter, a partir dos valores de concentração de nitratos (NO3) nos poços, estimativas da concentração de nitratos na água subterrânea para todos os locais do aquífero pelo método de interpolação IDW (ponderação inversamente proporcional à distância).

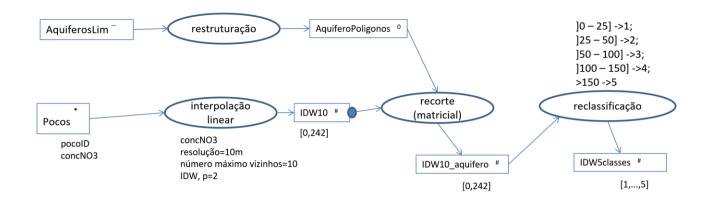
4.6.2 Interpolação espacial com IDW (inverse distance weighted interpolation)

O método de interpolação IDW baseia-se num conjunto de dados vetoriais de tipo ponto para gerar uma superfície em formato matricial (raster). O valor estimado da variável (neste caso, concentração de nitratos) em cada pixel v, é dado por uma combinação linear convexa dos valores nos pontos: $v=\Sigma ci'vi$, em que os coeficientes são $ci'=ci/\Sigma ci$ (para a soma dos ci' ser 1) com ci=(1/di) elevado a p, em que os di são as distâncias aos pontos de input, e os vi são os valores (das concentrações) nos pontos. O expoente p ("power" na função IDW) permite ajustar os pesos.


Existem várias funções de interpolação disponíveis em QGIS. A função disponível no menu Raster/Analysis não permite definir a extensão da imagem a criar (criar sempre o menor rectângulo que inclui os pontos a interpolar). Para poder definir essa extensão explicitamente, pode usar-se em alternativa a a função **SAGA/Inverse Distance Weighted Interpolation** em **Processing Toolbox.** A função depende de uma série de parâmetros que podem ser escolhidos. O parâmetro principal é o expoente da distância ("inverse distance power") que por omissão toma o valor p=2.

- 14. Use a função indicada (**SAGA/Inverse Distance Weighted Interpolation**) para interpolar os valores de concentração de NO3 pela região de estudo. Pode ver um exemplo de escolha de parâmetros na figura abaixo.
- 15. Execute de novo esta operação mas com valores diferentes dos parâmetros Power, Radius e número máximo de pontos. Compare os resultados e interprete as diferenças em função dos valores que atribuíu a estes 3 parâmetros.

O resultado (IDW10 no diagrama abaixo) pode agora ser restrito à área terrestre, usando o contorno dado pelo cdg AquiferosLim disponível nos dados de input. Mas é necessário fazer primeiro uma conversão de AquiferosLim que é do tipo "linha" em AquiferosPoligono, do tipo "polígono", que pode ser feito no menu **Vector/Geometry Tools/Lines to Polygons**. O recorte matricial está no menu **Raster/Extraction/Clip Raster by Mask Layer.**


- 16. Reclassifique o cdg matricial que obteve pelo método IDW de forma a obter um novo cdg matricial com valores inteiros (1, 2, ..., 5) representativos das 5 classes de concentração seguintes:]0-25];]25-50];]50-100];]100-150]; >150.
- 17. Crie uma legenda adequada ao cdg matricial criado por este método.

A figura seguinte ilustra a interface da função de interpolação e uma possível gama de cores para apresentação dos resultados. O mapa é colocado sobre uma imagem de muito boa resolução espacial Google Satellite como explicado na Secção 2.1.

Em "Target Grid System", escolha '[0] user defined', e em "Fit", escolha '[1] cells'.

O conjunto de operações a realizar pode ser descrito pelo seguinte diagrama de operações, em que o recorte matricial é usado para recortar a parte to cdg matricil IDW10 pelo contorno de AquiferosLim, que tem previamente que ser convertido em polígonos.

5 Sistemas de coordenadas de referência e projecções

5.1 Dados para o exercício

- A. cdg VerticeSesimbra_ETRS89 com uma feature "ponto" representa a posição do vértice geodésico de Sesimbra (datum ETRS89, longitude: -9.106779778°; latitude: 38.45279864°
- B. cdg de estradas do Concelho de Sesimbra Estradas Sesimbra HGLx102164

5.2 Sistema de coordenadas de referência (CRS) do projecto QGIS

Em QGIS inicie um novo projecto. No fundo da aplicação, a Status bar deverá ter o seguinte aspecto:

- 1. Verifique que o QGIS define para CRS do novo projecto o que tem código EPSG:4326. O código EPSG resulta de uma classificação de CRS para todo o globo fornecida pelo European Petroleum Survey Group.
- 2. Se clicar sobre o CRS do projecto obtem a seguinte janela que permite alterar o CRS do projecto e que permite observar a descrição do CRS corrente:

O CRS EPSG:4326 é o sistema de coordenadas geográfico de uso mais comum. As suas coordenadas são longitude (que varia entre -180 graus e 180 graus) e latitude (que varia entre -90 graus e 90 graus) como indicado na extensão do CRS indicado na janela acima. A descrição

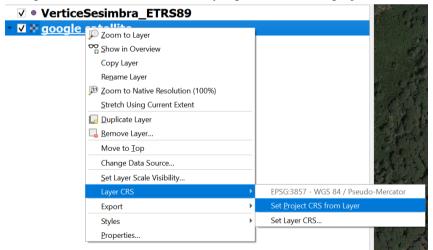
EPSG 4326: +proj=longlat +datum=WGS84 +no_defs.

indica que a projecção de coordenadas geográficas para coordenadas planares consiste simplesmente em usar os valores de longitude no eixo dos x e de latitude no eixo dos y, e que a longitude e latitude são definidas para um referencial elipsoidal para a o globo terrestre designado WGS84 (é o referencial adoptado universalmente). Em particular, as coordenadas obtidas por aparelhos de GPS correspondem a esse referencial.

5.3 Sistema de coordenadas de referência (CRS) do projecto e do conjunto de dados geográficos

3. Adicione o cdg **VerticeSesimbra_ETRS89** que representa a posição do vértice geodésico de Sesimbra (datum ETRS89, longitude: -9.106779778°; latitude: 38.45279864°). Verifique nas propriedades do layer, em General, que o CRS do layer é EPSG:4258, conhecido como ETRS89. É também um sistema de coordenadas de longitude e latitude, com coordenadas em graus:

O datum ETRS89 é, do ponto de vista prático, idêntico ao datum WGS84 e por isso os valores de transformação de datum +towgs84, usados pelo CRS são todos nulos e os valores de longitude e latitude em WGS84 são iguais aos de ETRS89.


Note que ao adicionar esse cdg ao projecto, o CRS do projecto foi automaticamente alterado para o CRS esse novo cdg (EPSG: 4258). *QGIS por omissão selecciona o CRS do projecto como sendo o CRS do primeiro conjunto de dados adicionado a um projecto novo*. Mas o CRS do projecto pode ser alterado em qualquer altura.

4. Adicione uma imagem de muito boa resolução como explicado na Secção 2.1, como por exemplo uma imagem de satélite Google e faça zoom out para ver o vértice geodésico na imagem.

Altere o sistema de coordenadas do projecto para ser o sistema de coordenadas da imagem de alta resolução Bing ou Google, que é EPSG:3857 (WGS84/Pseudo-Mercator, usada pelas cartas Google, Bing, etc), faça essa alteração como indicado na Secção 5.2 e confirme que a descrição do CRS é:

EPSG 3857: +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs

Alternativamente, pode usar o menu direito do layer para associar ao projecto o CRS do layer.

É um sistema de coordenadas em metros. A projecção de coordenadas subjacente² induz distorções importantes nas distâncias mas preserva aproximadamente a forma.

² A projecção cartográfica usa duas representações geográficas do globo: as coordenadas de origem são coordenadas WGS84 sobre o elipsoide de referência, mas a projecção assume que essas coordenadas são sobre uma esfera com raio = 6378137 m, e utiliza uma projecção de Mercator (sobre um cilindro vertical). O parâmetro +nadgrids=@null acima assegura que a longitude e latitude não são alteradas quando as coordenadas WGS84 são convertidas em coordenadas sobre a esfera. O parâmetro +wktext assegura que o parâmetro +nadgrids é preservado sob GDAL/OGR (ver https://proj4.org/faq.html#changing-ellipsoid-why-can-t-i-convert-from-wgs84-to-google-earth-virtual-globe-mercator). A coordenada rectangular X refere-se à distância a um meridiano próximo de Geenwich, medida ao longo do Equador; e a coordenada Y refere-se à distância ao Equador. Esta projecção (Pseudo-Mercator) não deve ser utilizada directamente

- 5. Verifique que o vértice geodésico de Sesimbra, que tem coordenadas expressas em longitude e latitude, é representado no sistema EPSG:3857, com coordenadas em metros X= -1013762.09 m; e Y= 4643590.04 m (distância ao Equador). Para obter valores aproximados (pois dependem da posição do cursor) das coordenadas pode:
 - a. Colocar o cursor sobre o ponto e observar as coordenadas na caixa respectiva
 - b. Activar o plugin "coordinate capture" no menu "Plugins". Essa função fica então disponível no menu "Vector". Dessa forma obtêm as coordenadas geográficas e cartográficas no CRS do projecto para esse ponto.

Nas seguintes alíneas vamos seguir o seguinte diagrama de operações para ilustrar alguns aspectos importantes da transformação de coordenadas em QGIS.

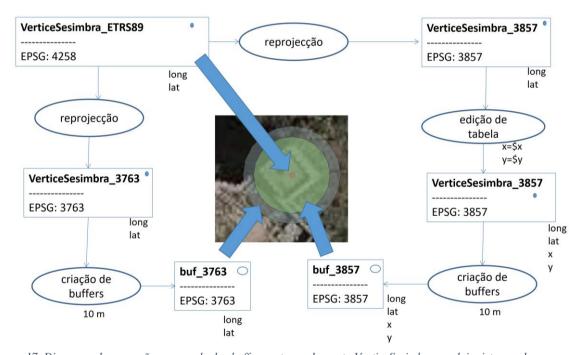
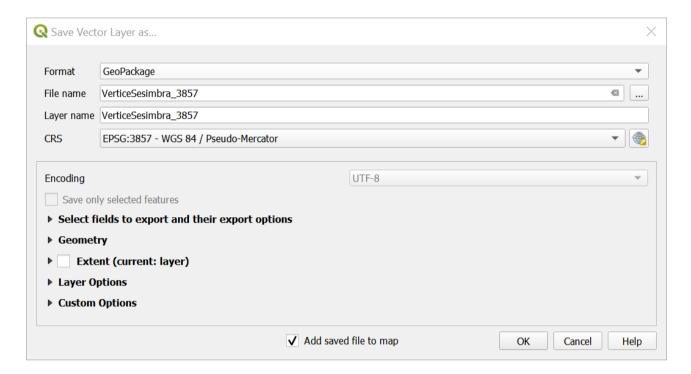
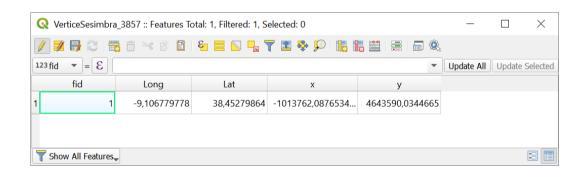



Figura 17. Diagrama de operações para calcular buffer em torno do ponto VerticeSesimbra em dois sistemas de coordenadas de referência distintos, um com distorções muito pequenas (epsg:3763) e outro com grandes distorções nas distâncias entre pontos (epsg:3857).


para o cálculo de distâncias e áreas. Os erros nas áreas à latitude e/longitude de Portugal é da ordem dos 60%. A adopção generalizada do EPSG:3857 globalmente deve-se ao facto de a transformação de coordenadas geográficas WGS84 em coordenadas rectangulares ETRS:3858 (e vice-versa) ter expressões matemáticas muito simples como descrito no seguinte link: https://alastaira.wordpress.com/2011/01/23/the-google-maps-bing-maps-spherical-mercator-projection/). Mais precisamente, x=6378137*pi*Long /180 (m) e y=6378137*ln(tan((pi/4)*(1+Lat/90))) (m), sendo Long e Lat coordenadas WGS84 expressas em graus.

5.4 Reprojectar cdg num novo sistema de coordenadas de referência

Esta é uma operação muito comum em SIGs: o QGIS pode ser usado como um "conversor de coordenadas", simplesmente salvando um conjunto de dados geográficos no novo sistema de coordenadas de referência pretendido. Para salvar **VerticeSesimbra_ETRS89** num novo cdg designado **VerticeSesimbra_3857**, deve fazer-se "Export" no menu de layer e escolher o novo CRS

Pode verificar quais são as coordenadas do ponto no novo CRS (EPSG:3857) calculando as coordenadas com as funções **\$x** e **\$y** que devolvem as coordenadas. Essa operação é realizada na tabela de atributos como explicado na Secção 1.6.3.

5.5 Possíveis distorções nas distâncias na criação de buffers

Algumas funções de QGIS (como a criação de buffers) usam as coordenadas do cdg para determinar distâncias. Isso é problemático quando as coordenadas sofrem uma distorção significativa como é o caso para o CRS EPSG:3857. Por isso em geral, é recomendado reprojectar todos os cdgs para um sistema de coordenadas de referência comum com distorções reduzidas de coordenadas, como é

o caso do CRS EPSG:3763 para Portugal Continental. O procedimento usando "Export" para salvar um cdg num novo CRS está descrito na Secção 5.4.

6. Tal como fez na Secção 5.3, crie uma nova cópia do cdg **VerticeSesimbra_ETRS89** chamada **VerticeSesimbra_3763**, com CRS EPSG:3763 (sistema de coordenadas oficial de Portugal).

Nesta altura, deve ter 3 cópias do cdg do vértice topográfico: **VerticeSesimbra_ETRS89** (coordenadas longitude, latitude) **, VerticeSesimbra_3857** (coordenadas em metros), e finalmente **VerticeSesimbra_3763** (coordenadas e em metros no sistema de coordenadas de referência oficial de Portugal Continental).

- 7. Crie um buffer de 10 m de **VerticeSesimbra_3857** e designe-o por **buf_3857**;
- 8. Crie um buffer de 10 m de VerticeSesimbra_3763 e designe-o por buf_3763;
- 9. Verifique que, embora os pontos tenham a mesma localização, **buf_3763** é maior do que do **buf_3857**. Se usar a ferramenta de medição verá que **buf_3763** está correcto mas que **buf_3857** é na realidade um buffer com raio de 7.78 metros (ver Figura 18). O problema é que o sistema de coordenadas EPSG:3857 cria grandes distorções nas distância às latitudes de Portugal Continental onde 10 m em EPSG:3857 é apenas 7.78 m à superfície. A ferramenta "buffer" usa o CRS do próprio conjunto de dados e por isso dá resultados que variam com o CRS.

5.6 Cálculo correcto de distâncias e áreas em QGIS com ferramenta "measure"

No entanto, algumas operações que envolvem distâncias, como o uso da ferramenta "Measure" ou o cálculo de \$area e \$length, não dependem do CRS.

10. A ferramenta "Measure" , e as funções \$area e \$length

A ferramenta "Measure" permite calcular correctamente distâncias e áreas sobre a carta, independentemente do CRS do cdg.dado que QGIS converte as coordenadas rectangulares (x,y) para coordenadas elipsoidais e **determina distâncias e áreas correctamente** sobre essas coordenadas.

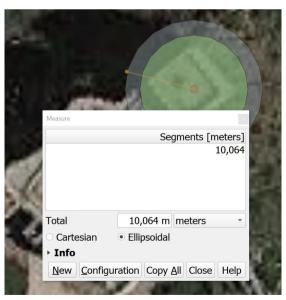
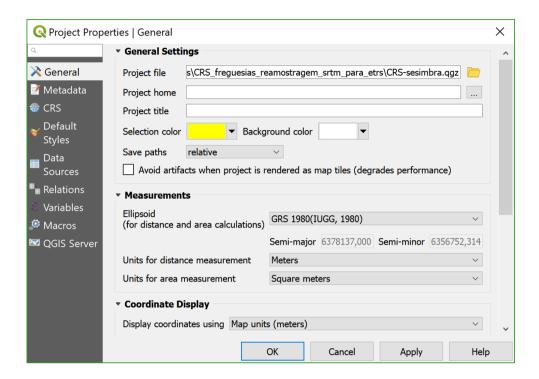



Figura 18: Independentemente do CRS do projecto ou do layer, a ferramenta "Measure tool" calcula por omissão as distâncias sobre o elipsoide, e mede portanto a distância correcta sobre a superfície.

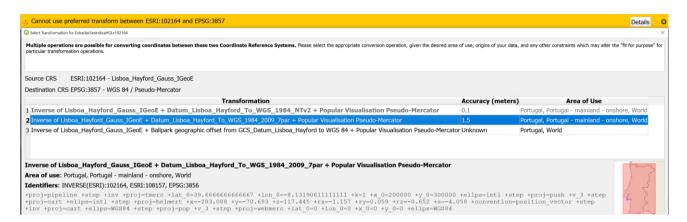
Por omissão, o elipsoide de referência considerado para os cálculos de distâncias e áreas é o **elipsoide do CRS do projecto**, que pode ser escolhido nas propriedades do projecto (GRS 1980 neste caso):

- 11. Confirme que o projecto tem coordenadas EPSG:3857. Procure na proximidade do vértice geodésico de Sesimbra o ponto de
 - coordenadas geográficas long=9.11771,lat=38.45079, ou, equivalentemente,
 - coordenadas rectangulares EPSG: 3857 (-1014978.728,4643304.746) onde está localizado um **campo de futebol** (dimensões de aproximadamente 100m por 60m).

Para facilitar a procura do ponto pode instalar o plugin "Lat Lon Tools" que fica disponível no menu Plugins, e usar a ferramenta Zoom to Latitude, Longitude.

Determine o comprimento, a largura e a área do campo de futebol com a ferramenta "Measure"

e verifique que os valores fazem sentido (a área deve ser próxima de 6000 m2). Verifique em Project/Properties/Measurements que a opção "Ellipsoid" é igual a "GRS 1980". Como os cáculos são realizados sobre o elipsoide de referência, os comprimentros e áreas são correctamente determinados.

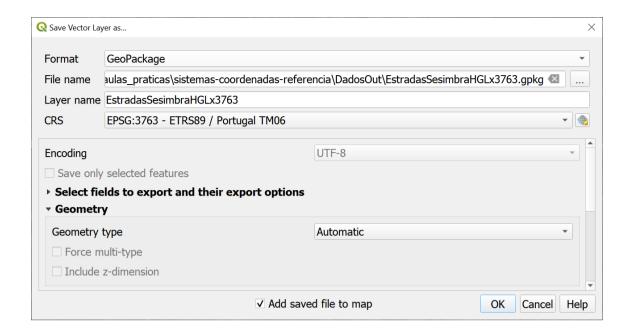

12. Em alternativa ao uso da ferramenta "Measure" crie um cdg do tipo polígono com uma feature que corresponde ao campo de futebol e um atributo **areaGRS** dado pela expressão "\$area" como ilustrado na Secção 2.4.6. A área obtida deve ser aproximadamente 6000 m2 (= 100m*60m).

Os exemplos atrás ilustram o facto de "Measure", \$area e \$length darem o resultado exacto, mesmo que o projecto tenha um sistema de coordenadas com distorções. Ao contrário, "buffer" usa o CRS do cdg e é sensível às suas distorções.

5.7 Reprojectar cdg com sistema de coordenadas obsoleto, com transformação de datum

13. Adicione o cdg sobre estradas Estradas Sesimbra HGL x 102164.

Como o CRS não é conhecido pelo QGIS, será perguntado qual transformação de datum pretendido:


A segunda opção está disponível imediatamente e corresponde a uma transformação de datum de 7 parâmetros entre o Datum Lisboa e WGS84 e tem precisão de 1.5 m.

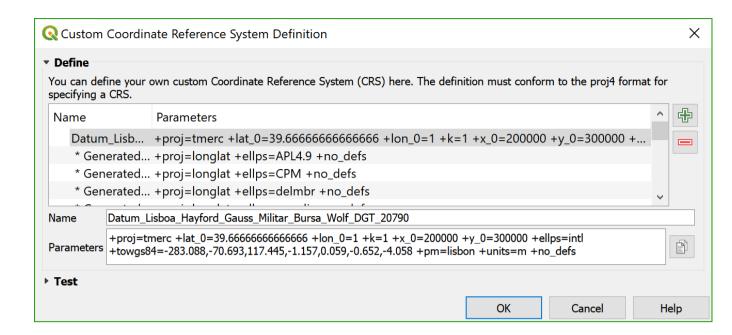
A primeira opção é que tem a melhor precisão (0.1 m) mas requer a instalação de uma grelha NTv2 (ver abaixo) que tem que ser obtida na internet. O QGIS disponibiliza um link para um ficheiro (proj-datumgrid-europe-1.5.zip, 176 MB) que contém uma vasta colecção de grelhas para a Europa. Os ficheiros devem ser colocados numa pasta partilhada como C:\OSGeo4W64\share\proj (exemplo para Windows se OSGeo4W64 estiver instalado).

A terceira opção não contém transformação de datum e por isso origina erros de posicionamento muito grandes (da ordem de 200 metros).

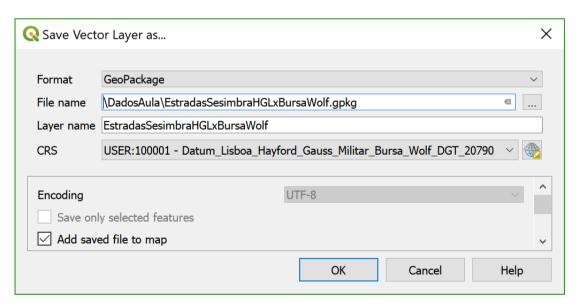
Escolha a opção 2 pois é a melhor entre as disponíveis. O QGIS irá fazer a transformação de coordenadas dos dados por forma a ficarem com coordenadas no CRS escolhido que neste caso é epsg:3857. Verifique sobre a imagem de muito boa resolução que es estradas estão bem localizadas sobre a imagem.

14. Tal como foi feito na Secção 5.4, pode usar-se QGIS para operar como um conversor de coordenadas: as coordenadas x,y dos vértices serão convertidas para o novo CRS. Assim, podem obter-se, com precisão razoável, versões da carta em qualquer CRS moderno em vez do HGLx102164 que é obsoleto. Reprojecte EstradasSesimbraHGLx102164 para EstradasSesimbraHGLx3763, com novo sistema de coordenadas de referência epsg:3763. Para tal, use Export nas propriedades do layer, dando-lhe uma nova designação, e.g. EstradasSesimbraHGLx3763, e seleccionando o CRS EPSG:3763; escolha a opção "add saved file to map" para adicionar o novo shapefile criado ao projecto. Pode salvar no formato que quiser, como "shapefile" ou como "GeoPackage" como ilustrado abaixo. As operações de sobreposição vectorial (ver Secção 3.3) podem agora ser realizadas sobre o cdg EstradasSesimbra3763.

5.8 Corrigir o CRS de um conjunto de dados geográfico (tópico avançado)


Apenas do caso de saber qual é o verdadeiro CRS de um conjunto de dados, pode indicar esse CRS que irá substituir o CRS existente.

15. Associe um novo CRS a LAYER (só deve fazer se souber que o novo CRS é correcto para o cdg que está a alterar): em propriedades do layer EstradasSesimbraHGLx102164 escolher o menu "Source" e seleccionar o CRS que se pretende (epsg:20790); a localização do layer é ajustada. No entanto, isso não altera o CRS do shapefile;


Assim, **EstradasSesimbraHGLx102164** passa a a ter associado o CRS EPSG: 20790 / Lisbon (Lisbon)/Portuguese National Grid. No entanto, essa alteração não fica permanente a não ser que seja gravada com export e save as.

5.9 Criação de um novo sistema de coordenadas de referência (tópico avançado)

- 16. Crie um novo CRS em QGIS, com a transformação de datum com 7 parâmetros:
 - a) Copie a descrição proj4 de **EstradasSesimbraHGLx20790** (para re-aproveitar os valores na definição do novo CRS);
 - Em Settings/Custom Projections preencha a caixa parameters com a descrição proj que copiou acima e altere o parâmetro +towgs84 para
 - +towgs84=-283.088,-70.693,117.445,-1.157,0.059,-0.652,-4.058
 - c) Salve o novo CRS com o nome
 - Datum_Lisboa_Hayford_Gauss_Militar_Bursa_Wolf_DGT_20790

17. A partir do cdg **EstradasSesimbraHGLx102164** criar novo ficheiro de dados com "Export" com o novo CRS, dando-lhe uma nova designação, e.g. **EstradasSesimbraHGLxBursaWolf**.

Os novos dados estão bem posicionados, e há um pequeno desvio (menos de 1m, visível em escala > 1/500) entre **EstradasSesimbraHGLx20790** e **EstradasSesimbraHGLxBursaWolf**, que é devido à diferença nas transformações de datum associadas a cada um dos cdg.

5.10 Notas finais

Quando se adquire informação geográfica é sempre importante conhecer o sistema de projecção. O QGIS dispõe de algumas funções de transformação entre os sistemas utilizados em Portugal. As transformações não são exactas e a precisão do resultado depende dos valores atribuídos aos parâmetros de transformação. Geralmente as transformações de datum com mais parâmetros (7 em vez de 3) têm maior precisão. As melhores transformações usam grelhas NTv2.

Podem suceder várias situações:

- i) o programa não reconhece o sistema cartográfico, porque ele não foi incluído no software;
- ii) o programa reconhece o sistema de coordenadas, mas existem diversos parâmetros de transformação para o sistema pretendido e por isso o utilizador tem que escolher (como no exemplo **EstradasSesimbraHGLx102164**);
- a transformação entre dois sistemas disponível no software não é a melhor e o utilizador pode definir uma melhor transformação (como no exemplo **EstradasSesimbraHGLxBursaWolf**). Esta caso é cada vez mais raro, dado que QGIS dispõe de um número cada vez maior de transformações.

Na Tabela 2 estão descritos alguns dos sistemas de coordenadas antigos e o sistema de coordenadas oficial actual EPSG:3763 usados para Portugal Continental.

Tabela 2 Alguns sistemas de coordenadas utilizados em Portugal Continental:

PT (E	HG "mc ou I	НС	HGA ("anti	Sis pro
PT-TM06 (ETRS89)	HG "moderno" ou HG73	HG IgeoE ou HG Militar	x (go") ou	Sistema de projecção cartográfica
GRS89	D73	DLx	DLx	Datum
Lat: 39,66825833° Long: -8,13310833°	Lat: 39,6667° Long: -8,1319061°	Lat: 39,6667° Long: -8,1319061°	Lat: 39,6667° Long: -8,1319061°	Ponto Central da quadrícula cartográfica
X=M _{PT-TM6} Y=P _{PT-TM6}	X=M _{HG73} +180.6 m Y=P _{HG73} -86.99m	X=M _{HGA} +200k m Y=P _{HGA} +300km	$X=M_{ m HGA}$ $Y=P_{ m HGA}$	Coordenadas planas
EPSG: 3763 ETRS89 / Portugal TM06 (ETRS 1989 Portugal TM6)	EPSG: 27493 Datum 73 / Modified Portuguese Grid (Datum 73 Hayford Gauss IPPC ou Datum 73 Modif Port Grid)	Lisbon (Lisbon)/Portuguese National Grid (Lisboa Hayford Gauss IgeoE)	EPSG: 20791 Lisbon (Lisbon)/Portuguese Grid (Lisboa Hayford Gauss IPCC)	Código EPSG Descrição QGIS (Designação em ArcGIS)
+proj=tmerc +lat_0=39.6682583333333333333334 +k=1 +x_0=0 +lon_0=-8.133108333333334 +k=1 +x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs	+proj=tmerc +lat_0=39.666666666666666666666666666666666666	+proj=tmerc +lat_0=39.666666666666666666666666666666666666	+proj=tmerc +lat_0=39.666666666666666666666666666666666666	Descrição PROJ.4 disponível em QGIS

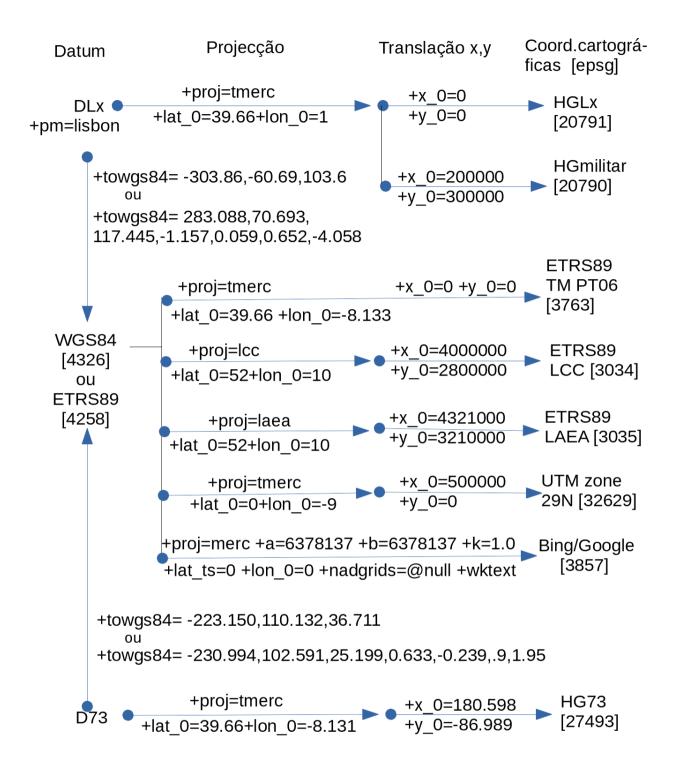


Figura 19. Algumas tranformações de datum, projecções e translações de coordenadas úteis para a cartografia de Portugal Continental para reprojectar um sistema de coordenadas de referência num outro (nem todos os parâmetros proj4 estão indicados e alguns parâmetros estão truncados – ver Tabela 2).

6 Representação cartográfica do relevo

6.1 Cálculos sobre carta topográfica em papel.

Considere a carta topográfica da Figura 20

- 1. Determine a escala da carta.
- 2. Determine as coordenadas M, P e H dos pontos A e B.
- 3. Calcule o declive entre A e B (i.e. de A para B)
- 4. Determine o azimute cartográfico entre B e A.
- 5. Estime a cota da confluência das duas linhas de água principais.
- 6. Desenhe as linhas de festo principais
- 7. Assinale na carta os pontos P e Q, definidos no quadro junto.

	Ponto P	Ponto Q
M	266350 m	267000 m
P	262500 m	262700 m

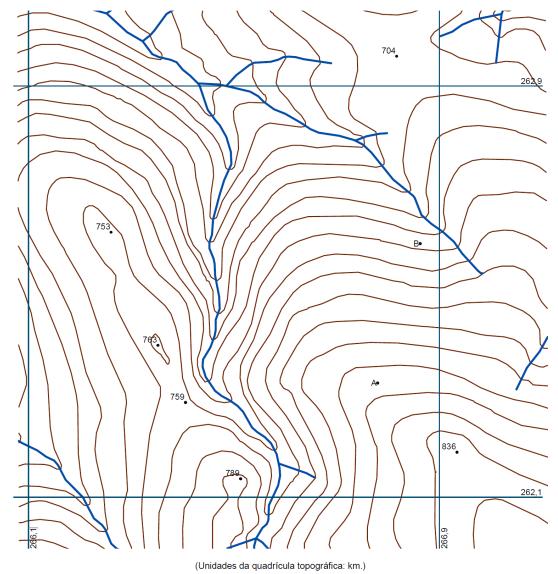
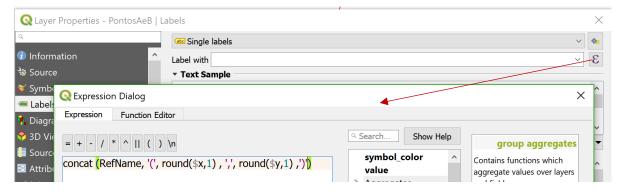


Figura 20. Carta topográfica que usa sistema de coordenadas de referência EPSG: 20790 ("coordenadas militares")

6.2 Operações sobre dados topográficos e modelos digitais do terreno com QGIS.

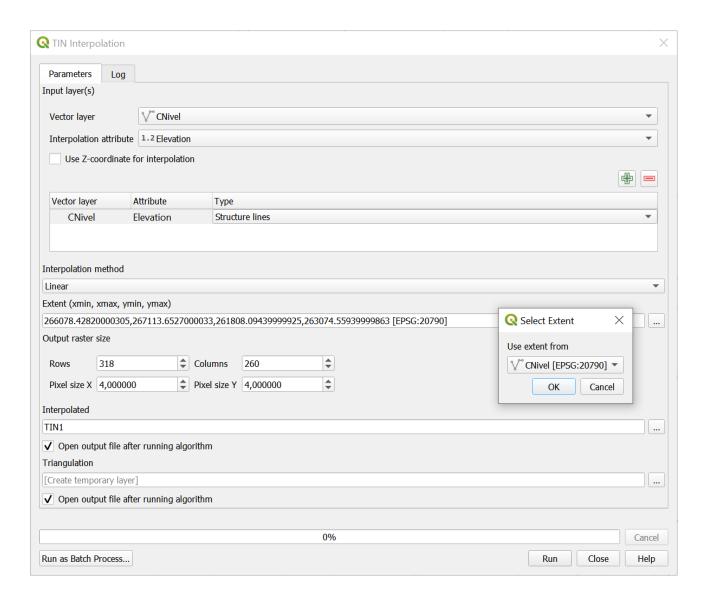
6.2.1 Dados para o exercício

Conjuntos de dados vectoriais em formato shapefile, representando


- A. Cnivel: curvas de nível (o atributo Elevation tem o valor da cota em metros),
- B. **LAgua**: linhas de água em que os vértices têm coordenada **z**, como pode ebservar usando a funcionalidade "Vertex editor", como explicado na Secção 2.2.3,
- C. **Lfesto**: linha de festo, cujos vértices têm uma coordenada **z**,
- D. **PtCotados**: pontos cotados, cujos vértices também têm uma coordenada **z**
- E. **PontosAeB**: um cdg que tem duas features do tipo ponto, uma para A e outra para B da Figura 20.

Todos os cdg vectoriais fornecidos se encontram no sistema de coordenadas de referência (CRS) Lisbon (Lisbon) / Portuguese National Grid (código EPSG: 20790). Nos dados que vai criar, mantenha sempre este CRS

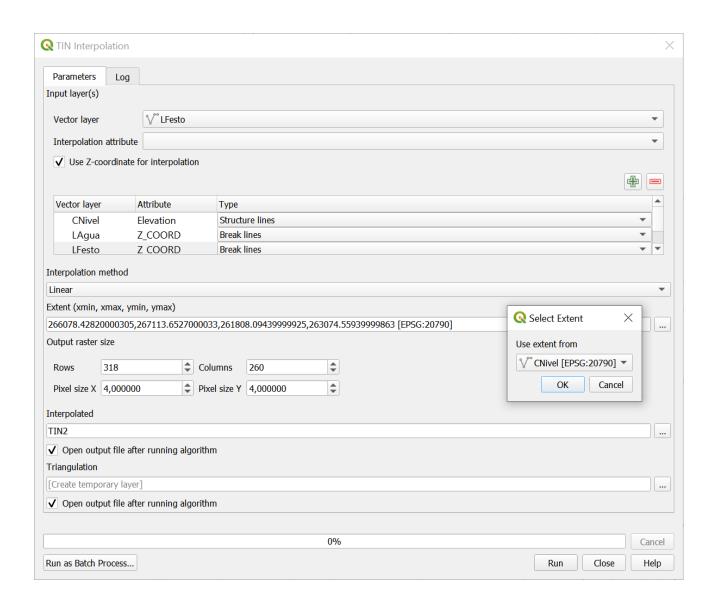
6.2.2 Extrair coordenadas com funções \$x e \$y e expressões em etiquetas


Obtenha as coordenadas X e Y dos pontos A e B do layer PontosAeB no sistema Lisbon (Lisbon) / Portuguese National Grid (EPSG:20790, comparando as coordenadas que obtém pelos 3 métodos seguintes:

- 8. Use o menu Vector → Coordinate Capture (se necessário activar o plugin no menu Plugins→ Manage and Install Plugins como indicado na Secção 5.3)
- 9. Crie dois novos atributos na tabela de atributos de **PontosAeB**, com os nomes X e Y e ambos de tipo Decimal number (real) com precisão de 3 dígitos. Obtenha os valores do atributo X recorrendo à função \$x e os valores do atributo Y recorrendo à função \$y; a edição de tabela de atributos foi discutida na Secção 1.6.3
- 10. Criando etiquetas para este layer com a expressão **concat(RefName, '(', round(\$x,1), ',', round(\$y,1),')')** no menu de propriedades da "layer", e em "Labels". Nesse menu "Expression Dialog" pode usar "search" para procurar funções disponíveis para construir etiquetas (use "search" para procurar a função **concat**, e ver qual é a sintaxe dessa função):

6.2.3 Obter o modelo digital de elevações (MDE) usando interpolação TIN.

11. Crie um modelo digital de elevações (MDE) em formato raster com resolução espacial de 4 m usando apenas curvas de nível. A ferramenta a usar é **Tin Interpolation** em **Processing Toolbox.**



Na operação acima, foi indicado o cdg a partir do qual é derivado o MDE (curvas de nível) e o atributo que contém as cotas **Elevation.** O tipo **Break Lines** determina a regularidade da superfície gerada (neste caso não deve ser muito abrupta). A resolução espacial é de 4 metros nas duas direcções como pretendido. A extensão é importada do cdg **Cnivel** e o MDE de output é designado por **TIN1**. Opcionalmente, e para efeitos de ilustração do processo, cria-se o output adicional que mostra a triangulação (do conjunto de vértices do **CNivel**) sobre a qual está suportada a construção do MDE.

No output "Triangulation", verifique que os triângulos cruzam as linhas de água e linhas de festo, o que não corresponde à topografia do terreno nesses locais. Verifique também que o MDE **TIN1** tem resolução espacial de 4 metros.

12. Crie outro MDE (com nome **TIN2**) usando informação das curvas de nível, linhas de água e linhas de festo. As linhas de água e as linhas de festo vão ter dois papéis na criação do novo MDE: contém novos pontos com cotas e são linhas de rotura, condicionando a triangulação. Nota: o cdg **PtCotados** não é usado pois essa informação já está incorporada no cdg **LFesto**.

Note que as linhas de água e de festo não são isolinhas e que cada vértice é definido por 3 coordenadas X, Y e Z: estas linhas foram criadas noutro programa.

A Figura 21 descreve a operação através de um diagrama, indicam-se os inputs, o origem da informação sobre cotas de cada input, quais inputs são usados como linhas de quebra, e os parâmetros da operação (interpolação e grelha de reamostragem).

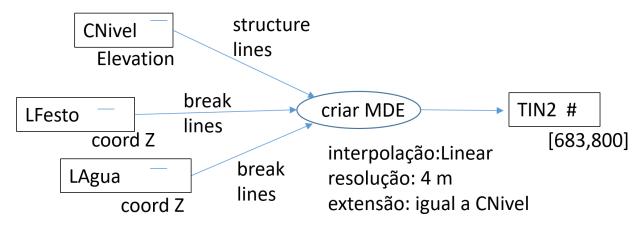
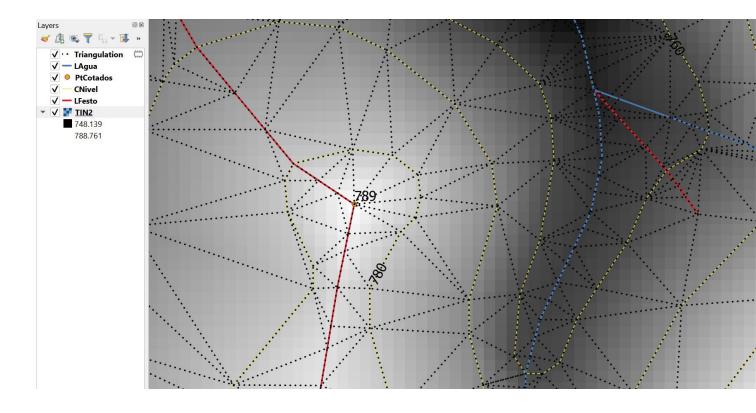
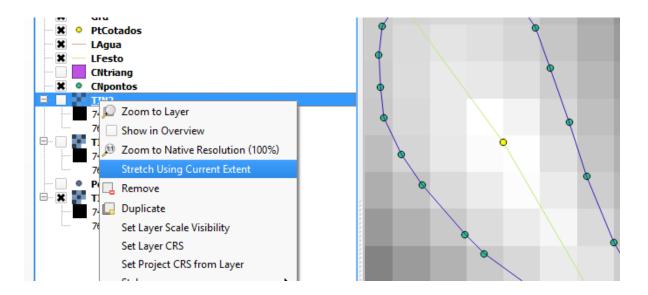
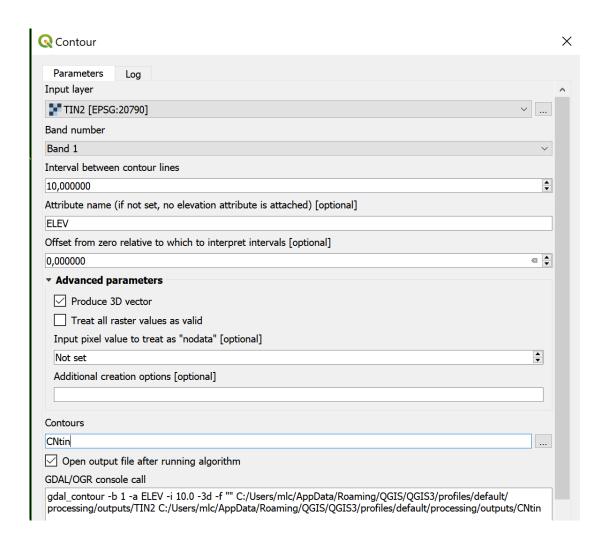




Figura 21. Diagrama de operações para descrever a construção de um MDE a partir de informação de levantamento topográfico

Verifique que esta nova triangulação é muito mais detalhada junto às linhas de água e às linhas de festo. Em particular, verifique que as linhas de água e de festo já não passam no interior dos triângulos. Isso significa que a nova triangulação e o MDE **TIN2** representa de forma mais precisa o relevo da região.

Para comparar visualmente **TIN1** e **TIN2** faça "zoom" para uma elevação (na vizinhança de uma linha de festo e de um ponto cotado) e use a opção do menú direito "**Stretch using current extent**" em **TIN1** e em **TIN2**: pode verificar que **TIN2** exibe uma maior variação de cotas do que **TIN1**.

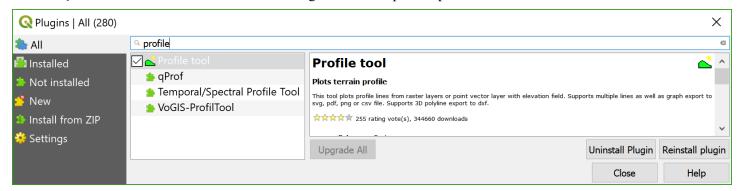

Nota sobre a função TIN Interpolation

- A. Input: indicação dos cdg vectoriais cujos valores são utilizados na criação do MDE
 - a. para cdg cujos vértices são definidos apenas por coordenadas X e Y, deve utilizar os valores de um dos atributos para a interpolação; aplica-se a pontos, isolinhas (tipicamente curvas de nível) e polígonos horizontais em qualquer dos casos um dos atributos do cdg é, obrigatoriamente, a cota Z dos vértices (caso contrário, não pode ser utilizado na criação de um MDE);
 - b. para cdg cujos vértices são definidos por coordenadas X, Y e Z pode/deve usar a coordenada Z para a interpolação; aplica-se sempre a linhas de água, linhas de festo e a polígonos cujos vértices têm cotas diferentes:
 - c. para pontos ou linhas e polígonos horizontais XYZ em que a cota Z também seja um atributo, qualquer das opções é válida.
- B. Type: a forma como a feature é usada na interpolação
 - b. Points sem restrições na construção da rede de triângulos de Delaunay;
 - c. Structure lines em princípio origina uma superfície mais regular, sem cortes abruptos é adequado para curvas de nível, restringindo a interpolação através da linha;
 - d. Break lines em princípio pode originar mudanças abruptas de declive -- aplica-se a linhas de rotura, como as linhas de festo e as linhas de água, impedindo a interpolação através das linhas.

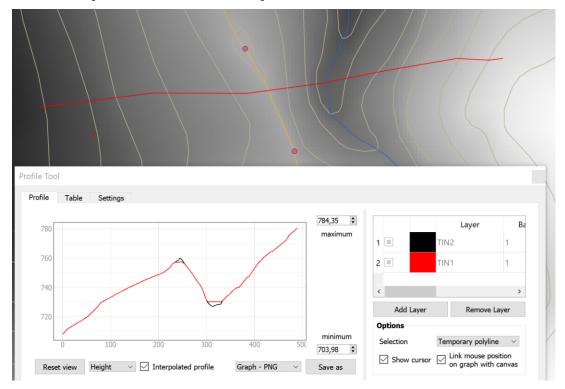
6.2.4 Derivar curvas de nível a partir de um MDE

A partir de um MDE podem ser derivadas diversas representações do terreno. Uma das possibilidades é estimar a partir do MDE curvas de nível de cota arbitrária. A função a usar para esse efeito é **Contour** do menu **Raster/Extraction.**

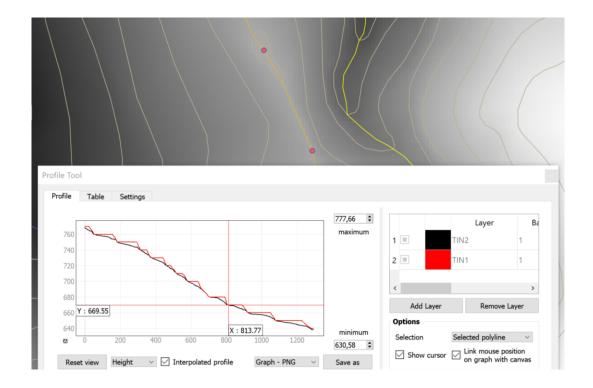
13. Construa uma novo cdg de curvas de nível (designado **CNtin**) derivado de **TIN2**, em que as curvas de nível têm uma equidistância de 10m, e compare a **CNtin** com **CNivel** para verificar que são muito semelhantes.


Note que há duas formas de representar as cotas das curvas de nível produzidas por Contour:

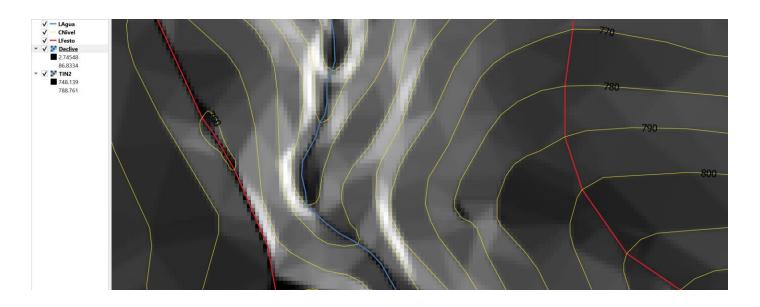
- A. Através do atributo **ELEV** na tabela de atributos de **CNtin**;
- B. Através da coordenada **z** dos vértices de **CNtin**, que é gerada com a opção "**Produce 3D vector**". Verifique com **Vertex Tool** que **CNtin** tem coordenadas **z** nos vértices e que são iguais para todos os vértices da mesma curva de nível
- 14. (Opcional) Analise a qualidade dos dois MDE obtidos anteriormente (TIN1 e TIN2) e identifique as diferenças entre eles procedendo de duas formas:
 - A. Derivando curvas de nível de e comparando-as;
 - B. Calculando em raster calculator o cdg matricial das diferenças TIN2-TIN1
 - C. Identifique onde ocorrem as maiores diferenças entre os dois MDE e interprete as causas dessas diferenças.

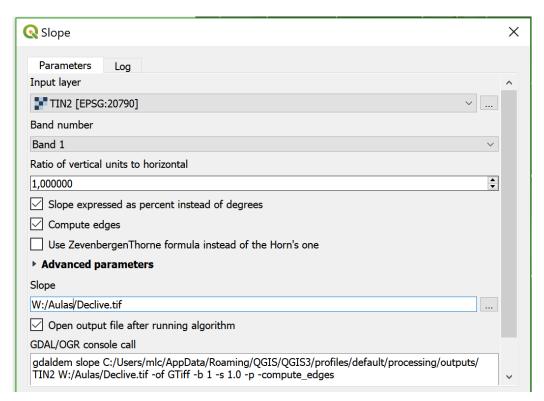

6.2.5 Observação de perfis do terreno com "Profile tool plugin"

QGIS permite adicionar funções ("plugins") adicionais. Aqui será usada a função "**Profile tool**" que permite criar perfis do terreno a partir de um MDE.

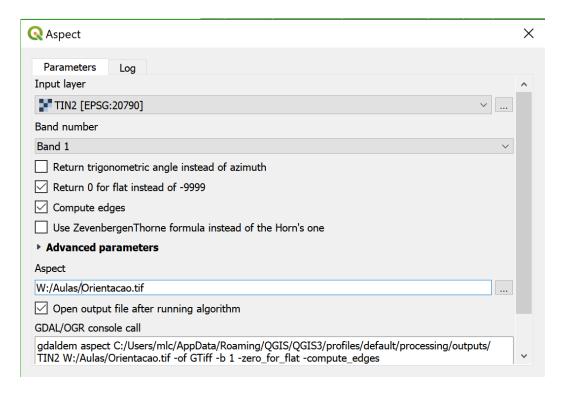

A instalação de "Profile tool" faz-se no menu "Plugins" e fica depois disponível nesse mesmo menu.

15. Obtenha um perfil vertical entre os pontos A e B ao longo de uma linha poligonal Note que pode obter simultaneamente os perfis derivados de mais do que um MDE.

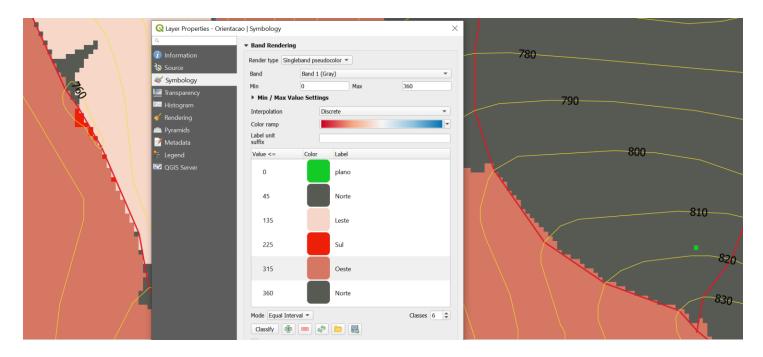

16. Obtenha o perfil vertical ao longo de uma linha de água. Se em "**Options**" escolher "**selected polyline**" em vez de "**temporary polyline**" tem a possibilidade de seleccionar uma feature de um cdg de linhas e obter o perfil ao longo dessa feature.

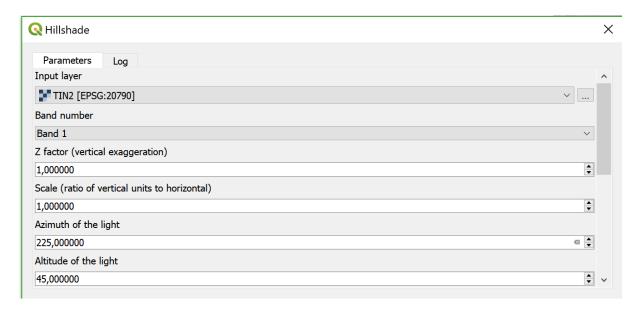


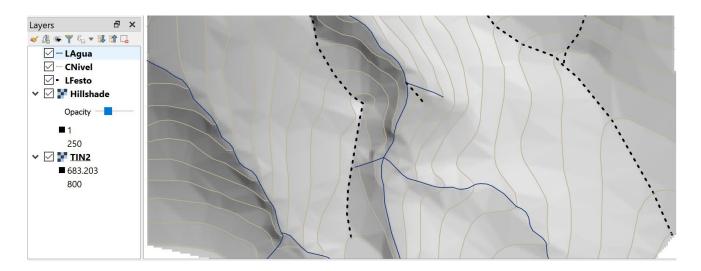
17. Use o separador "Table" (em vez de "Profile") para copiar as coordenadas e cotas do perfil gerado para uma folha de cálculo.


6.2.6 Derivação de declives, orientações e iluminação a partir de um MDE

18. Usando a função **Slope** em Raster/Analysis construa uma carta de declives expressos em percentagem. Verifique que pode obter declives superiores a 100% para esta região com relevo marcado. A opção "**compute edges**" permite estimar o declive na bordadura do cdg.




- 19. (Optional) A partir do cdg matricial que criou, derive um novo cdg em formato vectorial (polígonos) representando o declive em percentagem, de acordo com os intervalos seguintes: [0; 5%[, [5%; 15%[, [15%; 30%[e [30%; ...[.
- 20. Usando a função **Aspect** construa uma carta de orientações de encosta em que as orientções são expressas como um azimute.


21. Crie uma legenda para o cdg **Orientacao** indicando as orientações Plano, Norte, Este, Sul e Oeste. Note que se usou a opção "**return 0...**", o terreno plano é indicado por esse valor.

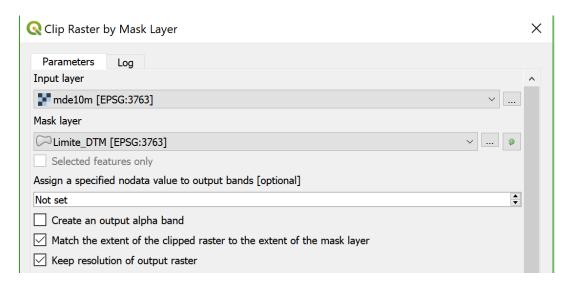
- 22. Crie um novo cdg em formato vectorial do tipo "polígono" representando as zonas com orientação Norte (considerando Norte quando a orientação é menor ou igual a 45° e maior do que 315°) e declive até 15°
- 23. O coseno do ângulo de incidência solar é a medida usual da quantidade de iluminação da superfície e é função da posição do sol. A função **Hillshade** devolve um cdg matricial com valores de (255*coseno do ângulo de incidência solar). Aplique essa função considerando um dia e hora em que o ângulo azimutal do sol é 225° e o ângulo vertical (elevação do sol) é de 45°.

- 24. Compare a carta de iluminação com a carta que obteria para uma hora durante a manhã em vez da tarde. Por exemplo, ângulo azimutal do sol é 135º e o ângulo vertical (elevação do sol) ainda de 45º. Interprete o resultado em função do relevo da região.
- 25. Use o resultado da função **Hillshade** para criar uma carta de relevo em que as alterações de relevo são realçadas pela carta de iluminação. Para tal coloque a carta de iluminação sobre **TIN2** e use transparência para visualizar ambas as cartas simultaneamente.

6.3 Acesso a dados abertos de altimetria em formato raster (SRTM)

Os dados globais SRTM3 com resolução de aproximadamente 90 m ou de 30 m (na prática a diferença de qualidade não é muito marcada) estão disponíveis em acesso aberto. Os ficheiros em formato **hgt** correspondem a áreas de um mosaico com 1 grau de latitude por 1 grau de longitude com denominação **NxxWyy.hgt**, em que **xx** é a latitude e **yyy** é a latitude do *canto inferior esquerdo da imagem*. Para os outros quadrantes de longitude e de latitude a denominação será SxxWyyy.hgt, NxxEyyy.hgt, e SxxEyyy.hgt. O acesso aos mosaicos para o globo faz-se por exemplo através do link https://earthexplorer.usgs.gov/ (requer registo) que permite descarregar qualquer mosaico SRTM1 (i.e. SRTM com resolução de 1 segundo de arco, ou seja aproximadamente 30 metros). O sistema de coordenadas de referência é WGS84 (epsg:4326).

Nota: para Portugal Continental em geral é mais conveniente descarregar SRTM1 (reamostrado a 25 metros) ou SRTM3 (reamostrado a 80 metros) em formato GeoTiff no site https://www.fc.up.pt/pessoas/jagoncal/srtm/ que cobrem a totalidade do território. Estes dados tem sistema de coordenadas de referência ETRS89-TM-PT06 (epsg:3763).


6.4 Reamostragem e comparação de SRTM com dados topográficos

6.4.1 Dados para o exercício

A. Dados topográficos referentes à Paisagem Protegida da Serra de Montejunto: Limite_DTM, Linhas_agua_singlepart, Curvas_nivel_singlepart e Pontos_cotados no sistema de coordenadas oficial português EPSG:3763. B. O modelo digital de elevações SRTM3 que corresponde a essa região, que será o N39W010.

6.4.2 Criação e recorte de MDE pelo limite da região

- 26. Criar MDE (como na Secção 6.2.3) usando pontos cotados (**Elevation**), linhas de água (coordenada Z) e curvas de nível (**Elevation**); escolher como resolução 10m; designar output por **mde10m**. O CRS de **mde10m** deverá ser EPSG:3763. Use a extensão dada por Limite_DTM.
- 27. Usar **Clip raster by Mask Layer** em Raster/Extraction para recortar **mde10m** por **limite_DTM**: Chamar ao output **mde10lim**.

O resultado é um MDE com valores no interior do poligono definido por **Limite_DTM**. Comparando o MDE obtido com dados topográficos com o mosaico SRTM3 **N39W010** é nítida a diferença de resolução espacial que é mais grosseira para SRTM3 (ver Figura 22).

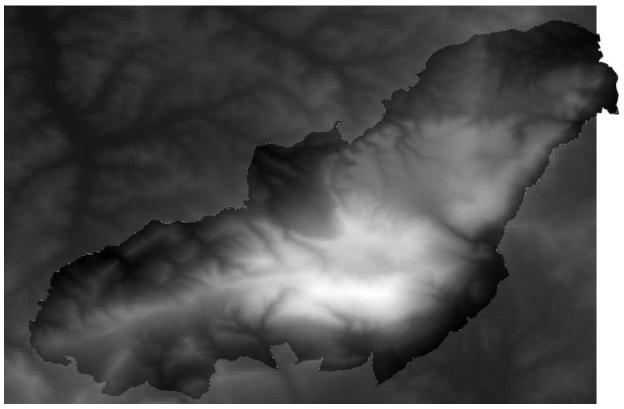
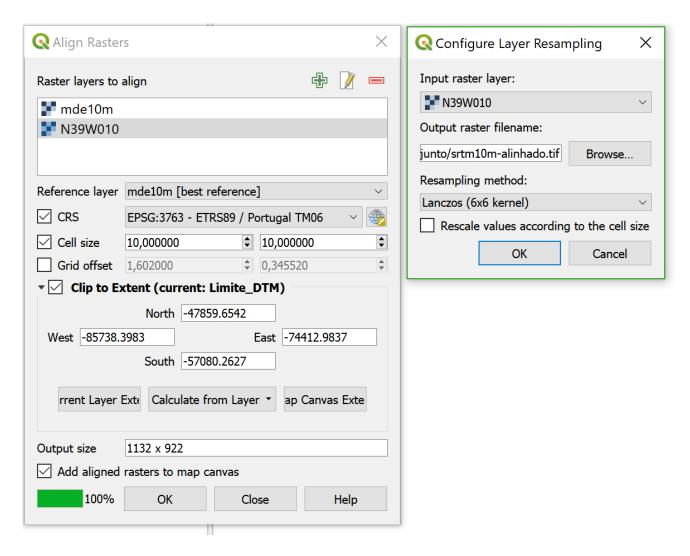


Figura 22. Comparação do SRTM na região da Paisagem Protegida da Serra de Montejunto (fundo) com o MDE derivado de dados topográficos com interpolação TIN e resolução espacial de 10 m (frente)

6.4.3 Reamostragem e alinhamento de rasters com "align rasters"


Pode verificar que o sistema de coordenadas da imagem **N39W010** é EPSG:4326 e que a resolução é de 0.000833333 graus (3 segundos de arco).

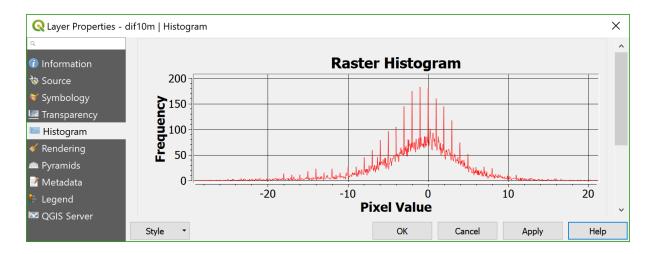
Pretende-se alterar resolução e alinhamento de **N39W010** para criar um novo cdg com o mesmo sistema de coordenadas de **mde10m** (EPSG:3763), resolução de 10m e alinhado com **mde10m**.

Se se pretendesse apenas fazer a reamostragem de **N39W010** poder-se-ia usar função **Warp (Reproject)** em Raster/projection No entanto, a interface para essa função em QGIS, que permite escolher um novo CRS e uma nova resolução espacial, não permite fixar a extensão do raster de output.

Para alinhar **mde10m** e **N39W010**, escolhendo uma grelha comum com a extensão de **Limite_DTM**, usa-se a função **Align Rasters** no menu Raster. O critério de reamostragem de Lanczos dá em geral muito bons resultados para modelos digitais de elevação, mesmo quando se força a resolução espacial a ser mais detalhada (10 m) do que a resolução espacial da imagem nativa SRTM3 (aproximadamente 90 m).

28. Aplicar função **Align Rasters** sobre os cdg **mde10m** e **N39W010**, definindo o CRS de output como EPSG:3763, resolução de 10 metros e extensão de **Limite_DTM**. Para **N39W010** deve usar-se o critério de reamostragem de Lanczos. Para mde10m pode usar-se simplesmente o critério do vizinho mais próximo dado que a resolução praticamente não se altera.

A operação **Align Rasters** sobre **mde10m** e **N39W010** devolve os rasters (aqui designados respectivamente por **mde10m-alinhado**) que vão ter exactamente o mesmo CRS, extensão e resolução espacial como se pode verificar na Tabela 3.


Tabela 3. Efeito da operação "Align rasters". Os outputs têm exactamente a mesma extensão e resolução espacial. Neste caso foi usado mde10m para definir a extensão dos outputs.

cdg	CRS	"Pixel Size"	Extensão (xmin,ymin,xmax,ymax)	
mde10m	3763	10.0048,-10.0007	-85738.398,-57080.262,-74412.983,-47859.654	
N39W010	4236	0.000833333,-0.000833333	-10.000416666,38.99958333,-8.99958333,40.000416666	
mde10m-alinhado	3763	10,-10	-85738.398,-57079.654,-74418.398,-47859.654	
srtm10m-alinhado	3763	10,-10	-85738.398,-57079.654,-74418.398,-47859.654	

No processo de reamostragem, as operações de QGIS podem produzir valores que representam **nodata**, como por exemplo -9999 . É possível estabelecer que um valor particular deve ser interpretado como nodata em propriedades do "layer":

29. Comparar as elevações dadas por **mde10m-alinhado** e **srtm10m-alinhado** criando um cdg matricial das diferenças. Construa o histograma respectivo.

- 30. Reclassifique-as a carta de diferenças em classes de 5m de amplitude. O resultado deve ser semelhante à Figura 23. Comente as diferenças observadas tendo em consideraação o relevo da região considerada.
- 31. Exercício sugerido: realizar a comparação do modelo digital de elevações mde10lim com SRTM1 para Portugal Continental (resolução de 25 m) disponível no site https://www.fc.up.pt/pessoas/jagoncal/srtm/ usando as técnicas descritas acima.

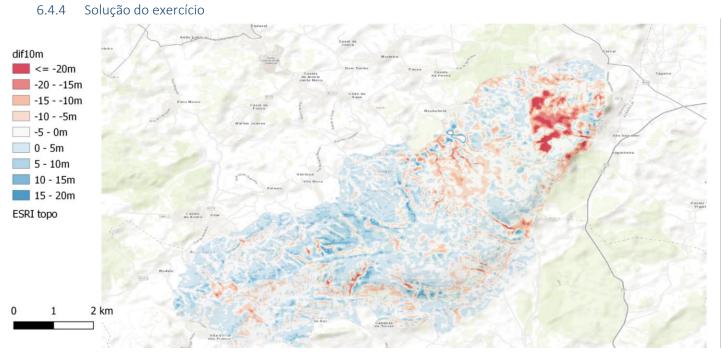


Figura 23 Paisagem Protegida da Serra de Montejunto: diferenças em metros entre a carta de elevações derivada de dados topográficos e carta de elevações derivadas de SRTM3. Os valores negativo (a vermelho) correspondem a zonas.em que a elevação (dados topográficos) é inferior à elevação indicada pelos dados abertos SRTM3.

7 Introdução à análise de imagens multiespectrais

Os dados matriciais manipulados até aqui consistiam em imagens com uma única banda. As imagens de observação da Terra são tipicamente imagens multiespectrais com uma banda por cada região do espectro electromagnético que o sensor detecta. As bandas podem pertencer à região espectral do visível mas também podem pertencer a regiões espectrais que não são visíveis pelo olho humano, e em particular às regiões espectrais dos infravermelhos.

7.1 Dados para o exercício

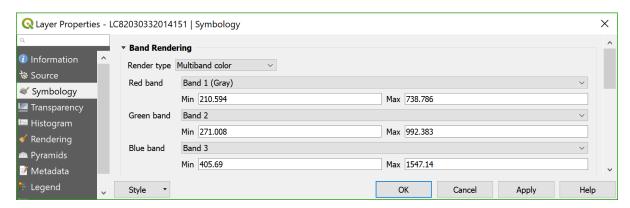
Ficheiros em formato GeoTiff denominados LC82030332014151.tif e LC82030332014167.tif correspondentes respectivamente a uma data em Maio de 2014 e em Junho de 2014 que resultaram do recorte de imagens multiespectrais Landsat 8, coleção CDR (Climate Data Record), convertidas para valores de reflectância e multiplicados por 10000 (por exemplo, o valor de 1000 num pixel para uma dada banda significa que a reflectência da superfície nesse pixel e para essa banda é de 10%). A fonte dos dados é http://earthexplorer.usgs.gov/. Cada imagem multiespectral corresponde apenas às bandas 1 a 7 do sensor OLI instalado no satélite Landsat 8, cuja resolução espectral completa é descrita na tabela

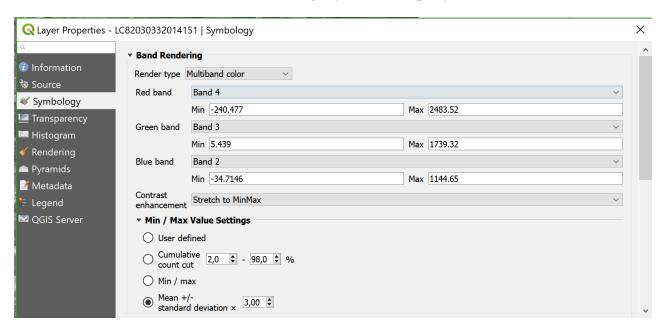
Band	Description	Wavelength (micrometers)	Resolution (meters)
1*	Violet-Deep Blue	0.43 - 0.45	
2*	Blue	0.45 - 0.51	30
3*	Green	0.53 - 0.59	30
4*	Red	0.64 - 0.67	30
5	Near Infrared	0.85 - 0.88	30
6	Shortwave Infrared	1.57 - 1.65	30
7	Shortwave Infrared	2.11 - 2.29	30
8*	Panchromatic	0.50 - 0.68	15
9	Cirrus clouds	1.36 - 1.38	30
10**	Thermal infrared	10.62 - 11.19	30
11**	Thermal infrared	11.50 - 12.51	30
	he visible spectrum ter resolution data interpola	ated to 30 meters	


O nome do ficheiro LC82030332014151.tif tem informação relevante sobre os dados:

- A. LC8 indica que os dados provêm de Landsat 8, Climate Data Record;
- B. 203033 indica a localização imagem descarregada no sistema WRS, em que 203 é o índice de "path", e 033 é o índice de "row";
- C. 2014151 indica a data de aquisição da imagem pelo sensor, isto é, o dia juliano 151 do ano 2014 (ou seja 31 de maio de 2014).

7.2 Imagens multiespectrais e metadados


1. Interpretar os valores de metadados associados as imagens, e disponibilizados em http://earthexplorer.usgs.gov/, nomeadamente a data e hora de aquisição da imagem, a geometria de observação e de iluminação, e a magnitude dos erros posicionais (erros na direcção do x e do y):


Leia no QGIS os ficheiros **LC82030332014151.tif** e **LC82030332014167.tif** e considere, em primeiro lugar a imagem de de Maio (dia 2014151).

2. Qual é o sistema de coordenadas de referência associado a imagem? Qual e a resolução espacial? Qual e o valor numérico associado a No Data? Verifique que a composição colorida apresentada por omissão é RGB=123.

7.3 Assinaturas espectrais e composições coloridas

3. Construir uma composição colorida em cor verdadeira RGB=432. Para ajustamento do contraste use o critério mean +/-3* standard deviation. Qual e a cor da vegetação nesta composição colorida?

4. Construir uma composição colorida em falsa cor RGB=543 de forma analoga. Qual é agora a cor da vegetação?

Verificar que algumas zonas de regadio têm uma cor avermelhada muito marcada. Com a ferramenta **identify** recolher uma assinatura espectral para um pixel com essa coloração e interpretar os valores de acordo com os conhecimentos sobre a assinatura espectral típica de vegetação verde -- por exemplo escolha o pixel de coordenadas x = 645060; y = 4239147 – pode instalar por exemplo o *plugin* "zoom to paste" para encontrar esse ponto sobre a imagem. Comparar com a assinatura espectral de um pixel numa zona urbana (ver exemplo na Figura 24).

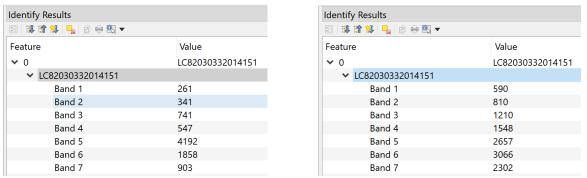
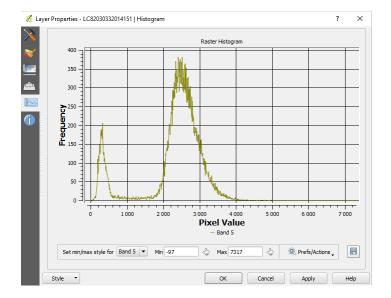
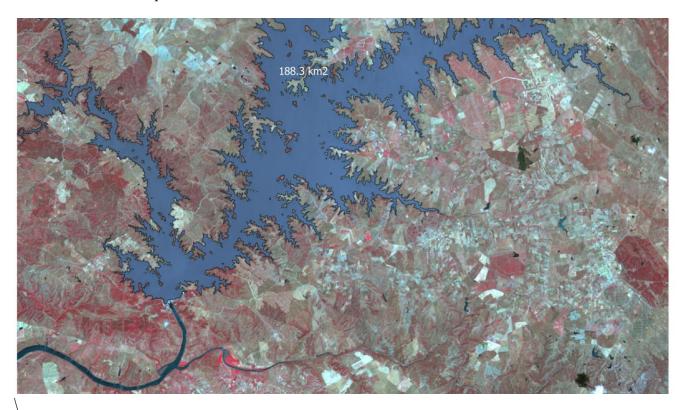



Figura 24. Comparação de uma assinatura spectral Landsat8/OLI de um pixel de regadio (èsquerda) e de um píxel de urbano (à direita)


7.4 Interpretação automática de imagens

Use a banda 5 (infravermelho próximo) da imagem para obter uma estimativa da area inundada correspondente a Albufeira do Alqueva.

5. Observe o histograma desse cdg (altere o máximo e mínimo no histograma se necessario) para determinar um ponto de corte" entre agua e outro tipo de coberto;

- 6. Realize uma reclassicação em **raster calculator** do cdg em duas classes usando o ponte de corte escolhido e uma conversão para formato vectorial (como explicado na Secção 4.3).
- 7. Seleccione a feature correspondente à albufeira e calcule a sua área (como descrito na Secção 2.4.6). Nota: a superfície média da albufeira é um pouco maior dado que a imagem **LC82030332014151** não cobre totalmente a albufeira do Alqueva.

7.5 Cálculo e interpretação de um índice de vegetação

8. Construir em raster calculator o índice de vegetação

NDVI = (IVP-V)/(IVP+V)

em que V e IVP representam respectivamente as reflectâncias na região do vermelho do infra-vermelho próximo. Apresente o resultado como um mapa com legenda de cores entre amarelo (valores de NDVI igual a 0) e verde escuro (valor de NDVI igual a 0.7).

9. Repita o procedimento para a imagem **LC82030332014167.tif**. Verique que em geral os valores de NDVI baixam entre o dia 151 e o dia 167 (devido a redução de precipitação) mas que existem parcelas regadas em que o valor de NDVI aumenta. A Figura 25 ilustra a evolução do NDVI entre as duas datas.

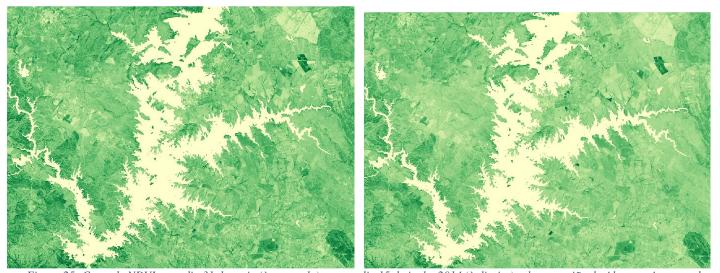


Figura 25: Carta de NDVI para dia 31 de maio (à esquerda) e para dia 15 de junho 2014 (à direita) sobre a região do Alqueva. A cor verde representa valores de NDVI mais elevados.