
Modelos Matemáti
os e Apli
ações � 2020-21

Exer
ises - Generalized Linear Models

NOTE: The �le dadosMLG.RData 
ontains the following data frames: taba
o (Exer
ise 1), ratos (Exer-


ise 2), Elisa1 (Exer
ise 5), Elisa2 (Exer
ise 6), flea.beetles (Exer
ise 9) and sangue (Exer
ise 11).

The �le must be loaded into an R session with the Load Workspa
e menu or load 
ommand.

1. The book byW.N. Venables and B.D. Ripley,Modern Applied Statisti
s with S-Plus (1994, Springer-

Verlag), has data from an experiment whi
h studies the resistan
e of the toba

o budworm heliothis

vires
ens to di�erent doses of a toxi
 substan
e. Groups of 20 moths of ea
h sex were exposed to

di�erent doses of the substan
e and, after three days, the number of dead (or ina
tive) individuals

in ea
h group was re
orded. The results (labelled as deaths) are shown in the following table (where

the doses are given in µg).

Dose

Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20

Female 0 2 6 10 12 16

(a) Create a data frame 
ontaining the data and suitable to �t models with a Binomial/n random


omponent.

(b) Draw a s
atterplot with the variable Dose on the horizontal axis and the proportion of deaths

for ea
h group of 20 individuals on the verti
al axis. Repeat, but now using di�erent 
olours

to represent the data for the individuals of ea
h sex. Comment your results.

(
) Repeat the previous steps, but now asso
iating the horizontal axis with the values of log2(Dose).
This transformation is justi�ed by the fa
t that ea
h dosage used in the experiment is twi
e

the previous dosage. Comment.

(d) Fit a Logisti
 Regression to the data, ignoring the fa
tor sex and using log2(Dose) as the

numeri
al predi
tor. Comment your results. Draw, on the s
atterplot from the previous

question, the estimated 
urve for the probability of death, p(x), where x indi
ates the values

of log2(Dose). Dis
uss the signi�
an
e of the estimated parameter value b1.

(e) Repeat the previous question, but now using a Probit model. What is the dosage 
orresponding

to a 50% probability of death?

(f) Now �t a generalized linear model with the appropriate random 
omponent, but using a


omplementary log-log link fun
tion. Comment your results.

2. In order to study the 
ar
inogeni
 e�e
ts of a toxi
 produ
t on mi
e, three di�erent dosages of the

toxi
 substan
e were administered (0, 0.45 and 0.75 parts per 10 000) to a few hundred mi
e, during

one of two exposure periods (16 or 24 months). At the end of the period of exposure, the mi
e were


he
ked for tumours. These were the results of the experiment:

Dosage

Exposure 0 0.45 0.75

16 months Mi
e with tumours 1 3 7

Mi
e without tumours 204 301 186

24 months Mi
e with tumours 20 98 118

Mi
e without tumours 742 790 469
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The data are available in the data frame ratos. A Generalized Linear Model appropriate for a

binary random 
omponent was �tted, using the probit link fun
tion and, as numeri
al predi
tors,

dosage (Dose) and exposure time (Exposi
ao). These were the results:

> summary(ratos.probit.var)

Call:

glm(formula = 
bind(
om, sem) ~ Dose + Exposi
ao, family = binomial(probit),

data = ratos)

[...℄

Coeffi
ients:

Estimate Std. Error z value Pr(>|z|)

(Inter
ept) -4.8474 0.3948 -12.279 < 2e-16 ***

Dose 1.4344 0.1397 10.269 < 2e-16 ***

Exposi
ao 0.1229 0.0163 7.538 4.78e-14 ***

---

Null devian
e: 198.5347 on 5 degrees of freedom

Residual devian
e: 1.3381 on 3 degrees of freedom

AIC: 33.594

Number of Fisher S
oring iterations: 4

(a) Des
ribe in detail the �tted model, spe
ifying the relation that is assumed between the appe-

aran
e of tumours and the predi
tor variables.

(b) Dis
uss the goodness-of-�t of the model to the data.

(
) Is it possible to further simplify the model without a signi�
ant loss in the goodness-of-�t?

Justify with a formal test.

(d) Based on the �tted model, answer the following questions:

i. For a dose of 0.75 parts per 10 000 of the toxi
 substan
e, what is the expe
ted proportion

of mi
e with tumours after 36 months of exposure?

ii. What is the dose asso
iated with 50% of mi
e with tumours after 24 months of exposure?

In the meantime, an obje
tion is raised, stating that the very small number of di�erent values of

the predi
tors Dose and Exposi
ao does not re
ommend using them as numeri
al variables. It

was de
ided to �t a new model, with these two predi
tors 
onsidered as fa
tors. Intera
tion e�e
ts

between the fa
tors are not envisaged. The �t produ
ed the following results:

> summary(ratos.probit.fa
)

Call:

glm(formula = 
bind(
om, sem) ~ as.fa
tor(Dose) + as.fa
tor(Exposi
ao),

family = binomial(probit), data = ratos)

[...℄

Coeffi
ients:

Estimate Std. Error z value Pr(>|z|)

(Inter
ept) -2.9038 0.1561 -18.602 < 2e-16 ***

as.fa
tor(Dose)0.45 0.6880 0.1069 6.435 1.24e-10 ***

as.fa
tor(Dose)0.75 1.0859 0.1081 10.042 < 2e-16 ***

as.fa
tor(Exposi
ao)24 0.9826 0.1302 7.545 4.52e-14 ***

[...℄

Null devian
e: 198.5347 on 5 degrees of freedom

ISA/UL � Modelos Matemáti
os � 2020-21 � Jorge Cadima 2



Residual devian
e: 1.0902 on 2 degrees of freedom

AIC: 35.347

Number of Fisher S
oring iterations: 4

(e) Des
ribe in detail the model that was �tted. Comment the analogies and the di�eren
es

between this model and the model that was 
onsidered initially.

(f) What is the probability, estimated by the model, that a mouse will have a tumour at the

end of 16 months, if it was not exposed to the toxi
? How does this estimated probability


ompare with the relative frequen
y of tumours in that experimental situation? How does this

estimated probability 
ompare with the 
orresponding probability resulting from the initial

model? Dis
uss.

(g) Is it possible to estimate the probability of mi
e having tumours when exposed for 36 months,

using this model?

(h) Based on the indi
ators of goodness-of-�t available and taking into a

ount the reservations

that were raised regarding the initial model, whi
h of these two models would you pi
k?

(i) Now �t a third model, 
onsidering Dose and Exposi
ao as fa
tors, but also allowing for

intera
tion e�e
ts. How do you explain the fa
t that the model devian
e, and all the devian
e

residuals are zero? What are the impli
ations of this fa
t?

3. The MASS pa
kage has a data frame 
alled Traffi
, with results from a study of the impa
t of

poli
e 
ontrols of speed limits on Swedish roads, 
arried out in 1961 (see help(Traffi
) for more

details).

(a) Fit a log-linear model whose random 
omponent is the number of a

idents re
orded on ea
h

day, and with an explanatory fa
tor with only two levels: whether or not the speed limits were

being enfor
ed. Interpret the �tted parameter estimates.

(b) Cal
ulate the mean number of a

idents on days with speed limits and the mean number of

a

idents on days without speed limits. Relate the �tted parameter estimates with the values

obtained in the previous question.

(
) [Supplementary material℄. Determine the equations of the system that is obtained by

equating to zero the partial derivatives of the log-likelihood of the log-linear model for this

question. Solve the system. State whether or not the relations observed in the questions above

are a 
oin
iden
e.

(d) Dis
uss the 
omparative advantages of using a log-linear model in this study, as 
ompared to

using the 
lassi
al t-test to 
ompare the mean values of the number of a

idents per day in

the two populations (with, and without, speed limits).

4. In the MASS pa
kage there is a site × spe
ies 
ontingen
y table, given in an obje
t 
alled waders.

The dataset has observed frequen
ies of 19 spe
ies of waders (shorebirds), in 15 di�erent lo
ations

along the 
oast of Southern Afri
a (Namibia and South Afri
a).

(a) Carry out a standard χ2
independen
e test for the fa
tors �sites� and �spe
ies�, using Pearson's

statisti
 (Note: The R 
ommand for this test is 
hisq.test.)

(b) Create a data frame suited for �tting a GLM to the data, that is, a data frame with the

following three 
olumns: the 
ounts, the sites and the spe
ies. Use the following R 
ommand:

> limi
olas <- data.frame(obs=as.ve
tor(as.matrix(waders)), lo
al=rep(LETTERS[1:15℄,19),

espe
ie=rep(paste("S",1:19,sep=""),ea
h=15))

ISA/UL � Modelos Matemáti
os � 2020-21 � Jorge Cadima 3



(
) Consider a log-linear model for the data, with two (additive) explanatory fa
tors: lo
al and

espe
ie. Dis
uss the details of the model equation. Indi
ate the expe
ted value, given by the

model, for the number of observations of spe
ies S14, at site C.

(d) Fit the model given in the previous question and dis
uss its goodness-of-�t based on the model

devian
e. Compare the number of observations of spe
ies S14, at site C, with the 
orresponding

�tted value. Comment.

(e) Cal
ulate the sum of squared Pearson residuals for this model. Compare your result with the

value of the Pearson statisti
 from the χ2
test of the �rst question. Comment.

(f) Interpret the meaning of the di�eren
e of two parameters of the same type of e�e
t, su
h as

for example, α4−α3, where αi denotes the e�e
t of the i-th level of the fa
tor lo
al.

(g) Build an (asymptoti
) 
on�den
e interval for α4−α3 and interpret it.

(h) Comment the usefulness of your model, based on the results above.

5. The adult female of a predatory spe
ies lays her eggs in a substrate of soil 
ontaining oats with

fungi, infested with mosquitoes that serve as food for the larvas. The goal is to relate the number

of mosquito larvas present in the substrate - variable es
iarideos - and the number of adults

that emerge in the subsequent generation (after feeding as larvas and after pupation) - variable

emergen
ias. The number of mosquitoes was 
al
ulated by extrapolating the number of larvas

observed in a sample to the total substrate volume. The resulting data are in a data frame 
alled

Elisa1 and the relevant s
atterplot is shown below.
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(a) Draw the s
atterplot shown above using R.

(b) Do you think that a model for the response variable emergen
ias that assumes a Poisson

distribution is suitable?

(
) Do you think that the 
anoni
al link fun
tion for Poisson distributions is a suitable link fun
-

tion?

(d) Fit a log-linear model and dis
uss your results. The estimate for the parameter β1 is b1 =
0.0005248347. How 
an this value be interpreted in the 
ontext of this problem?
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(e) Draw, on the s
atterplot, the 
urve �tted by the model. Comment it.

(f) Cal
ulate 95% 
on�den
e intervals for the model parameters (β0 and β1), using the asymptoti


theory for maximum likelihood estimators. Dis
uss it. In parti
ular, state whether, based on

these intervals, it 
an be said that an in
rease in the number of mosquitoes present in the

substrate is asso
iated with an in
rease in the mean number of adults in the subsequent

generation.

6. A pest 
ontrol study attempts to model, for a given inse
t spe
ies, the relation between the number

of days between the moment they are laid and the emergen
e of new adults (the response variable

dias) and the environment temperature (the predi
tor temp). The study involved n=57 repetitions,
given in the data frame Elisa2, asso
iated with the following s
atterplot:

20 21 22 23 24 25 26

2
5

3
0

3
5

4
0

4
5

temp

d
ia

s

(a) Fit a log-linear model to the data. In parti
ular,

i. Des
ribe your 
hoi
es.

ii. How well does the log-linear model �t the trend observable in the s
atterplot?

iii. Draw the �tted 
urve on the s
atterplot.

(b) An analyst suggests that, sin
e the response variable dias measures time, it is in reality a


ontinuous random variable that is dis
retized when measured. He suggests that it is possible

to make a single modi�
ation to the previous GLM: 
onsider that the response variable has a

Normal distrbution. Des
ribe this new GLM and, in parti
ular:

i. Explain why this new model is not a Linear Model.

ii. Write the equation of the �tted 
urve and draw it on the s
atterplot. How 
an we explain

the fa
t that the �tted 
urve is di�erent? And how 
an we explain that it is similar to the

previously �tted 
urve?

iii. Consider the residual devian
e asso
iated with this model and dis
uss the fa
t that it is

substantially di�erent from the devian
e of the previous model. In parti
ular, dis
uss the

following statement: �the model �tted in the previous question is better, be
ause it has a

smaller devian
e�.
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(
) Now �t the Linear Model that is most similar to the model in the previous question. In

parti
ular,

i. Write the model equation and assumptions. Compare them with those of previous models.

ii. What is the equation of the �tted 
urve? Draw the 
urve on the s
atterplot.

iii. Study the residuals of this linear model and dis
uss the validity of the model assumptions.

iv. Sin
e a linear model is a spe
i�
 instan
e of a GLM, it makes sense to talk about the

residual devian
e of the model that was now �tted. Cal
ulate it using R. Can this value be


ompared with the value obtained in the previous question, in whi
h a Normal distribution

of the random 
omponent was also assumed?

7. There are alternative parametrizations for the Gamma density fun
tion. The parametrization shown

in the slides is:

f(y | µ, ν) =
νν

µνΓ(ν)
yν−1 e−

νy
µ .

In this parametrization, µ is the expe
ted value of the variable and the se
ond parameter, ν, appears

in the expression for the varian
e: V [Y ] = µ2

ν
.

(a) A di�erent parametrization of the Gamma density is:

f(y | α, β) =
1

βαΓ(α)
yα−1 e−

y
β .

Show that this is the same fun
tion, but with new parameters, related by µ = αβ and ν = α.

(b) In the book Probabilidades e Estatísti
a, by Prof. Bento Murteira (M
Graw-Hill Portugal,

1979), a third parametrization of the Gamma density is given:

f(y | n, γ) =
γn

Γ(n)
yn−1 e−γ y .

Identify the relations between the parameters in this expression and those of previous parame-

trizations. Relate the expe
ted value and varian
e in this parametrization with those of the

parametrization used in the 
lasses.

8. De�ne the following 
on
epts, in the 
ontext of Generalized Linear Models:

(a) link fun
tion

(b) devian
e residual

9. Nineteen beetles of the spe
ies Alti
a olera
ea and twenty beetles of the spe
ies Alti
a 
arduorum

were subje
ted to morphometri
 measurements in four variables: the distan
e from the transversal

groove to the posterior border of the pro-torax (variable TG), the length of the elytra (variable

Elytra), the length of the se
ond segment of the antennae (variable Se
ond.Antenna) and the length

of the third segment of the antennae (variable Third.Antenna).

The units of measurement of all variables ex
ept the length of the elytra are mi
rometers (the

millionth part of the meter, µm). The length of the elytra is given in one hundredths of a millimeter

(10µm).

Some of the data 
olle
ted 
an be seen below.
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Spe
ies TG Elytra Se
ond.Antenna Third.Antenna

1 olera
ea 189 245 137 163

2 olera
ea 192 260 132 217

3 olera
ea 217 276 141 192

4 olera
ea 221 299 142 213

(...)

18 olera
ea 181 255 146 183

19 olera
ea 192 287 141 198

20 
arduorum 181 305 184 209

21 
arduorum 158 237 133 188

(...)

36 
arduorum 192 276 154 209

37 
arduorum 181 278 149 235

38 
arduorum 175 271 140 192

39 
arduorum 197 303 170 205

------------------------------------------------------

variân
ia 196.888 502.7085 216.0445 341.8313

média 186.8205 279.2308 147.5385 197.8974

Halti
a olera
ea

We seek a model to identify a given spe
ies of beetle, that is, we wish to obtain a model that

dis
riminates between the spe
ies. Given the di�
ulty in obtaining pre
ise measurements, due to

the animals' small size, it was 
onsidered important to have a parsimonious model, that is a model

with as few morphomteri
 predi
tors as possible.

(a) A Logisti
 Regression was �tted, initially with the four morphometri
 variables that are shown.

The following results were obtained.

Call: glm(formula = (Spe
ies == "
arduorum") ~ TG + Elytra + Se
ond.Antenna

+ Third.Antenna, family = binomial, maxit = 50, data=flea.beetles)

Coeffi
ients:

Estimate Std. Error z value Pr(>|z|)

(Inter
ept) -6.237e+02 1.869e+06 -3.34e-04 1

TG -1.162e+01 2.077e+04 -0.001 1

Elytra 5.559e+00 9.735e+03 0.001 1

Se
ond.Antenna 7.634e+00 1.757e+04 4.34e-04 1

Third.Antenna 8.133e-01 1.411e+04 5.77e-05 1

Null devian
e: 5.4040e+01 on 38 degrees of freedom

Residual devian
e: 4.7616e-10 on 34 degrees of freedom

AIC: 10 Number of Fisher S
oring iterations: 28

i. Des
ribe the �tted model in detail, as a Generalized Linear Model, spe
ifying its three


omponents.

ii. Dis
uss the model's quality, for the purpose of identifying the spe
ies of beetle. How


an the �tted model's almost null devian
e be explained? Is there a problem of over-

parametrization?

iii. Interpret the estimated value 7.634 of the parameter asso
iated with the variable Se-


ond.Antenna.

iv. Based on the available information, do you think it is possible to simplify the model

without a signi�
ant loss in dis
riminatory 
apa
ity? If so, what is the �rst predi
tor that


an be ex
luded from the model, in a ba
kward elimination approa
h?

(b) A ba
kward elimination stepwise approa
h was followed, using R's step fun
tion. Comment

the various steps in the algorithm and identify the �nal model.
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> step(flea.glm.logit)

Start: AIC=10

(Spe
ies == "
arduorum") ~ TG + Elytra + Se
ond.Antenna + Third.Antenna

Df Devian
e AIC

- Third.Antenna 1 0.000 8.000

- Se
ond.Antenna 1 0.000 8.000

<none> 0.000 10.000

- Elytra 1 10.132 18.132

- TG 1 24.686 32.686

Step: AIC=8

(Spe
ies == "
arduorum") ~ TG + Elytra + Se
ond.Antenna

Df Devian
e AIC

<none> 0.0000 8.000

- Se
ond.Antenna 1 9.8414 15.841

- Elytra 1 16.6409 22.641

- TG 1 29.7719 35.772

Call: glm(formula = (Spe
ies == "
arduorum") ~ TG + Elytra +

Se
ond.Antenna, family = binomial, data = flea.beetles, maxit = 50)

Coeffi
ients:

(Inter
ept) TG Elytra Se
ond.Antenna

-968.93 -19.46 9.37 13.91

Degrees of Freedom: 38 Total (i.e. Null); 35 Residual

Null Devian
e: 54.04

Residual Devian
e: 3.846e-10 AIC: 8

(
) Regardless of your answer in the previous question, it was de
ided to �t a model with only two

predi
tors. The best model of this kind dropped the measurements relative to the antennaes.

Results are shown below.

Call: glm(formula = (Spe
ies == "
arduorum") ~ TG + Elytra,

family = binomial, maxit = 50, data=flea.beetles)

Coeffi
ients:

Estimate Std. Error z value Pr(>|z|)

(Inter
ept) 10.1559 12.8285 0.792 0.4286

TG -0.4271 0.1792 -2.384 0.0171 *

Elytra 0.2505 0.1038 2.413 0.0158 *

---

Null devian
e: 54.0398 on 38 degrees of freedom

Residual devian
e: 9.8414 on 36 degrees of freedom

AIC: 15.841 Number of Fisher S
oring iterations: 8

i. Formally test whether this model and the initial model are signi�
antly di�erent.

ii. For ea
h spe
ies, what are the probabilities predi
ted by the model that was now �tted,

for a beetle with TG = 200 and Elytra = 250? What spe
ies would you asso
iate with a

beetle with those 
hara
teristi
s?

(d) It was then de
ided to try out a di�erent link fun
tion, in parti
ular the 
omplementary log-

log link fun
tion, using only the two predi
tors mentioned in question 9
. The results now

obtained are the following:

ISA/UL � Modelos Matemáti
os � 2020-21 � Jorge Cadima 8



Call: glm(formula = (Spe
ies == "
arduorum") ~ TG + Elytra,

family = binomial(link = "
loglog"), maxit = 50)

Coeffi
ients:

Estimate Std. Error z value Pr(>|z|)

(Inter
ept) 7.78272 7.75729 1.003 0.3157

TG -0.33889 0.13206 -2.566 0.0103 *

Elytra 0.19769 0.07766 2.546 0.0109 *

---

Null devian
e: 54.0398 on 38 degrees of freedom

Residual devian
e: 8.7522 on 36 degrees of freedom

AIC: 14.752 Number of Fisher S
oring iterations: 12

i. The following plot shows the �tted probabilities for ea
h model, with the probabilities

from the 
omplementary log-log model on the verti
al axis and the probabilities for the

model with the 
anoni
al link fun
tion on the horizontal axis. Comment your results. In

parti
ular, dis
uss individual 19.
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ii. Whi
h two-predi
tor model do you prefer: this one, or the one dis
ussed in question 9
?

Justify your answer.

iii. What is the predi
ted probability for an individual with observed values TG = 200 and

Elytra = 250? Compare this with the 
orresponding result for the model in question 9


and 
omment.

10. Consider again the data in Exer
ise 1. Fit a probit regression model for the probability of death,

but now 
onsidering in the systemati
 
omponent not just the numeri
al variable log2(dose), but
also the fa
tor sexo.

(a) Obtain a single model that may be interpreted as having two di�erent systemati
 
omponents,

β0 + β1 log2(Dose), one for males and the other for females, ea
h with its own parameters.

(b) Fit the model indi
ated in your previous reply to the data and 
omment. Can we 
onsider

this model to be better than the model �tted in Exer
ise 1?

(
) Now 
onsider a third model, in whi
h the systemati
 
omponent assumes that the 
oe�
ient

for the log-dose is the same in both sexes, but a di�erent additive 
onstant may exist. Fit the

model and 
ompare its results with those obtained for the previous two models. Dis
uss.

(d) Whi
h of these three models would you 
hoose? Justify your 
hoi
e.
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11. The book by P. M
Cullagh and J.A. Nelder, Generalized Linear Models (2d. edition, 1989, Chap-

man & Hall), on pages 300-302, dis
usses a dataset where the 
lotting times of blood (in se
onds)

for normal plasma diluted with nine di�erent 
on
entrations of prothrombin-free plasma (the proth-

rombin protein is produ
ed in the liver and, when a
tivated - generating thrombine - is asso
iated

with the 
lotting of blood). Two di�erent lots of the a
tivating agent of 
lotting were used. The

observed data are shown below and given in the data frame sangue.

Coagulation time

Con
entration Lot 1 Lot 2

5 118 69

10 58 35

15 42 26

20 35 21

30 27 18

40 25 16

60 21 13

80 19 12

100 18 12

We seek to study the e�e
ts of di�erent 
on
entrations of prothrombine-free plasma on the 
oagu-

lation times. We begin by ignoring possible lot e�e
ts.

(a) Plot 
oagulation times (tempo, on the verti
al axis) versus plasma 
on
entrations (
on
.plasma,

horizontal axis), using di�erent symbols and/or 
olours to represent the observations from ea
h

lot. Comment.

(b) It is suggested that the relation between the variables tempo and 
on
entration of prothrombine-

free plasma (variable 
on
.plasma) follows a hyperboli
-type relation, of the form tempo =
1

β0+β1·conc
. Produ
e a suitable graphi
al representation to visually validate this suggestion.

Comment.

(
) After a further visual inspe
tion, it was 
on
luded that the most adequate relation seems to

be a hyperboli
-type relation, but on the logarithms of plasma 
on
entration, that is, of the

form tempo = 1
β0+β1 ln(conc) . Con�rm this, by produ
ing a suitable graphi
al representation.

(d) To �t the model indi
ated in the previous question, the link fun
tion is the re
ipro
al fun
tion,

g(µ) = 1
µ
, using as a predi
tor the variable of log-
on
entrations. But the issue of whi
h

distribution should be asso
iated with the response variable tempo remains an open issue. Fit

two di�erent GLMs, assuming:

i. that tempo has a Normal distribution (Note: In R, this assumption 
orresponds to using

the argument family=gaussian(link=�inverse�) in the glm 
ommand);

ii. that tempo has a Gamma distribution (Note: In R, this assumption 
orresponds to using

the argument family=Gamma, and it is not ne
essary to spe
ify the link fun
tion, sin
e the

re
ipro
al is the 
anoni
al link fun
tion for a Gamma distribution).

Draw the 
urves that 
orrespond to ea
h �tted model on top of the s
atterplot of tempo

(verti
al axis) versus log-
on
entrations of plasma (horizontal axis). Comment.

(e) Compar the resulting �ts in the previous question. Comment and indi
ate whi
h seems to be

the better suited for the distribution of tempo, taking into a

ount the nature and the values

of that response variable, as well as the other available information.

In the following questions, 
onsider the fa
tor lote, with its two levels.
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(f) Fit models with Normal and Gamma random 
omponents, and the re
ipro
al link fun
tion,

but now 
rossing the numeri
al predi
tor log-
on
entration with the fa
tor lote.

(g) Interpret the meaning of the resulting parameters, drawing the �tted 
urves for ea
h lot on

the time vs. log-
on
entration plot.

(h) Dis
uss the quality of the resulting �ts.
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