
1 MATRICES AND LINEAR ALGEBRA

Exerises - Modelos Matemátios e Apliações

Introdution to Multivariate Statistis - 2020-21

Note: The datasets for some of this Module's exerises an be found on the ourse webpage (Setion

Materiais de Apoio, Módulo III. The datasets are in a �le alled dadosMulti.RData (the extension

indiates that this �le may be loaded into an R session, with the ommand load). The �le ontains

the following data frames: santarem (Exerise 7), brix2 (Exerise 8), trigo (Exerise 10), kendall

(Exerise 11), adelges (Exerise 12), lobos (Exerise 13) e diday (Exerise 15). The �le also ontains

the data frame lavagantes, with the dataset disussed in the slides.

1 Matries and Linear Algebra

1. Consider the linear spae R
2
. Let M be a subspae of R

2
spanned by vetor

[

1
0

]

. Let N be the

subspae of R
2
spanned by vetor

[

1
1

]

.

(a) Charaterize the vetors that are in subspae M.

(b) What is the orthogonal projetion of the vetor

[

c

d

]

onto the subspae M?

() Charaterize the vetors of subspae N.

(d) What is the orthogonal projetion of vetor

[

1
0

]

onto the subspae N?

2. Consider the spae R
n
with its usual inner produt < ~x, ~y >= ~xt~y.

(a) Charaterize the vetors in R
n
that are orthogonal to the vetor of n ones, 1n.

(b) Assoiate the points/vetors in R
n
with sets of n observations on a given variable. From

a statistial point of view, how an the elements of the subspae desribed in the previous

question be interpreted?

3. Let
~y ∈ R

n
be the vetor representation of n observations of a given variable. Let

~yc ∈ R
n
be the

orresponding entred vetor.

(a) Disuss the e�et of a translation of the origin in the units of measurement of the variable

(that is, yi → a+ yi) on the vetors
~y and

~yc
.

(b) Disuss the e�et of a multipliative hange of sale (yi → b yi, ∀i) on the vetors
~y and

~yc
.

() Disuss the e�et of a linear transformation yi → a+ byi, ∀i, on the vetors
~y and

~yc
.

Now onsider a seond vetor
~x ∈ R

n
representing observations of a new variable on the same n

individuals. Let
~xc

be the orresponding entred vetor.

(d) Disuss the e�et of di�erent linear trasformations of the two variables (xi → a + bxi and

yi → c + dyi, ∀i) on the vetors that represent them in R
n
. Disuss the in�uene of those

transformations on the statistial indiators ovariane and orrelation oe�ient.
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2 PRINCIPAL COMPONENT ANALYSIS

4. Consider the matries XtX and XXt
, where X is an n × p matrix. Con�rm that, if λj 6= 0 is

an eigenvalue of XtX, with orresponding eigenvetor
~cj , then X~cj is an eigenvetor of matrix

XXt
, with the same eigenvalue. Conversely, if λj 6= 0 is an eigenvalue XXt

with orresponding

eigenvetor

~bj , then Xt~bj is an eigenvetor of XtX, witht the same eigenvalue.

5. Use the Singular Value Deomposition of a matrix Y, given by:

Y =

r
∑

i=1

δi ~wi~v
t
i

to show that if
~wi is a left singular vetor assoiated with the singular value δi and

~vi is the

orresponding right singular vetor, then:

Y~vi = δi ~wi e Yt ~wi = δi~vi

6. Consider a matrix B and the matrix of orthogonal projetions onto the subspae spanned by the

olumns of B, PB = B(BtB)−1Bt
. Using the Singular Value Deomposition of matrix B, �nd an

alternative expression for matrix PB. Comment.

2 Prinipal Component Analysis

7. In the 1973 Agriultural Statistis (Estatístias Agríolas) of Portugal's National Statistis Board

(Instituto Naional de Estatístia, INE), produtivities (in t/ha) of 9 agriultural produts are given

for eah of the 20 muniipalities of the Santarém distrit. The data are shown below, and an be

found in the santarem data frame, whh is available on the ourse website, in �le dadosACP.RData.

Muniipality Wheat Maize Rye Oats Barley Broadbean Beans Chikpea Potato

(trigo) (milho) (enteio) (aveia) (evada) (fava) (feijao) (grao) (batata)

Abrantes 1.041 0.541 0.515 0.595 0.402 0.672 0.327 0.423 7.437

Alanena 0.887 1.697 0.700 1.051 0.630 0.631 0.517 0.618 10.317

Almeirim 1.013 0.431 0.545 0.511 0.374 0.696 0.376 0.495 7.389

Alpiarça 1.293 1.803 0.891 0.413 1.094 0.591 0.518 0.500 17.678

Benavente 1.559 1.949 0.669 1.053 1.029 0.628 0.346 0.614 8.290

Cartaxo 0.925 1.600 0.544 0.696 0.460 0.657 0.352 0.469 9.071

Chamusa 1.103 3.144 0.379 0.321 0.423 0.542 0.543 0.442 17.199

Constânia 1.516 0.524 0.321 0.562 0.571 0.474 0.381 0.485 11.271

Coruhe 1.443 0.483 0.605 0.698 1.250 0.742 0.229 0.371 19.160

Entronamento 1.023 4.120 0.716 0.621 0.707 1.057 0.533 0.700 20.600

F.do Zêzere 0.981 2.413 0.305 0.773 1.048 0.696 0.524 0.602 9.889

Golegã 1.223 3.777 0.646 0.330 0.763 0.763 0.672 0.311 8.113

Mação 0.839 0.772 0.306 0.362 0.260 0.600 0.293 0.420 8.468

Rio Maior 0.809 1.153 0.927 0.694 0.707 1.777 0.417 0.433 7.060

Salvaterra 1.509 1.100 1.034 0.697 1.582 1.138 0.636 0.516 10.791

Santarém 0.712 1.342 1.145 0.457 0.686 0.982 0.616 0.426 14.135

Sardoal 0.780 0.463 0.326 0.414 0.435 0.822 0.383 0.396 10.078

Tomar 1.000 1.928 0.430 0.863 1.080 0.913 0.404 0.687 9.320

Torres Novas 1.262 2.453 0.716 0.971 0.885 0.928 0.512 0.664 21.100

V.N.Barquinha 0.917 1.081 0.811 1.000 0.909 0.967 0.620 0.667 18.347

Here is the variane-ovariane matrix for this dataset:
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2 PRINCIPAL COMPONENT ANALYSIS

> round(var(santarem), d=3)

trigo milho enteio aveia evada fava feijao grao batata

trigo 0.069 0.016 0.002 0.010 0.050 -0.021 -0.002 0.001 0.236

milho 0.016 1.198 0.017 -0.006 0.040 0.009 0.076 0.038 1.735

enteio 0.002 0.017 0.062 0.011 0.039 0.041 0.016 0.002 0.308

aveia 0.010 -0.006 0.011 0.057 0.034 0.012 -0.001 0.020 0.106

evada 0.050 0.040 0.039 0.034 0.117 0.026 0.013 0.012 0.470

fava -0.021 0.009 0.041 0.012 0.026 0.084 0.009 0.003 -0.003

feijao -0.002 0.076 0.016 -0.001 0.013 0.009 0.016 0.003 0.167

grao 0.001 0.038 0.002 0.020 0.012 0.003 0.003 0.013 0.184

batata 0.236 1.735 0.308 0.106 0.470 -0.003 0.167 0.184 23.531

(a) Consider a Prinipal Component Analysis on the ovariane matrix of the data (that is, on

the dataset in its original units).

i. Disuss the quality of the dimensionality redution whih an be ahieved with PCA.

ii. Based on the results produed by the promp ommand, draw the 20-point satterplot

showing the muniipalities on the plane de�ned by the �rst two prinipal omponents.

Identify the 7 muniipalities that appear on the right half of the plot. Also, identify the

point that appears, by itself, in the top left orner.

iii. Calulate, using R, the oe�ients of linear orrelation between PC 1 and eah of the

nine original variables. Con�rm the values of the three orrelation oe�ients between

the �rst pronipal omponent and the variables batata (potato), fava (broadbeans) and

milho (maize), using the formula shown in the slides. Repeat for the seond prinipal

omponent. Disuss.

iv. Try to interpret the nature of the �rst two prinipal omponents. Justify your reply.

v. Build the orrespnding biplot and disuss it.

vi. Critially assess the Prinipal Components Analysis (PCA) that you arried out, disussing

in partiular the deision to use a ovariane-matrix PCA.

(b) Now arry out a Prinipal Component Analysis of the normalized data, that is, based on the

orrelation matrix.

i. Disuss the quality of the redution in dimensionality that an be obtained by a orrelation-

matrix PCA. Comment it, also taking into aount the results of the PCA on the original

data.

ii. Calulate the orrelation oe�ients between eah of the original variables and eah of

the PCs that were now obtained. Is it neessary to standardize the variables in order to

ompute these orrelation oe�ients?

iii. Draw the relevant biplot and disuss it. In partiular, try to interpret the nature of the

�rst two prinipal omponents of the normalized data.

() Answer the following question by a user: �whih of the PCA variants should I use in this

ase�?

8. In a study of greenhouse raspberries, 7 variables haraterizing the properties of piked fruits were

observed. Spei�ally, raspberries were olleted from 14 di�erent plants and their mean value for

eah plant were reorded, for the following variables: Diametro (diameter), Altura (height), Peso

(weight), Brix, pH, a di�erent measure of aidity, whih will be alled Aidez, and Auar (sugar

ontent). The resulting values are given in the data frame brix2 (the dataset was already studied

in Module II, but there is now the new variable Aidez):
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2 PRINCIPAL COMPONENT ANALYSIS

Plant Diametro Altura Peso Brix pH Aidez Auar

1 2.0 2.1 3.71 8.4 2.78 1.39 5.12

2 2.1 2.0 3.79 8.4 2.84 1.49 5.40

3 2.0 1.7 3.65 8.7 2.89 1.51 5.38

4 2.0 1.8 3.83 8.6 2.91 1.44 5.23

5 1.8 1.8 3.95 8.0 2.84 1.62 3.44

6 2.0 1.9 4.18 8.2 3.00 1.74 3.42

7 2.1 2.2 4.37 8.1 3.00 1.68 3.48

8 1.8 1.9 3.97 8.0 2.96 1.57 3.34

9 1.8 1.8 3.43 8.2 2.75 1.46 2.02

10 1.9 1.9 3.78 8.0 2.75 1.54 2.14

11 1.9 1.9 3.42 8.0 2.73 1.26 2.06

12 2.0 1.9 3.60 8.1 2.71 1.18 2.02

13 1.9 1.7 2.87 8.4 2.94 1.32 3.86

14 2.1 1.9 3.74 8.8 3.20 1.46 3.89

(a) State, justifying your answer, whether a Prinipal Component Analysis on the ovariane

matrix is suitable for this dataset.

(b) State, justifying your answer, whether a Prinipal Component Analysis on the orrelation

matrix provides a suitable two-dimensional representation of the data, without substantial

loss of information.

() Regardless of your answers above, build a biplot for the data. Disuss it.

(d) The 14 plants were not all observed on the same dates. The fruits from eah plant were

olleted on �ve di�erent dates:

Date Plants

November 28 1,2,3,4

Deember 13 5,6,7,8

January 16 9,10,11,12

February 20 13

April 3 14

Are the di�erent dates of olletion re�eted in the �rst prinipal plane of the standardized

data? In your reply, identify whih points in the satterplot are assoiated with eah date.

(e) If your reply to the previous question was 'yes' state, with justi�ation, whether it would

neessarily have to be the ase that this sub-group struture is re�eted in the �rat prinipal

plane. If your answer was 'no', state why suh struture does not have to be re�eted in the

�rst pronipal plane, given the optimizing properties of the �rst two prinipal omponents.

(f) Now assume that a new plant's raspeberries were observed, with the following mean values for

eah (in order) variable: 1.9, 2.0, 3.92, 8.1, 2.91, 1.48, 3.78. If you wish to represent this new

observation on the �rst prinipal plane, what oordinates should it have? Justify your answer

and draw the new point on the �rst prinipal plane. Con�rm your answer, using R's predit

ommand, whih also has a method for objets obtained resulting from PCAs obtained with

the promp ommand. This ommand is used in a similar way to the predit ommand for

linear, or generalized linear, models.

9. Consider the data for the prodution of orn in the US State of Iowa, already studied in Module

II, and whih an be found in the data frame milho.

(a) Whih variant of PCA (ovariane matrix or orrelation matrix) do you onsider suitable for

this dataset? Justify your reply.
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2 PRINCIPAL COMPONENT ANALYSIS

(b) How good is the dimensionality redution provided by a PCA on the 10 standardized variables?

() Build a biplot for the orrelation matrix PCA.

i. Comment the biplot, also taking into onsideration the multiple linear regression submodel

that was hosen by all the subset seletion methods, and whih resulted in modelling y

based on the four preditors x1, x2, x6 and x9. Is it possible to make any omment

regarding this hoie, based on the biplot?

ii. Comment the following statement: �The biplot suggests that variables x3 and x5 are

strongly orrelated, but this onlusion is not on�rmed by the orrelation matrix between

the 10 variables�.

iii. Comment the following statement: �Sine this was a orrelation matrix PCA, all the

vetors representing the entred variables should be of equal length. The fat that variable

x8 is represented in the biplot by a muh shorter vetor than all the rest suggests that this

variable is poorly represented on the plane de�ned by the �rst two standardized PCs�.

10. An old study arried out in Belgium (Bere e Wilbaux, 1935 Reherhe Statistique des relations

existant entre le rendement des plantes de grandes ultures et les fateurs météorologiques en Bel-

gique. Bull. Inst. Agron. Stn. Reh. Gembloux, 4, 32�81), reorded p = 5 meteorologial and

agronomial variables throughout n = 11 agriultural seasons. The �ve variables were:

x1 total rainfall in November and Deember (mm)

x2 mean temperature in July (

o
C)

x3 total rainfall in July (mm)

x4 radiation in July (mm of alohol)

x5 mean yield of durum wheat (quintals/ha)

The observed values were:

Season
~x1 ~x2 ~x3 ~x4 ~x5

1920-21 87.9 19.6 1.0 1661 28.37

1921-22 89.9 15.2 90.1 968 23.77

1922-23 153.0 19.7 56.6 1353 26.04

1923-24 132.1 17.0 91.0 1293 25.74

1924-25 88.8 18.3 93.7 1153 26.68

1925-26 220.9 17.8 106.9 1286 24.29

1926-27 117.7 17.8 65.5 1104 28.00

1927-28 109.0 18.3 41.8 1574 28.37

1928-29 156.1 17.8 57.4 1222 24.96

1929-30 181.5 16.8 140.6 902 21.66

1930-31 181.4 17.0 74.3 1150 24.37

(a) Carry out a orrelation matrix Prinipal Component Analysis for this dataset, identifying the

�ve Prinipal Components.

(b) Build the best possible two-dimensional representation of the n = 11 point satterplot in R
5

for the data.

() Calulate the orrelation oe�ients between the �rst Prinipal Component and eah of the

�ve original variables. Interpret your results.
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2 PRINCIPAL COMPONENT ANALYSIS

(d) Some units of measurement are now outdated. The most frequent units of measurement for

yield are tons per hetare, whih means that the values of variable x5 should be divided by 10.
On the other hand, the metri system units for radiation are MJ m−2

, whih means that to

onvert the values of variable x4 to these units, the following a�ne transformation is needed:

x∗

4 = −0.02960342 + 0.75518263 x4. How do these hanges in units a�et the replies to the

above questions? Con�rm your answer using R.

11. Consider the following data set, disussed by Kendall (Multivariate Analysis, Charles Gri�n & Co.,

1980, pg. 20), and with measurements for 20 soil samples:

Sample Sand ontent lime ontent Clay ontent Organi Aidity

(%) (%) (%) matter (%) (pH)

1 77.3 13.0 9.7 1.5 6.4

2 82.5 10.0 7.5 1.5 6.5

3 66.9 20.6 12.5 2.3 7.0

4 47.2 33.8 19.0 2.8 5.8

5 65.3 20.5 14.2 1.9 6.9

6 83.3 10.0 6.7 2.2 7.0

7 81.6 12.7 5.7 2.9 6.7

8 47.8 36.5 15.7 2.3 7.2

9 48.6 37.1 14.3 2.1 7.2

10 61.6 25.5 12.9 1.9 7.3

11 58.6 26.5 14.9 2.4 6.7

12 69.3 22.3 8.4 4.0 7.0

13 61.8 30.8 7.4 2.7 6.4

14 67.7 25.3 7.0 4.8 7.3

15 57.2 31.2 11.6 2.4 6.5

16 67.2 22.7 10.1 3.3 6.2

17 59.2 31.2 9.6 2.4 6.0

18 80.2 13.2 6.6 2.0 5.8

19 82.2 11.1 6.7 2.2 7.2

20 69.7 20.7 9.6 3.1 5.9

(a) Carry out a ovariane matrix Prinipal Component Analysis of the dataset. Explain the

existene of a zero eigenvalue and the nature of the orresponding eigenvetor.

(b) Build the biplot assoiated with the PCA on the standardized data. The relative positions

of the vetors representing the variables aidez and mat.org (organi matter) suggests that

these are two highly orrelated variables. However, this fat is not on�rmed by the orrelation

matrix between the original variables. How an this apparent ontradition be explained?

() Now drop the variable areia (sand ontent) from the data matrix. Repeat the ovariane

matrix PCA.

i. Calulate the orrelation oe�ient between eah Prinipal Component and eah variable.

ii. Compare the values obtained with the variable loadings in the linear ombinations de�ning

the PCs and note how the attept to interpret Prinipal Components only in terms of the

oe�ients (loadings) may be misleading.

12. In a study of winged aphids Alate adelges ( D.F. Morrison, Multivariate Statistial Methods, p.477)

measurements of 19 variables were taken on 40 individuals. The 19 observed variables, as well as

the means and varianes of the observed values were:
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Name Aronym Desription x s
2

length COM body length 15.05 14.58

width LAR body width 7.14 4.05

forwing CAA fore-wing length 5.68 1.68

hinwing CAP hind-wing length 3.45 0.83

spira E number of spirales 4.88 0.11

antseg1 AS1 length of antennal segment I 1.86 0.11

antseg2 AS2 length of antennal segment II 1.69 0.11

antseg3 AS3 length of antennal segment III 2.25 0.22

antseg4 AS4 length of antennal segment IV 2.33 0.15

antseg5 AS5 length of antennal segment V 2.73 0.15

antspin S number of antennal spines 4.28 1.33

tarsus3 TAR leg length, tarsus III 3.31 0.41

tibia3 TIB leg length, tibia III 3.38 0.58

femur3 FEM leg length femur III 2.57 0.34

rostrum ROS rostrum 5.58 0.79

ovipos OVI ovipositor 3.72 0.35

ovspin N number of ovipositor spines 7.80 3.81

fold P anal fold (no/yes - 0/1 variable) 0.73 0.20

hooks GAP number of hind-wing hooks 2.38 0.25

These were the observations:

COM LAR CAA CAP E AS1 AS2 AS3 AS4 AS5 S TAR TIB FEM ROS OVI N P GAP

21.2 11.0 7.5 4.8 5 2.0 2.0 2.8 2.8 3.3 3 4.4 4.5 3.6 7.0 4.0 8 0 3

20.2 10.0 7.5 5.0 5 2.3 2.1 3.0 3.0 3.2 5 4.2 4.5 3.5 7.6 4.2 8 0 3

20.2 10.0 7.0 4.6 5 1.9 2.1 3.0 2.5 3.3 1 4.2 4.4 3.3 7.0 4.0 6 0 3

22.5 8.8 7.4 4.7 5 2.4 2.1 3.0 2.7 3.5 5 4.2 4.4 3.6 6.8 4.1 6 0 3

20.6 11.0 8.0 4.8 5 2.4 2.0 2.9 2.7 3.0 4 4.2 4.7 3.5 6.7 4.0 6 0 3

19.1 9.2 7.0 4.5 5 1.8 1.9 2.8 3.0 3.2 5 4.1 4.3 3.3 5.7 3.8 8 0 3.5

20.8 11.4 7.7 4.9 5 2.5 2.1 3.1 3.1 3.2 4 4.2 4.7 3.6 6.6 4.0 8 0 3

15.5 8.2 6.3 4.9 5 2.0 2.0 2.9 2.4 3.0 3 3.7 3.8 2.9 6.7 3.5 6 0 3.5

16.7 8.8 6.4 4.5 5 2.1 1.9 2.8 2.7 3.1 3 3.7 3.8 2.8 6.1 3.7 8 0 3

19.7 9.9 8.2 4.7 5 2.2 2.0 3.0 3.0 3.1 0 4.1 4.3 3.3 6.0 3.8 8 0 3

10.6 5.2 3.9 2.3 4 1.2 1.0 2.0 2.0 2.2 6 2.5 2.5 2.0 4.5 2.7 4 1 2

9.2 4.5 3.7 2.2 4 1.3 1.2 2.0 1.6 2.1 5 2.4 2.3 1.8 4.1 2.4 4 1 2

9.6 4.5 3.6 2.3 4 1.3 1.0 1.9 1.7 2.2 4 2.4 2.3 1.7 4.0 2.3 4 1 2

8.5 4.0 3.8 2.2 4 1.3 1.1 1.9 2.0 2.1 5 2.4 2.4 1.9 4.4 2.3 4 1 2

11.0 4.7 4.2 2.3 4 1.2 1.0 1.9 2.0 2.2 4 2.5 2.5 2.0 4.5 2.6 4 1 2

18.1 8.2 5.9 3.5 5 1.9 1.9 1.9 2.7 2.8 4 3.5 3.8 2.9 6.0 4.5 9 1 2

17.6 8.3 6.0 3.8 5 2.0 1.9 2.0 2.2 2.9 3 3.5 3.6 2.8 5.7 4.3 10 1 2

19.2 6.6 6.2 3.4 5 2.0 1.8 2.2 2.3 2.8 4 3.5 3.4 2.5 5.3 3.8 10 1 2

15.4 7.6 7.1 3.4 5 2.0 1.9 2.5 2.5 2.9 4 3.3 3.6 2.7 6.0 4.2 8 1 3

15.1 7.3 6.2 3.8 5 2.0 1.8 2.1 2.4 2.5 4 3.7 3.7 2.8 6.4 4.3 10 1 2.5

16.1 7.9 5.8 3.7 5 2.1 1.9 2.3 2.6 2.9 5 3.6 3.6 2.7 6.0 4.5 10 1 2

19.1 8.8 6.4 3.9 5 2.2 2.0 2.3 2.4 2.9 4 3.8 4.0 3.0 6.5 4.5 10 1 2.5

15.3 6.4 5.3 3.3 5 1.7 1.6 2.0 2.2 2.5 5 3.4 3.4 2.6 5.4 4.0 10 1 2

14.8 8.1 6.2 3.7 5 2.2 2.0 2.2 2.4 3.2 5 3.5 3.7 2.7 6.0 4.1 10 1 2

16.2 7.7 6.9 3.7 5 2.0 1.8 2.3 2.4 2.8 4 3.8 3.7 2.7 5.7 4.2 10 1 2.5

13.4 6.9 5.7 3.4 5 2.0 1.8 2.8 2.0 2.6 4 3.6 3.6 2.6 5.5 3.9 10 1 2

12.9 5.8 4.8 2.6 5 1.6 1.5 1.9 2.1 2.6 5 2.8 3.0 2.2 5.1 3.6 9 1 3

12.0 6.5 5.3 3.2 5 1.9 1.9 2.3 2.5 3.0 5 3.3 3.5 2.6 5.4 4.3 8 1 2

14.1 7.0 5.5 3.6 5 2.2 2.0 2.3 2.5 3.1 5 3.6 3.7 2.8 5.8 4.1 10 1 2

16.7 7.2 5.7 3.5 5 1.9 1.9 2.5 2.3 2.8 5 3.4 3.6 2.7 6.0 4.0 10 1 2.5

14.1 5.4 5.0 3.0 5 1.7 1.6 1.8 2.5 2.4 5 2.7 2.9 2.2 5.3 3.6 8 1 2

10.0 6.0 4.2 2.5 5 1.6 1.4 1.4 2.0 2.7 6 2.8 2.5 1.8 4.8 3.4 8 1 2

11.4 4.5 4.4 2.7 5 1.8 1.5 1.9 1.7 2.5 5 2.7 2.5 1.9 4.7 3.7 8 1 2

12.5 5.5 4.7 2.3 5 1.8 1.4 1.8 2.2 2.4 4 2.8 2.6 2.0 5.1 3.7 8 0 2

13.0 5.3 4.7 2.3 5 1.6 1.4 1.8 1.8 2.5 4 2.7 2.7 2.1 5.0 3.6 8 1 2

12.4 5.2 4.4 2.6 5 1.6 1.4 1.8 2.2 2.2 5 2.7 2.5 2.0 5.0 3.2 6 1 2

12.0 5.4 4.9 3.0 5 1.7 1.5 1.7 1.9 2.4 5 2.7 2.7 2.0 4.2 3.7 6 1 2

10.7 5.6 4.5 2.8 5 1.8 1.4 1.8 2.2 2.4 4 2.7 2.6 2.0 5.0 3.5 8 1 2

11.7 5.5 4.3 2.6 5 1.7 1.5 1.8 1.9 2.4 5 2.6 2.5 1.9 4.6 3.4 8 1 2

12.8 5.7 4.8 2.8 5 1.6 1.4 1.7 1.9 2.3 5 2.3 2.5 1.9 5.0 3.1 8 1 2

(a) Brie�y desribe the main harateristis of the bundle of vetors representing the 19 entred,

but not standardized, variables in the spae of variables, R
40
.

(b) Carry out a orrelation matrix Prinipal Component Analysis of the data.

i. Attempt to interpret the �rst three prinipal omponents, based on the available informa-

tion. Justify your omments.

ii. Do you onsider a two-dimensional graphial representation adequate? Justify your reply.

Identify a variable whose representation on the �rst prinipal plane is not very good,

justifying your answer.
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3 DISCRIMINANT ANALYSIS

iii. The projeted satterplot of points on the plane de�ned by the �rst two prinipal ompo-

nents seems to more or less learly separate groups of individuals. Relate these groups to

the original variables and omment.

iv. Datasets with 19 variables for whih a orrelation matrix PCA explains suh a high pro-

portion of total variane on the �rst 2 or 3 PCs are not frequent. How an this feature be

justi�ed in the ase of this dataset?

v. Critially assess this PCA, taking into aount the nature of some of these 19 variables.

If you see some undesirable features, suggest alternatives.

3 Disriminant Analysis

13. The book by D.F. Morrison, Multivariate Statistial Methods (p.288), has data from a study in-

volving nine morphometri variables on the skulls of wolves (Canis lupus L.): palatal length (X1);

postpalatal length (X2); zygomati width (X3); palatal width outside the �rst upper molars (X4);

palatal width inside the seond upper premolars (X5); width between the postglenoid foramina

(X6); interorbital width (X7); least width of the brainase (X8); rown length of the �rst upper

molar (X9). All measurements are in mm. There are measurements for 25 individuals, who belong

to 4 groups: (1) 6 Roky Mountain males; (2) 3 Roky Mountain females; (3) 10 Arti males; and

(4) 6 Arti females. The data an be found in the data frame lobos, and are reprodued in the

table below.

X1 X2 X3 X4 X5 X6 X7 X8 X9 Grupo

126 104 141 81.0 31.8 65.7 50.9 44.0 18.2 1

128 111 151 80.4 33.8 69.8 52.7 43.2 18.5 1

126 108 152 85.7 34.7 69.1 49.3 45.6 17.9 1

125 109 141 83.1 34.0 68.0 48.2 43.8 18.4 1

126 107 143 81.9 34.0 66.1 49.0 42.4 17.9 1

128 110 143 80.6 33.0 65.0 46.4 40.2 18.2 1

116 102 131 76.7 31.5 65.0 45.4 39.0 16.8 2

120 103 130 75.1 30.2 63.8 44.4 41.1 16.9 2

116 103 125 74.7 31.6 62.4 41.3 44.2 17.0 2

117 99 134 83.4 34.8 68.0 40.7 37.1 17.2 3

115 100 149 81.0 33.1 66.7 47.2 40.5 17.7 3

117 106 142 82.0 32.6 66.0 44.9 38.2 18.2 3

117 101 144 82.4 32.8 67.5 45.3 41.5 19.0 3

117 103 149 82.8 35.1 70.3 48.3 43.7 17.8 3

119 101 143 81.5 34.1 69.1 50.1 41.1 18.7 3

115 102 146 81.4 33.7 66.4 47.7 42.0 18.2 3

117 100 144 81.3 37.2 66.8 41.4 37.6 17.7 3

114 102 141 84.1 31.8 67.8 47.8 37.8 17.2 3

110 94 132 76.9 30.1 62.1 42.0 40.4 18.1 3

112 94 134 79.5 32.1 63.3 44.9 42.7 17.7 4

109 91 133 77.9 30.6 61.9 45.2 41.2 17.1 4

112 99 139 77.2 32.7 67.4 46.9 40.9 18.3 4

112 99 133 78.5 32.5 65.5 44.2 34.1 17.5 4

113 97 146 84.2 35.4 68.7 51.0 43.6 17.2 4

107 97 137 78.1 30.7 61.6 44.9 37.3 16.5 4

(a) Perform a Linear Disriminant Analysis with the lda ommand in R's MASS pakage.

i. What is the �rst disriminant (anonial) variable? What is its disriminating apaity?

Comment.

ISA/ULisboa � Modelos Matemátios e Apliações � Estatístia Multivariada 2020-21 8



3 DISCRIMINANT ANALYSIS

ii. Use R's plot ommand to visualize the satterplots on the planes de�ned by the �rst three

disriminant axes. Disuss your results.

iii. To whih of the four groups would you assoiate a new set of observations, for a wolf

of unknown sex and habitat, with the following values on the nine observed variables:

125, 104, 145, 81.1, 33.2, 68.2, 49.0, 43.3, 18.2? Use the ommand predit, whih has a

method for objets of lass lda.

(b) Carry out a Prinipal Component Analysis on the set of observations of the 9 numerial

variables, on the 25 individuals. In partiular, assess the planes de�ned de�ned by eah pair

of PCs. Compare with the results of the LDA. Comment the disriminant apaity of the

Prinipal Components.

14. Carry out a Disriminant Analysis of the 150 iris �owers of the data frame iris, obtaining linear

funtions to disriminate the three iris varieties. In partiular,

(a) Use the �rst 40 individuals from eah speies to de�ne the disriminant axes (i.e., as a training

set).

(b) Classify the remaining 30 individuals (i.e., the validation set), using the disriminant axes

de�ned above (use the lassi�ation provided by R's predit ommand).

() Build a table omparing the true speies of the 30 observations in the validation set with these

lassi�ations produed by the Linear Disriminant Analysis. Disuss.

(d) Compare the projetion of the 150 individuals on the �rst prinipal plane, de�ned by a Prinipal

Component Analysis of the data. Disuss.

15. Three variables (v1, v2 e v3) were observed on eah of ten zebus and ten Charolais attle. The

resulting values (data in Diday et. al., 1982) are shown below and are available in the data frame

diday:

Zebus Charolesas

v1 v2 v3 v1 v2 v3

400 224 28.2 395 224 35.1

395 229 29.4 410 232 31.9

395 219 29.7 405 233 30.7

395 224 28.6 405 240 30.4

400 223 28.5 390 217 31.9

400 224 27.8 415 243 32.1

400 221 26.5 390 229 32.1

410 233 25.9 405 240 31.1

402 234 27.1 420 234 32.4

400 223 26.8 390 223 33.8

Perform a Linear Disriminant Analysis of the data and say whether you think the three variables

provide a good disrimination of zebus and Charolais attle.

16. Consider the videiras dataset, studied in Module II, with measurements of vineleaf surfae area

and lengths of main vein and left and right lateral veins, for n=200 leaves of eah of three varieties.

(a) Perform a Linear Disriminant Analysis, seeking to disriminate the grape varieties based on

the 4 observed numerial variables. Comment the result.
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3 DISCRIMINANT ANALYSIS

(b) Con�rm that the vetors of oe�ients (loadings) of the disriminant axes are not orthogonal

to eah other, but that the resulting new disriminant variables (vetors of sores) are unor-

related to eah other. Note: In R, the vetors of loadings an be obtained by applying the

oef ommand to the results of the lda ommand; the vetors of sores result from applying

the predit ommand to the results of lda and seleting objet x.

17. Write an R funtion to arry out a Linear Disriminant Analysis. This funtion should aept as

arguments:

• a matrix or data frame with the values of the variables;

• a vetor or fator indiating to whih of the k subgroups eah observation belongs.

The funtion must ompute and output:

• the matrix of between-lass (inter-lass) variability, B;

• the matrix of within-lass (intra-lass) variability, W;

• the eigenvalues and eigenvetors of matrix W−1B;

• the disriminant axes (that is, the k− 1 linear ombination of the entred variables whih are

de�ned by the eigenvetors W−1B assoiated with non-zero eigenvalues).

If k > 1, the funtion should also output:

• the entres of gravity for eah of the k satterplots of points in eah group, on eah of the

disriminant axes.

• the ovariane matries for eah group, on all disriminant axes.

Note: Matrix W−1B is not symmetri, so that using the R's eigen ommand may produe (arti-

�ially) omplex eigenvalues and eigenvetors. The Re ommand may be used to extrat the real

part of these (false) omplex numbers.
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