INSTITUTO SUPERIOR DE AGRONOMIA
Modelos Matematicos e Aplicagoes (2020-21)
Final Exam
June 29, 2021 Duration: 3h30

I  [11.5 points]

The weight of bunches of grapes is an important variable in viticulture, that is closely tied to total production.
Its accurate measurement is a time-consuming and destructive operation, which requires that the bunches be
picked from the vineyard. A study sought to model bunch weight (variable Bw, in ¢) from variables that can be
observed in 2-dimensional images taken by robots that go into vineyards, namely, the number of berries that
are visible in an image (count variable BEv) and the area of each bunch on its image (variable Ba, in ¢m?). The
dataset used to fit the models had 375 observations, 75 of which from each of 5 varieties: Alvarinho, Cabernet,
Syrah, Touriga and Viosinho.

Here are the summary indicators and correlations for the entire dataset:
> summary(Todos[,c("BEv","Ba","Bu")])

BEv Ba Bw > cor(Todos[,c("Bw","BEv","Ba")])

Min. : 8.0 Min. : 10.60 Min. : 10.6 By BEv Ba

1st Qu.:34.0 1st Qu.: 54.52 1st Qu.: 86.0

Medign :44.0 Medign : 74.12 Medign :133.6 Bw 1.0000000 ©0.8627126 0.9167313
BEv 0.8627126 1.0000000 0.8885402

Mean 1447 Mean : 74.44 Mean 1137.2 Ba 0.9167313 0.8885402 1.0000000

3rd Qu.:55.0 3rd Qu.: 90.67 3rd Qu.:174.8

Max. 83.0 Max. :154.62 Max. :351.0

1. Consider the data relative to the bunch weight (Bw, in g) for the 38 varieties: Alvarinho, Syrah and
Viosinho. Consider the output that is in the Appendix I in which some commands of R were performed.
Whenever possible use the results to answer the following questions:

(a) Sketch the histogram of Bw.Vios, indicated in the output but not plotted.

(b) Write the necessary calculations for plotting the boxplot of the variable Bw.Vios. Draw it please,
clearly marking the boxplot limits.

(c¢) Given the results presented in the output, can we say that the variable Bw. Sy has, on average, smaller
values than the Bw.Vios variable? Justify properly.

(d) It is assumed that the weight of variable Alvarinho can be modeled by the gamma distribution. For
simplicity consider that only one parameter, u > 0, is unknown being the density function defined
as:

2z

4
flp)=—ze K, if 2>0; 0 if z<0.
W

Given a random sample (X7, Xo, ..., X;,) extracted from that variable, obtain the maximum likelihood
estimator of p.

2. Which potential predictor, Ba or BEv, would provide the best simple linear regression for the response
variable Bw, considering all 375 observations? Discuss the resulting goodness-of-fit of the model you chose.

3. Below is a scatterplot of residuals versus fitted values, for the multiple linear regression of Bw over both
the other variables, fitted using all 375 observations. Describe and discuss the plot and its relevance for
the fitted linear model.
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4. A multiple linear regression model was fitted with log-transformations of all three variables, to predict
log(Bw) from the other two variables. Below is the resulting output for this model:

Call: 1m(formula = log(Bw) ~ log(Ba) + log(BEv), data = Todos)
[...1
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.40444 0.08839 -4.575 6.49e-06
log(Ba) 0.93918 0.05197 18.072 < 2e-16
log(BEv) 0.32806 0.05762 5.694 2.52e-08
Residual standard error: 0.1745 on 372 degrees of freedom
Multiple R-squared: 0.9039, Adjusted R-squared: 0.9034
F-statistic: 1749 on 2 and 372 DF, p-value: < 2.2e-16

(a) Write the fitted non-linear equation relating the three original (not log-transformed) variables.

(b) Build a 95% confidence interval for the coefficient of the log-transformed number of visible berries.
Interpret your results, in terms of both the log-transformed and the original variables.

5. A simple linear regression of log(Bw) over log(Ba), was initially fitted with the entire dataset, resulting in a
coefficient of determination R?=0.8955. An ANCOVA model was then fitted, allowing for different simple
linear regressions of log(Bw) over log(Ba) in each of the five varieties. Here is the summary output for
this model, as well as a submatrix of the (co-)variance matrix of some parameter estimators:

> summary(Todos.anc)
Call: 1m(formula = log(Bw) ~ log(Ba) * Casta, data = Todos)

[...1
Coefficients:

Estimate Std. Error t value Pr(>It|)
(Intercept) -0.79050 0.22287 -3.547 0.000441
log(Ba) 1.356726 0.05363 25.307 < 2e-16
CastaCabernet 0.72740 0.26383 2.757 0.006126
CastaSyrah 0.23466 0.28791  0.815 0.415588
CastaTouriga 0.09209 0.30806 0.299 0.765149
CastaViosinho 0.87185 0.32956  2.646 0.008509
log(Ba) :CastaCabernet -0.22688 0.06340 -3.578 0.000392
log(Ba) :CastaSyrah -0.09970 0.06814 -1.463 0.144306
log(Ba):CastaTouriga -0.06954 0.07441 -0.935 0.350663
log(Ba):CastaViosinho -0.23833 0.07651 -3.115 0.001985

Residual standard error: 0.1624 on 365 degrees of freedom
Multiple R-squared: 0.9183, Adjusted R-squared: 0.9163
F-statistic: 455.9 on 9 and 365 DF, p-value: < 2.2e-16

> vcov(Todos.anc) [7:8,7:8]
log(Ba) :CastaCabernet log(Ba):CastaSyrah



log(Ba) :CastaCabernet 0.004019790 0.002876272
log(Ba):CastaSyrah 0.002876272 0.004643707

(a) Write the fitted equation for the Cabernet variety, in both the log-transformed and the original units.

(b) Can the Cabernet and Syrah population regression lines relating the log-transformed variables be
considered parallel? Provide a formal justification.

(¢) Formally test whether this ANCOVA model provides a significantly better fit than the simple linear
regression model with a single regression line for the entire dataset. Discuss your result.

6. Taking into consideration the plot in question 3, a researcher suggested fitting a Generalized Linear Model
of Bw over both other variables, without log-transformations, assuming a Gamma distribution for the
random component and an identity link function. Here are some results:

Call: glm(formula = Bw ~ Ba + BEv, family = Gamma(link = identity), data = Todos)
[...1
Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -13.58838 1.19755 -11.347 < 2e-16
Ba 1.54400 0.09506 16.242 < 2e-16
BEv 0.75675 0.16525  4.579 6.37e-06
(Dispersion parameter for Gamma family taken to be 0.03177647)
Null deviance: 99.125 on 374 degrees of freedom
Residual deviance: 12.079 on 372 degrees of freedom
AIC: 3377.9

(a) Why is the Gamma distribution a plausible choice for the random component?
(b) Describe the fitted model and discuss its quality.

IT  [3 points]

In a grapevine selection study, 32 clones of the variety Vital were evaluated in 3 locations (Bombarral, Cadaval,
and Caldas da Rainha). In each location a field trial with the 32 clones was planted according to a completely
randomized design with 8 repetitions (that is, in each location there are 8 observations of each one of the clones).
Consider the location as a fixed effects factor and the clone as a random effects factor (i.e., admit that the
clones studied constitute a sample of the possible best clones of the Vital variety).

a) Describe in detail the adequate model for the study described above.

In R, with the function lmer from the package 1me4, the following commands were executed:

> library(lme4)
> vital<-read.table("vital.txt", header=T)
> vitallmeri<-lmer(rend~local+(1lclone)+(1|local:clone), data=vital)
> summary(vitallmerl)
Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
ImerModLmerTest]
Formula: rend ~ local + (1 | clone) + (1 | local:clone)
Data: vital
Random effects:

Groups Name Variance Std.Dev.
local:clone (Intercept) 0.07685 0.2772
clone (Intercept) 0.33689 0.5804
Residual 1.74037 1.3192

Number of obs: 768, groups: 1local:clone, 96; clone, 32
Fixed effects:

Estimate Std. Error df t value Pr(>lt])
(Intercept) 1.9808 0.1405 59.2485  14.10 <2e-16 **x*
localCadaval 1.8447 0.1356 62.0006 13.60 <2e-16 ***
localCaldas 1.5651 0.1356 62.0006 11.54 <2e-16 **x*



Signif. codes: O ’*x%%’ 0,001 %%’ 0.01 ’%”> 0.056 *.” 0.1 > > 1
> logLik(vitallmerl)

’log Lik.’ -1342.896

> vitallmer2<-lmer(rend~local+(1|clone), data=vital)

> logLik(vitallmer2)

’log Lik.’ -1344.309

> vitallmer3<-lmer(rend~local+(1]|local:clone), data=vital)

> logLik(vitallmer3)

'log Lik.’ -1355.286

b) Test the variance components associated to the model defined above. Describe in detail only one of the
hypothesis tests performed.

c¢) For the full fitted model, what is the value of the Bayesian Information Criterion?
IIT  [2.5 points]

Consider 5 continuous variables, pl_orbper, pl_orbsmax, st_logg, pl_bmass e sy_dist, regarding parameter
estimates of 1177 planets detected beyond our solar system. The pl_orbper corresponds to the orbital period
(in days) around the corresponding star, the variable pl_orbsmax is the length of the orbital largest semi-axis
in astronomic units (an astronomic unit (au) is approximately equal to the average of the distances between the
planet Earth and the Sun), the variable st_logg is the logarithm in base 10, of the gravity acceleration in cm/s?,
the variable pl_bmass is the planet mass, measured in Jupiter masses and the variable sy_dist represents the
distance to planetary system in parsecs (a parsec (pc) corresponds approximately to 3.26 light-years). The
data was retrieved from Nasa’s archive on Exoplanets exploration

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS&constraint=default_flag=1

From the above data was obtained the corresponding correlation matrix (rounded to the 3 decimal places),

pl_orbper pl_orbsmax st_logg  pl_bmasse sy_dist

pl_orbper 1.000 0.936 -0.004 0.167 -0.073
pl_orbsmax 0.936 1.000 -0.094 0.283 -0.139
st_logg 0.004 -0.094 1.000 -0.412 -0.084
pl_bmasse 0.167 0.283 -0.412 1.000 0.080
sy_dist -0.073 -0.139 -0.084 0.080 1.000

A clustering analysis was performed on the standardized data set of the 1177 planets using the hierarchical
method of the complete linkage and the euclidean distance. From this clustering analysis a partition into 2
clusters was obtained and it turned out that one of the clusters contained only a single planet. Posteriorly
the partition into 2 groups was compared with the partition into 3 clusters that is obtained from the same
hierarchical clustering analysis using the Rand index.

1. Determine the number of elements of each cluster of the partition into 3 clusters knowing that the Rand
index is equal to 0.9881762.

2. Perform a clustering analysis of the set of the 5 variables using the Ward’s hierarchical method and
a convenient dissimilarity that does not account for the sign of the correlation between the variables.
Interpret the result.

IV [3 points]

Let X be an n xp column-centred data matrix and consider the Singular Value Decomposition 1 X% =
P

WAV? = Z&iv?fﬁf, where w; and V; are the columns of, respectively, W and V, and §; the corresponding
i=1

diagonal elements of A.



1. Show that the matrix of orthogonal projections onto the column-space of X¢, Pxc = X¢(X¢'X¢)~1 X"
is the same as the matrix of orthogonal projections onto the column-space of matrix W. Interpret this
result in terms of the Principal Component Analysis of the data associated with matrix X°¢.

2. Let Wy be the n x k submatrix defined by the first k& columns of matrix W (associated with the k
largest singular values). Knowing that the matrix of orthogonal projections onto its column-space is

;> show that matrix P;X¢ solves the Eckart-Young problem for matrix X°€.

k
_ t o =t
P, = W, W, = > w,w
j=1

Interpret that result in terms of Principal Components.



