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I [11.5 points℄

The weight of bun
hes of grapes is an important variable in viti
ulture, that is 
losely tied to total produ
tion.

Its a

urate measurement is a time-
onsuming and destru
tive operation, whi
h requires that the bun
hes be

pi
ked from the vineyard. A study sought to model bun
h weight (variable Bw, in g) from variables that 
an be

observed in 2-dimensional images taken by robots that go into vineyards, namely, the number of berries that

are visible in an image (
ount variable BEv) and the area of ea
h bun
h on its image (variable Ba, in cm2
). The

dataset used to �t the models had 375 observations, 75 of whi
h from ea
h of 5 varieties: Alvarinho, Cabernet,

Syrah, Touriga and Viosinho.

Here are the summary indi
ators and 
orrelations for the entire dataset:

> summary(Todos[,
("BEv","Ba","Bw")℄)

BEv Ba Bw

Min. : 8.0 Min. : 10.60 Min. : 10.6

1st Qu.:34.0 1st Qu.: 54.52 1st Qu.: 86.0

Median :44.0 Median : 74.12 Median :133.6

Mean :44.7 Mean : 74.44 Mean :137.2

3rd Qu.:55.0 3rd Qu.: 90.67 3rd Qu.:174.8

Max. :83.0 Max. :154.62 Max. :351.0

> 
or(Todos[,
("Bw","BEv","Ba")℄)

Bw BEv Ba

Bw 1.0000000 0.8627126 0.9167313

BEv 0.8627126 1.0000000 0.8885402

Ba 0.9167313 0.8885402 1.0000000

1. Consider the data relative to the bun
h weight (Bw, in g) for the 3 varieties: Alvarinho, Syrah and

Viosinho. Consider the output that is in the Appendix I in whi
h some 
ommands of R were performed.

Whenever possible use the results to answer the following questions:

(a) Sket
h the histogram of Bw.Vios, indi
ated in the output but not plotted.

(b) Write the ne
essary 
al
ulations for plotting the boxplot of the variable Bw.Vios. Draw it please,


learly marking the boxplot limits.

(
) Given the results presented in the output, 
an we say that the variable Bw.Sy has, on average, smaller

values than the Bw.Vios variable? Justify properly.

(d) It is assumed that the weight of variable Alvarinho 
an be modeled by the gamma distribution. For

simpli
ity 
onsider that only one parameter, µ > 0, is unknown being the density fun
tion de�ned

as:

f(x|µ) =
4

µ2
x e

−

2x

µ , if x > 0; 0 if x ≤ 0.

Given a random sample (X1, X2, ..., Xn) extra
ted from that variable, obtain the maximum likelihood

estimator of µ.

2. Whi
h potential predi
tor, Ba or BEv, would provide the best simple linear regression for the response

variable Bw, 
onsidering all 375 observations? Dis
uss the resulting goodness-of-�t of the model you 
hose.

3. Below is a s
atterplot of residuals versus �tted values, for the multiple linear regression of Bw over both

the other variables, �tted using all 375 observations. Des
ribe and dis
uss the plot and its relevan
e for

the �tted linear model.
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4. A multiple linear regression model was �tted with log-transformations of all three variables, to predi
t

log(Bw) from the other two variables. Below is the resulting output for this model:

Call: lm(formula = log(Bw) ~ log(Ba) + log(BEv), data = Todos)

[...℄

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) -0.40444 0.08839 -4.575 6.49e-06

log(Ba) 0.93918 0.05197 18.072 < 2e-16

log(BEv) 0.32806 0.05762 5.694 2.52e-08

---

Residual standard error: 0.1745 on 372 degrees of freedom

Multiple R-squared: 0.9039, Adjusted R-squared: 0.9034

F-statisti
: 1749 on 2 and 372 DF, p-value: < 2.2e-16

(a) Write the �tted non-linear equation relating the three original (not log-transformed) variables.

(b) Build a 95% 
on�den
e interval for the 
oe�
ient of the log-transformed number of visible berries.

Interpret your results, in terms of both the log-transformed and the original variables.

5. A simple linear regression of log(Bw) over log(Ba), was initially �tted with the entire dataset, resulting in a


oe�
ient of determination R2=0.8955. An ANCOVA model was then �tted, allowing for di�erent simple

linear regressions of log(Bw) over log(Ba) in ea
h of the �ve varieties. Here is the summary output for

this model, as well as a submatrix of the (
o-)varian
e matrix of some parameter estimators:

> summary(Todos.an
)

Call: lm(formula = log(Bw) ~ log(Ba) * Casta, data = Todos)

[...℄

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) -0.79050 0.22287 -3.547 0.000441

log(Ba) 1.35726 0.05363 25.307 < 2e-16

CastaCabernet 0.72740 0.26383 2.757 0.006126

CastaSyrah 0.23466 0.28791 0.815 0.415588

CastaTouriga 0.09209 0.30806 0.299 0.765149

CastaViosinho 0.87185 0.32956 2.646 0.008509

log(Ba):CastaCabernet -0.22688 0.06340 -3.578 0.000392

log(Ba):CastaSyrah -0.09970 0.06814 -1.463 0.144306

log(Ba):CastaTouriga -0.06954 0.07441 -0.935 0.350663

log(Ba):CastaViosinho -0.23833 0.07651 -3.115 0.001985

---

Residual standard error: 0.1624 on 365 degrees of freedom

Multiple R-squared: 0.9183, Adjusted R-squared: 0.9163

F-statisti
: 455.9 on 9 and 365 DF, p-value: < 2.2e-16

> v
ov(Todos.an
)[7:8,7:8℄

log(Ba):CastaCabernet log(Ba):CastaSyrah
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log(Ba):CastaCabernet 0.004019790 0.002876272

log(Ba):CastaSyrah 0.002876272 0.004643707

(a) Write the �tted equation for the Cabernet variety, in both the log-transformed and the original units.

(b) Can the Cabernet and Syrah population regression lines relating the log-transformed variables be


onsidered parallel? Provide a formal justi�
ation.

(
) Formally test whether this ANCOVA model provides a signi�
antly better �t than the simple linear

regression model with a single regression line for the entire dataset. Dis
uss your result.

6. Taking into 
onsideration the plot in question 3, a resear
her suggested �tting a Generalized Linear Model

of Bw over both other variables, without log-transformations, assuming a Gamma distribution for the

random 
omponent and an identity link fun
tion. Here are some results:

Call: glm(formula = Bw ~ Ba + BEv, family = Gamma(link = identity), data = Todos)

[...℄

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) -13.58838 1.19755 -11.347 < 2e-16

Ba 1.54400 0.09506 16.242 < 2e-16

BEv 0.75675 0.16525 4.579 6.37e-06

---

(Dispersion parameter for Gamma family taken to be 0.03177647)

Null devian
e: 99.125 on 374 degrees of freedom

Residual devian
e: 12.079 on 372 degrees of freedom

AIC: 3377.9

(a) Why is the Gamma distribution a plausible 
hoi
e for the random 
omponent?

(b) Des
ribe the �tted model and dis
uss its quality.

II [3 points℄

In a grapevine sele
tion study, 32 
lones of the variety Vital were evaluated in 3 lo
ations (Bombarral, Cadaval,

and Caldas da Rainha). In ea
h lo
ation a �eld trial with the 32 
lones was planted a

ording to a 
ompletely

randomized design with 8 repetitions (that is, in ea
h lo
ation there are 8 observations of ea
h one of the 
lones).

Consider the lo
ation as a �xed e�e
ts fa
tor and the 
lone as a random e�e
ts fa
tor (i.e., admit that the


lones studied 
onstitute a sample of the possible best 
lones of the Vital variety).

a) Des
ribe in detail the adequate model for the study des
ribed above.

In R, with the fun
tion lmer from the pa
kage lme4, the following 
ommands were exe
uted:

> library(lme4)

> vital<-read.table("vital.txt", header=T)

> vitallmer1<-lmer(rend~lo
al+(1|
lone)+(1|lo
al:
lone), data=vital)

> summary(vitallmer1)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest℄

Formula: rend ~ lo
al + (1 | 
lone) + (1 | lo
al:
lone)

Data: vital

Random effe
ts:

Groups Name Varian
e Std.Dev.

lo
al:
lone (Inter
ept) 0.07685 0.2772


lone (Inter
ept) 0.33689 0.5804

Residual 1.74037 1.3192

Number of obs: 768, groups: lo
al:
lone, 96; 
lone, 32

Fixed effe
ts:

Estimate Std. Error df t value Pr(>|t|)

(Inter
ept) 1.9808 0.1405 59.2485 14.10 <2e-16 ***

lo
alCadaval 1.8447 0.1356 62.0006 13.60 <2e-16 ***

lo
alCaldas 1.5651 0.1356 62.0006 11.54 <2e-16 ***
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---

Signif. 
odes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> logLik(vitallmer1)

'log Lik.' -1342.896

> vitallmer2<-lmer(rend~lo
al+(1|
lone), data=vital)

> logLik(vitallmer2)

'log Lik.' -1344.309

> vitallmer3<-lmer(rend~lo
al+(1|lo
al:
lone), data=vital)

> logLik(vitallmer3)

'log Lik.' -1355.286

b) Test the varian
e 
omponents asso
iated to the model de�ned above. Des
ribe in detail only one of the

hypothesis tests performed.


) For the full �tted model, what is the value of the Bayesian Information Criterion?

III [2.5 points℄

Consider 5 
ontinuous variables, pl_orbper, pl_orbsmax, st_logg, pl_bmass e sy_dist, regarding parameter

estimates of 1177 planets dete
ted beyond our solar system. The pl_orbper 
orresponds to the orbital period

(in days) around the 
orresponding star, the variable pl_orbsmax is the length of the orbital largest semi-axis

in astronomi
 units (an astronomi
 unit (au) is approximately equal to the average of the distan
es between the

planet Earth and the Sun), the variable st_logg is the logarithm in base 10, of the gravity a

eleration in cm/s2,
the variable pl_bmass is the planet mass, measured in Jupiter masses and the variable sy_dist represents the

distan
e to planetary system in parse
s (a parse
 (p
) 
orresponds approximately to 3.26 light-years). The

data was retrieved from Nasa's ar
hive on Exoplanets exploration

https://exoplanetar
hive.ipa
.
alte
h.edu/
gi-bin/TblView/nph-tblView?app=ExoTbls&
onfig=PS&
onstraint=default_flag=1

From the above data was obtained the 
orresponding 
orrelation matrix (rounded to the 3 de
imal pla
es),

pl_orbper pl_orbsmax st_logg pl_bmasse sy_dist

pl_orbper 1.000 0.936 -0.004 0.167 -0.073

pl_orbsmax 0.936 1.000 -0.094 0.283 -0.139

st_logg 0.004 -0.094 1.000 -0.412 -0.084

pl_bmasse 0.167 0.283 -0.412 1.000 0.080

sy_dist -0.073 -0.139 -0.084 0.080 1.000

A 
lustering analysis was performed on the standardized data set of the 1177 planets using the hierar
hi
al

method of the 
omplete linkage and the eu
lidean distan
e. From this 
lustering analysis a partition into 2


lusters was obtained and it turned out that one of the 
lusters 
ontained only a single planet. Posteriorly

the partition into 2 groups was 
ompared with the partition into 3 
lusters that is obtained from the same

hierar
hi
al 
lustering analysis using the Rand index.

1. Determine the number of elements of ea
h 
luster of the partition into 3 
lusters knowing that the Rand

index is equal to 0.9881762.

2. Perform a 
lustering analysis of the set of the 5 variables using the Ward's hierar
hi
al method and

a 
onvenient dissimilarity that does not a

ount for the sign of the 
orrelation between the variables.

Interpret the result.

IV [3 points℄

Let X
c
be an n×p 
olumn-
entred data matrix and 
onsider the Singular Value De
omposition

1
√

n−1
X

c =

W∆∆∆V
t =

p∑

i=1

δi ~wi~v
t
i , where ~wi and ~vi are the 
olumns of, respe
tively, W and V, and δi the 
orresponding

diagonal elements of ∆∆∆.
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1. Show that the matrix of orthogonal proje
tions onto the 
olumn-spa
e of X
c
, PXc = X

c(Xct
X

c)−1
X

ct
,

is the same as the matrix of orthogonal proje
tions onto the 
olumn-spa
e of matrix W. Interpret this

result in terms of the Prin
ipal Component Analysis of the data asso
iated with matrix X
c
.

2. Let Wk be the n × k submatrix de�ned by the �rst k 
olumns of matrix W (asso
iated with the k
largest singular values). Knowing that the matrix of orthogonal proje
tions onto its 
olumn-spa
e is

Pk = WkW
t
k =

k∑
j=1

~wj ~w
t
j , show that matrix PkX

c
solves the E
kart-Young problem for matrix X

c
.

Interpret that result in terms of Prin
ipal Components.
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