

GLOBULUS 2.1 model

BRIEF DESCRIPTION & EQUATIONS SUSANA BARREIRO

Globulus 2.1 Model

Background Introduction

GLOBULUS 2.1 represents a perfected version of GLOBULUS 2.0 model. GLOBULUS is a whole stand model developed for even-aged eucalyptus plantations in Portugal. The 2.1 version was developed under the scope of a PRAXIS project reference PRAXIS/3/3.2/PAPEL/2323/95 (LCA – from eucalypt to paper). When compared to previous versions, the GLOBULUS 2.1 model has the following improvements:

• relies on a homogeneous classification of the country based on climatic regions (Ribeiro e Tomé, 2000)

• developed using a reasonable data coverage for all the considered homogenious regions except for 1sr rotation data in the North Litoral region.

• an analysis to assess the need for parameterizing the different regions and rotations was carries out.

• a methodology to obtain initialization and prediction compatible basal area models (dbh>5 cm) was developed.

• a methodology to obtain initialization and prediction compatible stand volume models (over- and under-bark) were developed, also compatible with the basal area and dominant height models.

• merchantable (over- and under-bark) volume models were also developed considering top diameters from 5 to 10 cm

• the productivity variability of eucalyptus stands for each particular region and for Portugal as a whole was analyzed according to 5 site index classes: very high, high, medium, low, very low.

• a methodology was developed that enables the number of trees at planting as well as the number of trees after shoots selection in the basal area prediction model to be replaced by the number of living trees at any given stand age. This will allow correcting the basal area predictions in stands with high mortality.

• an improved mortality model including site index, stand density and region as predictive variables was developed.

• a system of equations for total stand biomass and stand biomass by tree component was developed.

• based on the biomass estimates and on the chemical composition data published by Pereira et al. (1988), carbon and other macronutrients' estimates (N, P, K e Ca) estimates by biomass component are available.

1

Model Description

GLOBULUS 2.1 comprises a range of state and control variables (**Table 1**). One of the control variables is the climatic region that reflects different growth for different soil and climatic conditions. To enalble the model to take this into account, the country was ranked into eight homogeneous regions. **Figure 1** represents the regions resulting from the ranking of the municipalities into edapho-climatic homogeneous regions.

Figure 1. Map containing the distribution of the 8 edapho-climatic homogeneous regions.

The model has an initialization and a prediction module. The prediction module is built by a set of growth functions (e.g. dominant height, basal area) formulated as difference equations that predict the value of a particular state variable in instant t_2 (principal variables) as a function of the values of state variables in instant t_1 as well as of control variables. Additionally, the model integrates a range of other equations that allow estimating the values of secondary variables based on the values of other variables in the same instant in time (e.g. merchantable volume, biomass).

The prediction of growth for a stand that has forest inventory data available only requires the prediction module to be used. On the other hand, growth simulation of stands that have been harvested or of new plantations require que use of the initialization module to set the initial conditions based on the control variables. The models can be found in **Tables 2** to **10**.

Table 1. GLOBULUS 2.1 model variables.

	State	variables
Control variables	Principal variables	Secondary variables
Environmental:	Dominant height	Merchantable volumes (with and
 Site index (standard age=10) 	Stand density (ha ⁻¹)	without bark, top diameters from 5 - 10 cm)
Climatic region	Stand basal area	Total aboveground biomass
Cultural:	Stand total volume (with and without bark)	Root biomass
 Number of trees at planting (1st rotation) 		Biomass by tree component: wood, bark, branches and leaves
 Number of sprouts after shoots selection (coppice rotations) 		Carbon stock by tree component: wood, bark, branches, leaves and roots
- Stand age		Nutrients (N, P, K, Ca) by tree
Stand:		component: wood, bark, branches,
- Stand rotation (0-planted, 1- coppice)		leaves and roots
- Stand age		

 Table 2. Site Index and dominant height functions.

$$hdom_2 = A_h \left(\frac{hdom_1}{A_h}\right)^{\left(\frac{t_1}{t_2}\right)^{n_h}}$$

	Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD
Ah	Planted				61.1	272			
	Coppice				01.1	312			
n _h	Planted	0.52	225	0.4805	0.4407	0.4780	0.4805	0.39	955
	Coppice	0.43	384	0.3964	0.2826	0.3199	0.3964	0.23	374

Table 3. Stand density functions.

_

_

Inicialization:
$$N = NpI \ e^{-a_m(t)}$$
 (planted stands) $N = N_0 \ e^{-a_m(t-3)}$ (coppice stands) $a_m = a_{m0} + a_{mnp} \frac{N_{pl}}{1000} + a_{mQ} \frac{Sl}{10}$ Prediction: $N_2 = N_1 \ e^{-a_m(t_2-t_1)}$ $\boxed{\begin{array}{c|c|c|c|c|c|} \hline Region & 1NL & 2NC & 3CL & 4SL & 5VT & 6NI & 7SI & 8VD \\ \hline a_{m0} & Planted & 0.0211 & 0.0242 & 0.0211 & 0.0401 & 0.0242 \\ \hline Coppice & 0.0052 & 0.0083 & 0.0052 & 0.0090 & 0.0083 \\ \hline a_{mnp} & \frac{Planted}{Coppice} & 0.0013 & \hline 0.0013 & \hline 0.0014 &$

Table 4. Stand basal area initialization and prediction functions.

Inicialization:
$$G = A_g \ e^{-k_g \left(\frac{1}{t}\right)^{n_g}}$$
 $k_g = k_{g0} + k_{gQ} \frac{1}{SI} + k_{gnp} \frac{N_{pl}}{1000} + k_{gf} \ Fe$
Prediction: $G_2 = A_g \left(\frac{G_1}{A_g}\right)^{\frac{t_1^{n_g1}}{n_g2}}$ $A_g = A_{gQ} \ Iqe^2$ $n_{gi} = n_{g0} + n_{gQ} \ In(SI) + n_{gn} \frac{N_i}{1000}$

	Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD			
	Planted		0 1586									
A_{gQ}	Coppice	U.1586										
	Planted	3.73	350	3.6354	3.6091	3.5676	3.6893	3.4571	3.5676			
l Ig0	Coppice	2.86	638	2.7642	2.6990	2.6575	2.8181	2.5470	2.6575			
	Planted				-1.0	288						
ПgQ	Coppice				-0.7	316						
5	Planted		0.1024									
l Ign	Coppice		0.0216									
k.	Planted	-4.4	826	-5.5311	-6.1201	-6.2433	-4.7560	-7.7941	-6.9326			
Kg0	Coppice	0.75	582	-0.2903	-0.8793	-1.0025	0.4848	-2.5533	-1.6918			
le -	Planted				177	7.9						
KgQ	Coppice				72	3						
k	Planted				0.54	408						
Kgnp	Coppice		0.0134									
k :	Planted				16.0	015						
Kgf	Coppice				14.1	898						

Table 5. Total volume with stump with and without bark initialization and prediction functions.

Inicialization: $V = k_v t^{a_v} h dom^{b_v} G^{c_v}$ $k_v = k_{v0} + k_{vf} Fe$

Prediction:

 $V_2 = V_1 \left(\frac{t_2}{t_1}\right)^{a_V} \left(\frac{hdom_2}{hdom_1}\right)^{b_V} \left(\frac{G_2}{G_1}\right)^{c_V}$

	Total volume with stump and bark													
	Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD					
	Planted		0.0655											
avc	Coppice		0.0000											
b	Planted		0 9920											
D _{VC}	Coppice													
6	Planted				1.01	062								
CVC	Coppice	1.0205												
k a	Planted		0.5007		0.48	386	0.5007	0.48	386					
N VUC	Coppice				0.52	0.5272 0.5355		0.5272						
Kvtc	Planted		-0.1348		0.1348		-0.1348	48 -						
	Coppice		-0.3828		-0.2	480	-0.3828	-0.2	480					

Total volume with stump without bark

	Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD				
2	Planted		0.0502										
avs	Coppice		0.0092										
b	Planted				0.02	240							
D _{VS}	Coppice		0.9349										
6	Planted				1.00	77							
C _{VS}	Coppice	1.0077											
k.	Planted		0.3886		0.37	24	0.3886	0.37	724				
Kv0s	Coppice		0.4218		0.41	08	0.4218	0.41	108				
k.	Planted		-0.1497		-		-0.1497	-					
K vfs	Coppice		-0.3616		-0.2	119	-0.3616	-0.2	119				

 $\label{eq:table for the transformed transformed to the transformed transform$

$$V_d = V e^{a_{vm} \left(\frac{d_d}{d_g}\right)^{b_{vm}}}$$

$$a_{vm} = a_{vm0} + a_{vmnp} \frac{N_{pl}}{1000} + a_{vmf}$$
 Fe

	Merchantable volume with bark												
	Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD				
a vm0c	Planted		-1.0904										
	Coppice		-1.2881										
	Planted	0.0729											
avmnpc	Coppice		0.09267		0.07	729	0.0927	0.07	/29				
0 /	Planted				0.38	351							
avmfc	Coppice	1.0378											
b _{vmc}	Planted				3.37	716							
	Coppice				3.37	' 16							

		Merchantable volume without bark											
	Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD				
2	Planted		-1.0625										
∂ vm0s	Coppice		-1.2531										
	Planted		0.0654										
avmnps	Coppice		0.0850		0.06	654	0.0850	0.06	654				
0 /	Planted				0.38	341							
avmfs	Coppice		1.0247										
bvms	Planted				3.32	288							
	Coppice				3.32	288							

 Table 7. Total aboveground biomass equations.

$W_t = \alpha_w \ G^{\beta_w} h dom^{\gamma_w}$	$\alpha_{W} = \alpha_{W0} + \alpha_{WQ} \frac{lqe}{10}$	$oldsymbol{eta}_{w} = oldsymbol{eta}_{w0} + oldsymbol{eta}_{wn} rac{N}{1000} + oldsymbol{eta}_{wt} t$
---	---	--

1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD		
	0.0095								
			-0.0	025					
			1.13	392					
			-0.0	424					
	-0.0115								
	2.4043								
	1NL	1NL 2NC	1NL 2NC 3CL	1NL 2NC 3CL 4SL 0.00 -0.0 -0.0 -0.0 1.11 -0.0 -0.0 -0.0 0.01 0.01 -0.0 -0.0 0.02 0.02 -0.0 -0.0 0.02 0.02 -0.0 -0.0	1NL 2NC 3CL 4SL 5VT 0.0095 -0.0025 -0.0424 -0.0115 2.4043	1NL 2NC 3CL 4SL 5VT 6NI 0.0095 -0.0025 1.1392 -0.0424 -0.0115 2.4043	1NL 2NC 3CL 4SL 5VT 6NI 7SI 0.0095 -0.0025 1.1392 -0.0424 -0.0115 2.4043		

 Table 8. Stem and canopy biomass equations.

$$W_{tronco} = W_t P_{tronco} = W_t (\alpha_{wt} G^{\beta_{wt}} h dom^{\gamma_{wt}})$$

$$\beta_{wt} = \beta_{wt0} + \beta_{wtn} \frac{N}{1000} + \beta_{wtt} t + \beta_{wtQ} \frac{lqe}{10}$$

 $W_{copa} = W_t - W_{tronco}$

Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD
αwt				0.20	019			
β_{wt0}				0.16	613			
eta_{wtn}				0.00	046			
eta_{wtt}				-0.0	037			
eta_{wtQ}		-0.0355						
γwt	0.4301							

Table 9. Biomass equations by tree component.

$$W_{casca} = W_{tronco} \left(a_{c0} + a_{ct} t + a_{ct2} \frac{t^2}{10} \right)$$

$$W_{lenho} = W_{tronco}(1 - P_{casca})$$

 $W_{folhas} = W_{copa} \left(a_{f0} + a_{ft} t + a_{ft2} \frac{t^2}{10} \right)$

$$W_{ramos} = W_{copa} - W_{folhas}$$

Region	1NL	2NC	3CL	4SL	5VT	6NI	7SI	8VD
a c0				0.19	946			
act				-0.0	094			
a _{ct2}				0.00)26			
a fo				0.73	304			
a _{ft}		-0.0154						
Aft2	0.0021							

The biomass and nutrient estimates' module is in GLOBULUS 2.1 is still quite simple. The conversion factors for roots are the same applied for wood.

0	Carbon	Nutrients (% kg/kg)							
Components	%	Ν	Р	К	Ca				
Wood	49.0	0.0753	0.0221	0.0682	0.1086				
Bark	46.8	0.1862	0.0137	0.1271	0.6651				
Leaves	49.2	1.1363	0.0548	0.5285	0.5280				
Branches	47.4	0.2763	0.0117	0.3593	0.6896				
Roots	49.0	0.0753	0.0221	0.0683	0.1086				

Table 10. Conversion factors used in the GLOBULUS 2.1 model for converting the biomass by tree component into carbon and macronutrients.

List of Symbols

SI or IQE – Site Index, which is the stand's dominant height at the age of 10 years (m);

- t Stand age (years);
- t_1 Stand age at instant 1 (years);
- t_2 Stand age at instant 2 (years);
- t_p Standard age, which for eucalyptus corresponds to 10 years (years);

hdom – Stand dominant height (m);

hdom₁ – Stand dominant height at instant 1 (m);

 $hdom_2 - Stand$ dominant height at instant t_2 (m);

- N Stand density (ha-1);
- N_1 Stand density at instant 1 (ha⁻¹);
- N₂ Stand density at instant 2 (ha⁻¹);
- **Npl** Stand density at plantation (ha⁻¹);

rot - dummy variable with 0 representing planted stands and 1 representing coppice stands;

- G Stand basal area (m² ha⁻¹);
- \mathbf{G}_1 Stand basal area at instant t_1 (m² ha⁻¹);

 G_2 – Stand basal area at instant t₂ (m² ha⁻¹);

- V Stand volume with stump (m³ ha⁻¹);
- V_1 Stand volume with stump at instant t_1 (m³ ha⁻¹);
- V_2 Stand volume with stump at instant t_2 (m³ ha⁻¹);

 V_d – Stand mercantile volume without stump and bark up to a top diameter of di (m³ ha⁻¹);

 d_d – top diameter with bark (cm);

dg – Stand quadratic mean d.b.h (cm² ha⁻¹);

Wlenho - Stand wood biomass (Mg ha-1);

- **W**_{casca} Stand bark biomass (Mg ha⁻¹);
- W_{folhas} Stand leaves biomass (Mg ha⁻¹);
- Wramos Stand branches biomass (Mg ha-1);

W_r - Stand roots biomass (Mg ha⁻¹);

 \mathbf{W}_{t} – Stand aboveground biomass (Mg ha⁻¹);

W_{tronco} - Stand stem biomass (Mg ha⁻¹);

W_{copa} - Stand canopy biomass (Mg ha⁻¹);