Matemática I

14 Out 2022

Isabel Martins

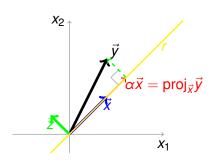
Resumo

- 1 Ainda sobre projecções ortogonais
- **2** Equação geral de uma recta em \mathbb{R}^2
- Equação declive-ponto e equação declive-ordenada na origem de uma recta não vertical em \mathbb{R}^2
- 4 Equação geral de um plano em \mathbb{R}^3
- 5 TPC

Ainda sobre projecções

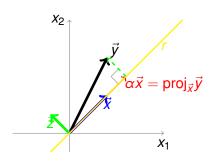
ortogonais

Projecção ortogonal de um vector sobre uma recta que passa na origem



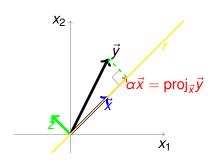
proj_r \vec{y} = proj_{\vec{x}} \vec{y} em que \vec{x} é um vector da recta r

Projecção ortogonal de um vector sobre uma recta que passa na origem



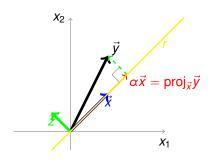
- proj_r \vec{y} = proj_{\vec{x}} \vec{y} em que \vec{x} é um vector da recta r
- A proj_r \vec{y} é o vector da recta r mais próximo de \vec{y}

Projecção ortogonal de um vector sobre uma recta que passa na origem

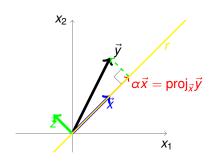


- proj_r \vec{y} = proj_{\vec{x}} \vec{y} em que \vec{x} é um vector da recta r
- A proj_r \vec{y} é o vector da recta r mais próximo de \vec{y}
- A distância do vector \vec{y} à recta r é dada por $||\vec{y} \text{proj}_r \vec{y}||$

Isabel Martins Matemática I 14th October 2022 2 / 21

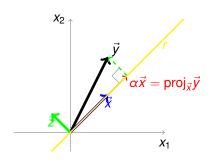


A recta $r \in y = x$ que tem o vector $\vec{x} = (1, 1)$



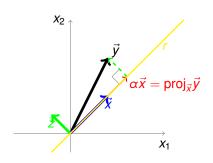
A recta $r \in y = x$ que tem o vector $\vec{x} = (1, 1)$

 $proj_r \vec{y} = proj_{\vec{x}} \vec{y} = (3/2, 3/2)$



A recta $r \in y = x$ que tem o vector $\vec{x} = (1, 1)$

- $proj_r \vec{y} = proj_{\vec{x}} \vec{y} = (3/2, 3/2)$
- O vector (3/2, 3/2) é o vector da recta r mais próximo de \vec{y}

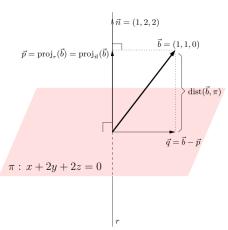


A recta $r \in y = x$ que tem o vector $\vec{x} = (1, 1)$

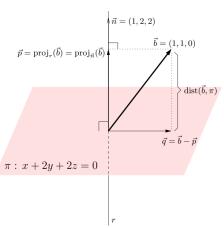
- $proj_r \vec{y} = proj_{\vec{x}} \vec{y} = (3/2, 3/2)$
- O vector (3/2, 3/2) é o vector da recta r mais próximo de \vec{y}
- A distância do vector \vec{y} à recta r é dada por $||\vec{y} \text{proj}_r \vec{y}|| = ||(-\frac{1}{2}, \frac{1}{2})|| =$

$$\frac{\sqrt{2}}{2}$$

Distância de um vector a um plano que passa na origem e projecção ortogonal do vector sobre o plano



Distância de um vector a um plano que passa na origem e projecção ortogonal do vector sobre o plano

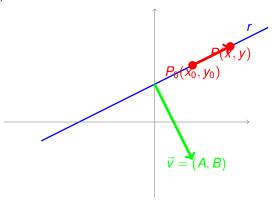


 $\mathbf{D} d(\vec{b}, \pi) = ||\mathsf{proj}_{\vec{p}} \vec{b}|| \text{ e proj}_{\pi} \vec{b} = b - \mathsf{proj}_{\vec{p}} \vec{b}$

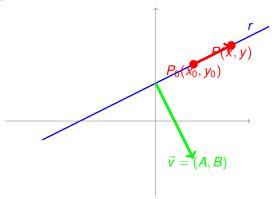
Fonte: Os Espacialistas

Equação geral de uma recta em \mathbb{R}^2

Genericamente,

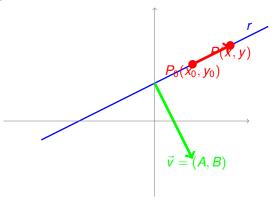


Genericamente,



vector \perp à recta $r \vec{v} = (A, B)$

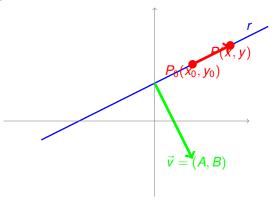
Genericamente,



vector \perp à recta $r \vec{v} = (A, B)$

Os pontos da recta r são $(x, y) : \overrightarrow{P_0P} | \overrightarrow{v} = 0 \Leftrightarrow$

Genericamente,

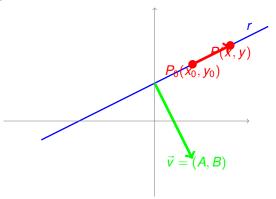


vector \perp à recta $r \vec{v} = (A, B)$

Os pontos da recta r são (x, y): $\overrightarrow{P_0P}|\overrightarrow{v} = 0 \Leftrightarrow (x - x_0, y - y_0)|(A, B) = 0 \Leftrightarrow$

Isabel Martins Matemática I 14th October 2022 6 / 2

Genericamente,

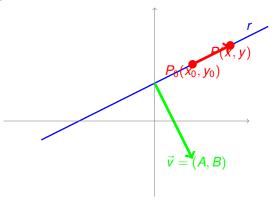


vector \perp à recta $r \vec{v} = (A, B)$

Os pontos da recta r são (x,y): $\vec{P_0P}|\vec{v}=0 \Leftrightarrow (x-x_0,y-y_0)|(A,B)=0 \Leftrightarrow A(x-x_0)+B(y-y_0)=0 \Leftrightarrow$

Isabel Martins Matemática I 14th October 2022 6 / 2

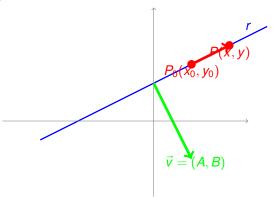
Genericamente,



vector \perp à recta $r \vec{v} = (A, B)$

Os pontos da recta
$$r$$
 são (x, y) : $\overrightarrow{P_0P}|\overrightarrow{v} = 0 \Leftrightarrow (x - x_0, y - y_0)|(A, B) = 0 \Leftrightarrow A(x - x_0) + B(y - y_0) = 0 \Leftrightarrow Ax + By = \underbrace{Ax_0 + By_0}_{C} \Leftrightarrow$

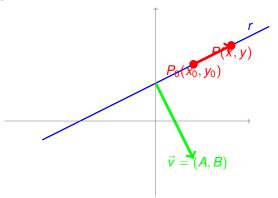
Genericamente,



vector \perp à recta $r \vec{v} = (A, B)$

Os pontos da recta
$$r$$
 são (x, y) : $\overrightarrow{P_0P}|\vec{v} = 0 \Leftrightarrow (x - x_0, y - y_0)|(A, B) = 0 \Leftrightarrow A(x - x_0) + B(y - y_0) = 0 \Leftrightarrow Ax + By = \underbrace{Ax_0 + By_0}_{C} \Leftrightarrow Ax + By = C$

Genericamente,



vector \perp à recta $r \vec{v} = (A, B)$

Os pontos da recta
$$r$$
 são (x, y) : $\overrightarrow{P_0P}|\overrightarrow{v} = 0 \Leftrightarrow (x - x_0, y - y_0)|(A, B) = 0 \Leftrightarrow A(x - x_0) + B(y - y_0) = 0 \Leftrightarrow Ax + By = \underbrace{Ax_0 + By_0}_{C} \Leftrightarrow Ax + By = C$

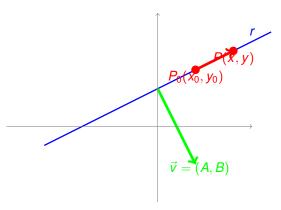
A recta $r \in \bot$ ao vector (A, B) e passa no ponto (x_0, y_0)

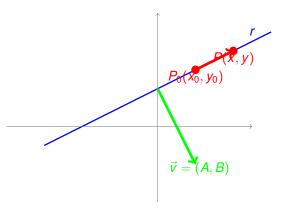
Equação geral de uma recta em \mathbb{R}^2

Recta \perp ao vector $\vec{v} = (A, B)$ e passa no ponto $P_0 = (x_0, y_0)$

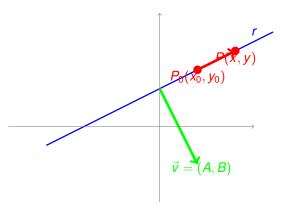
$$Ax + By = C$$
 tal que $Ax_0 + By_0 = C$ (P_0 é solução da equação).

Equação declive-ponto e equação declive-ordenada na origem de uma recta não vertical em \mathbb{R}^2



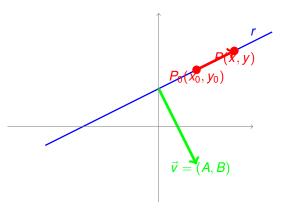


$$A(x-x_0)+B(y-y_0)=0 \Leftrightarrow$$



$$A(x-x_0) + B(y-y_0) = 0 \Leftrightarrow B(y-y_0) = -A(x-x_0)$$

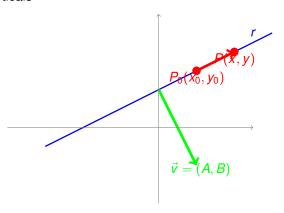
Rectas não verticais



$$A(x-x_0)+B(y-y_0)=0 \Leftrightarrow B(y-y_0)=-A(x-x_0) \underset{B \neq 0}{\Longleftrightarrow} y-y_0=-\frac{A}{B}(x-x_0) \Leftrightarrow$$

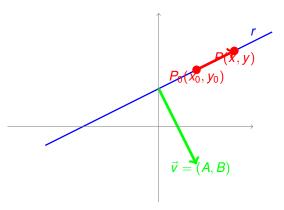
Isabel Martins Matemática I 14th October 2022 8 / 2

Rectas não verticais



$$A(x-x_0)+B(y-y_0)=0 \Leftrightarrow B(y-y_0)=-A(x-x_0) \underset{B\neq 0}{\Longleftrightarrow} y-y_0=-\frac{A}{B}(x-x_0) \Leftrightarrow$$
$$y=y_0-\frac{A}{B}(x-x_0)$$

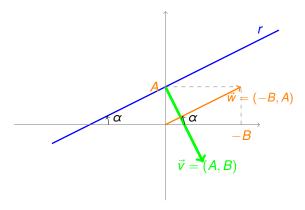
Isabel Martins Matemática I 14th October 2022 8 / 2



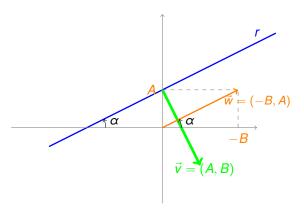
$$A(x-x_0)+B(y-y_0)=0 \Leftrightarrow B(y-y_0)=-A(x-x_0) \underset{B\neq 0}{\Longleftrightarrow} y-y_0=-\tfrac{A}{B}(x-x_0) \Leftrightarrow$$

$$y = y_0 - \frac{A}{B}(x - x_0)$$
 O que é $-\frac{A}{B}$?

O que é $-\frac{A}{B}$?



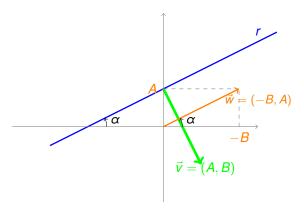
O que é $-\frac{A}{B}$?



Declive da recta - $\tan \alpha$ (α é o menor ângulo positivo que a recta faz com o eixo das abcissas)

Isabel Martins Matemática I 14th October 2022 9 / 2

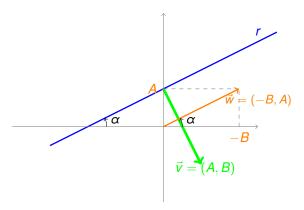
O que é
$$-\frac{A}{B}$$
?



Declive da recta - $\tan \alpha$ (α é o menor ângulo positivo que a recta faz com o eixo das abcissas) $\tan \alpha = \frac{A}{-B} =$

Isabel Martins Matemática I 14th October 2022 9 / 2

O que é
$$-\frac{A}{B}$$
?



Declive da recta - $\tan \alpha$ (α é o menor ângulo positivo que a recta faz com o eixo das abcissas) $\tan \alpha = \frac{A}{-B} = -\frac{A}{B}$

Equação declive-ponto de uma recta não vertical

Recta com declive m e passa no ponto $P_0 = (x_0, y_0)$

$$y=y_0+m(x-x_0).$$

Equação declive-ponto de uma recta não vertical

Recta com declive m e passa no ponto $P_0 = (x_0, y_0)$

$$y=y_0+m(x-x_0).$$

$$y = y_0 + m(x - x_0) \Leftrightarrow$$

Equação declive-ponto de uma recta não vertical

Recta com declive m e passa no ponto $P_0 = (x_0, y_0)$

$$y=y_0+m(x-x_0).$$

$$y = y_0 + m(x - x_0) \Leftrightarrow y = y_0 + mx - mx_0 \Leftrightarrow$$

Equação declive-ponto de uma recta não vertical

Recta com declive m e passa no ponto $P_0 = (x_0, y_0)$

$$y=y_0+m(x-x_0).$$

$$y = y_0 + m(x - x_0) \Leftrightarrow y = y_0 + mx - mx_0 \Leftrightarrow y = mx + \underbrace{y_0 - mx_0}_{h} \Leftrightarrow$$

Equação declive-ponto de uma recta não vertical

Recta com declive m e passa no ponto $P_0 = (x_0, y_0)$

$$y=y_0+m(x-x_0).$$

$$y = y_0 + m(x - x_0) \Leftrightarrow y = y_0 + mx - mx_0 \Leftrightarrow y = mx + \underbrace{y_0 - mx_0}_b \Leftrightarrow$$

$$y = mx + b$$

Equação declive-ponto de uma recta não vertical

Recta com declive m e passa no ponto $P_0 = (x_0, y_0)$

$$y=y_0+m(x-x_0).$$

$$y = y_0 + m(x - x_0) \Leftrightarrow y = y_0 + mx - mx_0 \Leftrightarrow y = mx + \underbrace{y_0 - mx_0}_b \Leftrightarrow$$

$$y = mx + b$$

Equação declive-ordenada na origem de uma recta não vertical

Recta com declive m e ordenada na origem b

$$y = mx + b$$
 (Equação reduzida).

Elementos necessários para definir uma recta em \mathbb{R}^2

- Um ponto da recta + um vector da recta
- Dois pontos da recta
- Um ponto da recta + um vector ⊥ à recta
- Um ponto da recta + o declive da recta
- Um ponto da recta + ordenada na origem

Elementos necessários para definir uma recta em \mathbb{R}^3

- Um ponto da recta + um vector da recta
- Dois pontos da recta
- $lue{}$ Dois planos de \mathbb{R}^3 concorrentes

Fonte: Os Espacialistas

Equação geral de um plano em \mathbb{R}^3

Planos em \mathbb{R}^3

Equação geral de um plano em \mathbb{R}^3

■ Plano \perp ao vector $\vec{v} = (A, B, C)$ e passa no ponto $P_0 = (x_0, y_0, z_0)$

$$Ax + By + Cz = D$$
 tal que $Ax_0 + By_0 + Cz_0 = D$

 $(P_0$ é solução da equação).

Planos em \mathbb{R}^3

Elementos necessários para definir um plano em \mathbb{R}^3

- Um ponto do plano + dois vectores do plano não colineares
- Três pontos do plano não colineares
- Um ponto do plano + um vector ⊥ ao plano

Colinearidade

\vec{v} colinear com $\vec{u} \neq \vec{0}$

Sejam os vectores \vec{u} e \vec{v} de \mathbb{R}^n tal que $\vec{u} \neq \vec{0}$. \vec{v} <u>é colinear com</u> \vec{u} se

existir um
$$k \in \mathbb{R}$$
 : $\vec{v} = k\vec{u}$.

- (2,4) é colinear com (1,2), pois (2,4)=2(1,2)
- (2,4) não é colinear com (1,0), pois não existe um $k \in \mathbb{R}$: (2,4)=k(1,0)

Três pontos colineares

Três pontos A, B e C <u>são colineares</u> se existir uma recta que os contenha.

TPC

TPC + Bons estudos!

Da lista de Exercícios de "Noções de geometria analítica"

Exercícios 57 a 60

Responder às seguintes questões (slides seguintes)

Determine o coeficiente angular das retas abaixo:

a)
$$r: 2x + 3y + 1 = 0$$

b) no gráfico:

c) no gráfico:

TPC

- 2. Escreva a equação reduzida da recta que passa pelos pontos A(2,5) e B(4,9).
- 3. Escreva a equação geral de cada um dos seguintes planos:
 - a) Contém o ponto A = (1, 2, 0) e os vectores $\vec{u} = (1, 1, 0)$ e $\vec{v} = (2, 3, -1)$
 - Ontém os pontos A = (1, 1, 0) e B = (1, -1, -1) e o vector $\vec{v} = (2, 1, 0)$
 - o) Contém os pontos A = (1,0,1), B = (2,1,-1) e C = (1,-1,0)
- 4. Verifique quais dos seguintes vectores são paralelos ao plano $\pi: 4x 6y + z 3 = 0$
 - a) (-1,-2,3)
 - b) (0,1,6)
 - c) (3,2,0)
 - d) (-3,2,24).
- 5. Obtenha um vector normal a cada um dos seguintes planos
 - a) Contém os pontos A = (1, 1, 1), B = (1, 0, 1) e C = (1, 2, 3)
 - b) x 2v + 4z + 1 = 0.

Exercícios

6. Estude a posição relativa dos planos 2x - y + 2z - 1 = 0 e 4x - 2y + 4z = 0.

