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Abstract

A height–diameter equation for eucalypt plantations was developed based on a tree dataset from trials and permanent plots

located in the north and central coastal regions of Portugal. The total dataset was split into two datasets through restricted

random sampling at the plot level. The equations selected in one data subset were evaluated with the other subset and vice

versa. Harrison equation, fitted with the iteratively reweighted least squares method, in both versions—restricted and not

restricted to pass through the point diameter–height (0, 1.30)—was selected. The first version was recommended for young

plantations; it is age dependent and requires a measure of stand productivity. The second version was appropriate to use in

commercial forest inventory where trees smaller than 4 cm diameter are not measured; it is age independent, density

dependent and, also requires a measure of stand productivity. # 2002 Elsevier Science B.V. All rights reserved.
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1. Height–diameter equations

The modelling of tree height growth can be one

component of an individual tree model. However, the

lack of successive height measurements of the same

tree is commonly forcing the use of compatible height

projection equations and height–diameter prediction

equations (e.g. Lynch and Murphy, 1995). The

usefulness of the last equation in forest inventories

is also generally recognised; height–diameter equa-

tions are needed to obtain total and merchantable tree

volumes. When combined with crown ratio data or

models, height–diameter equations can be used to

predict tree height and to estimate the change in crown

ratio (e.g. Maguire and Hann, 1990). Height–diameter

equations are also used in many stand growth and yield

models to predict the mean height for a given diameter

or diameter class (e.g. Lenhart and Clutter, 1971).

Height–diameter equations can be of local applica-

tion or can have a more generalised use (Tomé, 1988).

The first type is normally only dependent on tree

diameter and can be applied to the stand where the

data were gathered; regional height–diameter equa-

tions are a function of tree diameter, age, and other

stand variables and can be applied at the regional level.

The height–diameter relationship has been expressed

by a wide variety of equations (Table 1). Curtis (1967)

presented an exhaustive list of the most common local

equations. More recently, Lynch and Murphy (1995)

presented a detailed discussion of previous work rela-

ted to height–diameter–age curves.

Staebler (1954) and Curtis (1967) equations are

essentially empirical, Staebler equation has a maxi-

mum at d ¼ �a1/2a2, where a2 < 0; Curtis equation
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presents an asymptote but, since both equations are not

constrained to pass through the origin, may give

negative estimates for small trees. Henriksen (1950)

equation is an increasing function for values of a1 > 0,

but it is not an asymptotic function, however, it presents

a biologically appropriate shape—height increment per

diameter unit decreases with increasing diameter.

Stoffels and van Soest (1953) equation corresponds,

in the non-linear form, to a linear alometric relationship

between diameter and height; like Henriksen equation it

is not an asymptotic function; a1 must be between 0 and

1 for the function to assume a biologically appropriate

shape. Michailoff (1943) equation presents an asymp-

tote (ea0 ), an inflexion point, and passes through the

origin; after the inflection point it presents an adequate

biological behaviour when a1 < 0. Meyer (1940)

equation is similar to Michailoff equation, but more

flexible; the height increment is a0 dependent. Prodan

(1965) equation corresponds to the hyperbolic for-

mulation; it has 1/a1 as asymptote and, since a0 > 0, it

presents an adequate biological behaviour.

Mendes (1989) fitted the local equations presented

in Table 1 to data of eucalypt permanent plots located

in the centre coastal area of Portugal and confirmed the

adequacy of Michailoff (1943), Stoffels and van Soest

(1953), and Prodan (1965) equations.

The first three regional height–diameter equations

are empirical equations with a level of complexity that

may induce the presence of colinearity. Harrison et al.

(1986) equation was deduced based on the interpreta-

tion of the parameters of Meyer (1940) equation. The

formulation guarantees that the asymptote is near to the

dominant height (can be superior) and the height growth

rate is smaller for the greatest dominant heights. Tomé

(1988) deduced the three last regional equations

presented in Table 1 by restriction of some local

height–diameter equations to the point (dominant

diameter, dominant height). The resulting equations

depend on only one parameter that was expressed by the

author as a linear combination of stand parameters.

Tomé (1988) and Ribeiro (1998) presented regional

height–diameter equations for eucalypt in Portugal.

However, the equation developed by Tomé was based

on a restricted dataset characterised by small variation

in planting density and site index; Ribeiro (1998)

developed an equation for a specific Portuguese pulp

company. The purpose of the present work was to

develop a regional height–diameter equation, to be

used as a component of a tree model—GlobTree, for

first cutting cycle Eucalyptus globulus Labill. planta-

tions located in the north and central coastal regions of

Portugal (Soares, 1999).

Table 1

Equations used to model the tree height–diameter relationshipa

Equation Author

Local height–diameter equations

h ¼ a0 þ a1d þ a2d2 Staebler (1954)

h ¼ Að1 � e�a0dÞ Meyer (1940)

ln h ¼ a0 þ a11=d Michailoff (1943)

h ¼ a0 þ a1 ln d Henriksen (1950)

ln h ¼ a0 þ a1 ln d Stoffels and van Soest (1953)

h ¼ d=ða0 þ a1dÞ Prodan (1965)

h ¼ a0 þ a11=d þ a21=d2 Curtis (1967)

h � h0 ¼ hdð1 þ a0 ea1hd Þð1 � e�a2d=hd Þ Harrison et al. (1986)

Regional height–diameter equations

ln h ¼ a0 þ a1Sh;t þ a2N=100 þ a31=t þ a41=d Bennett and Clutter (1968)

lnðhd=hÞ ¼ a0 þ ð1=d � 1=dmaxÞða1 þ a2 ln N þ a31=t þ a4 ln hdÞ Lenhart (1968)

ln h ¼ a0 þ a1 ln hd þ a21=t þ a3 ln N=d þ a41=ðdtÞ þ a51=d Burkhart and Strub (1974)

h ¼ hd ea0ð1=d�1=ddÞ; a0 ¼ f ðstand parametersÞ Michailoff modified by Tomé (1988)

h ¼ hdðd=ddÞa0 ; a0 ¼ f ðstand parametersÞ Stoffels and van Soest modified by Tomé (1988)

h ¼ hdð1 þ a0hdð1=d � 1=ddÞÞ�1; a0 ¼ f ðstand parametersÞ Prodan modified by Tomé (1988)

a h: total tree height; d: diameter at breast height; A: height asymptote; Sh,t: site index; N: stand density; t: age; dmax: maximum tree

diameter; hd: dominant height; dd: dominant diameter; h0: reference height � 1.30 m to restrict the origin of the equation at the point

ðd; hÞ ¼ ð0; 1:30Þ; a0, a1, a2: equation parameters.
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2. Data

Eucalyptus globulus Labill. is one of the most

important economic forest species in Portugal,

occupying an area of 676,500 ha in a total forest area

of 3,275,300 ha (DGF, 1999). It is a fast growing

species mainly used by the pulp industry; the trees are

planted at final density—thinning and pruning prac-

tices are unusual in first rotation stands. The stands are

intensively managed in a short rotation coppice system

in which the first cycle of planted seedlings (single

stem) is followed by two or three coppiced stands,

with an average cutting cycle of 10–12 years.

Data from permanent plots, five spacing trials, and a

fertilised and irrigated experiment of eucalypt were

used (Table 2). The dataset includes 10, 16, 36, 10 and

27 plots, respectively, of the Quinta Paço (QP), Vale

Bezerra (VB), Vilar Luz (VL), Alto Vilão (AV) and

Seixosa (SX) spacing trials (Soares, 1999), 2 control

plots and 2 fertilised plots of the Furadouro fertili-

sed and irrigated trial (Pereira et al., 1989), and

52 permanent plots. The principal criterion for the

selection of these plots was the availability at the tree

level of pairs of measurements (diameter, height). Most

of the plots were measured annually; on young spacing

trials, trees were measured every 3 months. On the

fertilised and irrigated trial, trees were measured initi-

ally monthly, later twice per year and, at the end, annu-

ally, however, only measurements obtained on annual

periods were considered for this study. Data from stands

older than 15 years were obtained on permanent plots

and the AV and SX spacing trials; data from stands

younger than 4 years were from spacing trials (QP, VB

and VL) and the fertilised and irrigated trial.

Total heights were gathered, on young stands, with a

telescoping measuring rod and, on mature stands, with

a hypsometer; in one of the permanent plots, heights

were obtained on felled trees. Border trees, trees

without simultaneous measurements of total height

and diameter, and trees with height and/or diameter

imperfections were eliminated from the available

measurements at individual tree level.

Table 2

Characterisation of the plots used in the definition of the height–diameter equationa

Plot characteristics Tree variable

Plot area (m2) Spacing (m � m) Site index Number of

measurements

Age (years) d (cm) h (m)

QP 648–2916 2 � 1–3 � 3 25.7–28.4 6 2.6 0.3 1.7

4.4 10.1 13.7

7.6 23.9 26.8

VB 765–2487 1 � 3.5–4 � 4 16.9–20.7 4 1.5 0.2 1.3

3.0 6.0 6.8

4.5 21.2 16.1

VL 470–2475 2 � 1–4 � 4 19.7–25.8 9 1.3 0.1 1.3

2.5 5.2 6.6

4.8 22.8 20.0

AV 1584–2464 3 � 2–5 � 4 20.4–23.7 12 5.9 1.9 4.0

13.4 19.8 22.2

17.9 38.6 32.0

SX 432–490 3 � 3–4 � 3 12.4–26.1 8 5.8 10.3 9.0

11.2 22.3 22.1

15.8 38.8 34.5

FR 1089 3 � 3 23.3–28.1 5 0.9 0.2 1.3

2.9 8.8 9.4

4.8 20.3 19.5

PP 243–2919 1.7 � 1.7–3.3 � 3.2 12.6–28.2 1–27 1.0 0.2 1.3

8.8 12.8 14.8

31.4 42.0 40.0

a Minimum, mean and maximum values; QP, VB, VL, AV and SX are Quinta Paço, Vale Bezerra, Vilar Luz, Alto Vilão and Seixosa

spacing trials, respectively; FR: fertilised and irrigated trial; PP: permanent plots.
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3. Methodology

3.1. Candidate models

From the works of Tomé (1988) and Ribeiro (1998)

the best non-linear functions to express the height–

diameter relationship were selected (Table 1).

1. Michailoff equation modified by Tomé (M); this

function does not constrain the diameter–height

relationship to pass through (0, 1.30).

2. Harrison equation (H); this function was the

selected in both previous works but, it was fitted

without considering the constraint of diameter–

height to the point (0, 1.30); in this work both

versions were tested: the first one corresponding to

the original Harrison equation where the dependent

variable was expressed as (h � 1:30), and a second

version without constraint to the height 1.30.

The parameters a0 in M equation and a0, a1 and a2 in

H equations were expressed as a combination of tree

and stand variables. As an explanatory analysis, an all-

possible-regressions algorithm, with tree total height

as dependent variable, was used to select combina-

tions of variables to express total height. The variables

tested were representative of:

� age (t);

� tree dimension: diameter (d), height (h);

� maximum diameter of the stand (dmax);

� mean tree dimension: quadratic mean diameter

(dg), quadratic mean diameter of dominant trees

(dd);

� stand density: number of planted trees per hectare

(Npl), number of living trees per hectare (N), basal

area (G);

� site productivity: dominant height (hd), site index

(Sh,t); site index was expressed as the mean height

of the dominant trees (100 largest dbh trees per

hectare) at base age 10 years and it was obtained

directly by interpolation or estimated according to

Tomé (1990) site index curves.

As a consequence, and being F the vector of

parameters and E the error term, the general model can

be written as

h¼ f ðt; d; dmax; dg or dd;Npl or N or G; hd or Sh;t;FÞ þ e

The selection was based on measures of multiple

linear regression performance and prediction ability:

adjusted-R2, residual mean square (RMS), sum of

PRESS residuals and sum of absolute PRESS

residuals (Myers, 1986). The presence of colinearity

was analysed on the basis of the values of the variance

inflation factors (VIFs); values up to 10 were accepted

(Myers, 1986). The number of variables was restricted

by the presence of one of each above-mentioned

group.

3.2. Model fitting and selection

In this work the total dataset was randomly split into

two subsets and both were used for fit, select and

validate the height–diameter equations. The rando-

misation was at plot level (and not at the measurement

date or the tree level) to guarantee that all the trees of a

certain plot were in the same data subset trying to

increase the ‘‘independency’’ between the data sub-

sets. To ensure that the data splitting was not affected

by systematic influences, the equations selected in one

data subset were evaluated with the other subset and

vice versa.

West (1995) revised some of the techniques used to

estimate the covariance matrix of the error term of the

model being fitting. The author cited the works of

Newberry and Burkhart (1986) and Gregoire (1987)

that had made detailed comparisons of the results they

obtained with generalised least squares regression and

maximum likelihood estimation from ordinary least

squares (OLS) regression. They concluded that there

was little gain in using more complex techniques and

the OLS parameter estimator served adequately.

Therefore, in this work and, in spite of the fact that

data contains successive measurements from indivi-

dual plots, the OLS regression is used.

Different versions of Michailoff and Harrison

equations, representing different formulations of the

parameters as functions of stand variables, were fitted;

the parameter estimation of these non-linear functions

was based on the least squares method of the PROC

NLIN procedure of the SAS/STAT (1989). The modi-

fied Gauss–Newton iterative method was applied in

model fitting. The PROC MODEL procedure of the

SAS/ETS (1993) was used to analyse the colinearity

between the variables and to ensure that the solution

was global rather than local. Multicolinearity was
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assessed in terms of the condition number of the

correlation matrix; when this value exceeded 1000, the

effect of multicolinearity was considered serious and

the model discarded (Myers, 1986).

In each data subset, the functions were ranked

according to the increasing values of the residual sum

of squares (RSS). Ranks of each function in each

subset were then summed up to obtain an overall rank.

The functions with the smallest overall rank numbers

were evaluated in terms of measures of fitting and

prediction ability: adjusted-R2, RMS, mean of PRESS

residuals and, mean of absolute PRESS residuals. The

PRESS residuals give indication about the predictive

ability of the equations by cross-validation (Myers,

1986). This entails omitting each observation in turn

from the data, fitting the model to the remaining

observations, predicting the response for the omitted

observation and comparing the prediction with the

observed value: yi � ŷi;�i ¼ ei;�i ði ¼ 1; 2; . . . ; nÞ.
Each candidate equation has n PRESS residuals

associated with it.

The normality of the studentised residuals was

analysed through normal QQ plots. The presence of

non-normality was overcome using iteratively

reweighted least squares regression; Huber function

was selected as the influence function to reduce the

influence of data points containing large errors on fit

(Myers, 1986)
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where ei/s are the studentised residuals and r is the

limit factor (a residual that exceeds rs will exert no

more influence than a residual with a value of rs).

The presence of heteroscedasticity associated

with the error term of the models was checked by

plotting the studentised residuals against the predicted

values. The heteroscedasticity was only checked gra-

phically because the frequent non-normality of the

studentised residuals makes the use of statistical tests

impractical (e.g. White, 1980). Both the significance

and the stability of the parameters estimated in the two

data subsets were ensured based on the asymptotic

t-statistic.

3.3. Model evaluation

The bias and precision of the selected functions was

analysed. Bias was assessed through histograms of the

prediction residuals and computation of the mean of

the prediction residuals. Precision was expressed by

the interquantile range of the prediction residuals

(Q99-Q1) and by the computation of the mean of the

absolute value of the prediction residuals. Average

model bias measures the error when several observa-

tions are combined by totalling or averaging, and

mean absolute difference measures the average error

associated with a single prediction (Soares et al.,

1995). Plots of observed over predicted values were

also analysed. The model efficiency was computed;

this statistic provides a simple index of performance

on a relative scale, where 1 indicates a perfect fit, 0

reveals that the model is not better than a simple

average, and negative values indicate a poor model

indeed (Vanclay and Skovsgaard, 1997).

4. Results and discussion

The random split of the total dataset resulted into

two very similar subsets in spite of the fact that the

randomisation was made at the plot level (Table 3).

Data subset 2 included some old permanent plots,

as reflected by the maximum value of the stand age

(31.4 years). However, that was not reflected on the

maximum values of tree height and diameter; one

permanent plot included in data subset 1 presented

40 m of tree height at 14.6 years.

The all-possible-regression algorithm applied to the

total dataset resulted in VIFs greater than 10 for all

combinations analysed. Tree diameter was excluded

from the colinearity analysis because it is a funda-

mental variable to define a height–diameter equation.

However, in spite of these results, and as a conse-

quence of the high colinearity showed by the linear

models, several combinations of variables were tested

on the fitting of Michailoff and Harrison equations.

The number and type of variables were restricted by

the presence of one variable of each group previously

defined (tree dimension, stand density, site productiv-

ity, etc.) and a maximum of three variables; 32 and

54 versions of Michailoff and Harrison equations,

respectively, were analysed. Each version of Harrison
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equation was fitted with either h0 ¼ 0 or 1.30 (y ¼
h � h0).

During the model fitting stage, Harrison equation

presented convergence problems when all the para-

meters (a0, a1 and a2) were defined as a linear com-

bination of tree and stand variables. So, only Harrison

equation versions with the parameter a0 expressed as a

linear combination of variables were selected. Those

equations showed better performance when compared

with the two other alternatives: only a1 or a2 expressed

as a linear combination of tree and stand variables,

respectively.

Six equations were proposed for the evaluation

stage (Table 4): two of them were age independent; the

number of live trees instead of the basal area expressed

the stand density in three of the equations; the

dominant height/quadratic mean tree diameter was

also present in three situations.

The hypothesis of the normality of the studentised

residuals was rejected for all functions. In a previous

Table 3

Characterisation of the two data subsetsa

Variables Minimum Mean Maximum S.D. Minimum Mean Maximum S.D.

Data subset 1 (n ¼ 25708) Data subset 2 (n ¼ 25347)

Sh,t 13.5 22.0 28.4 3.1 12.4 22.2 27.3 2.9

Npl (ha�1) 500 1647 5078 1118 625 1571 5078 915

N (ha�1) 469 1551 5000 1064 586 1457 4922 842

t (years) 0.9 5.6 17.9 4.5 0.9 6.9 31.4 6.2

G (m2 ha�1) 0.06 10.8 41.2 9.3 0.02 14.4 49.5 13.0

hd (m) 2.2 13.6 36.6 8.0 2.0 15.1 36.4 9.0

dd (cm) 1.7 13.4 35.4 8.0 1.2 14.7 38.9 8.7

hm (m) 1.3 11.5 34.2 7.4 1.0 12.8 35.7 8.2

dg (cm) 1.0 9.8 26.7 6.4 0.7 10.5 31.0 6.5

h (m) 1.3 11.6 40.0 7.8 1.3 12.9 39.0 8.6

d (cm) 0.1 10.0 38.6 7.6 0.1 10.9 42.0 7.9

a S.D.: standard deviation; Sh,t: site index (mean height at base age 10 years of the 100 largest dbh trees per hectare); Npl: number of trees at

plantation; N: number of alive trees; t: age; G: basal area; hd: dominant height; dd: dominant diameter; hm: mean height; dg: quadratic mean

diameter; h: tree height; d: tree diameter.

Table 4

Height–diameter equations submitted to the evaluation stagea

Equation Subset Adjusted-R2 RMS MPRESS MAPRESS

Michailoff equation modified by Tomé (1988)

M1: h ¼ hd eða0þa1 tþa2hdþa3dgÞð1=d�1=ddÞ 1 0.98 0.85 �0.0395 0.671

2 0.99 1.29 �0.0099 0.789

M2: h ¼ hd eða0þa1 tþa2N=1000þa3hdÞð1=d�1=ddÞ 1 0.99 0.87 �0.0354 0.684

2 0.98 1.28 0.0012 0.791

Harrison et al. (1986) equation

H1: h ¼ hdð1 þ ða0 þ a1N=1000 þ a2dmaxÞ ebhd Þð1 � ecd=hd Þ 1 0.99 0.86 0.0083 0.667

2 0.98 1.20 �0.0055 0.765

H2: h ¼ hdð1 þ ða0 þ a1t þ a2N=1000 þ a3ddÞ ebhd Þð1 � ecd=hd Þ 1 0.99 0.84 0.0125 0.665

2 0.98 1.20 �0.0040 0.766

H3: h � 1:30 ¼ hdð1 þ ða0 þ a1hd þ a2dgÞ ebhd Þð1 � ecd=hd Þ 1 0.98 1.28 0.0012 0.791

2 0.98 1.27 �0.0435 0.799

H4: h � 1:30 ¼ hdð1 þ ða0 þ a1t þ a2hd þ a3dgÞ ebhd Þð1 � ecd=hd Þ 1 0.98 1.29 �0.0099 0.789

2 0.98 1.26 �0.0418 0.795

a RMS: residual mean square; MPRESS: mean PRESS residuals; MAPRESS: mean absolute PRESS residuals; N: number of alive trees

(ha�1); t: age (years); hd: dominant height (m); dd: dominant diameter (cm); dmax: maximum diameter (cm); dg: quadratic mean diameter (cm);

h: tree height (m); d: tree diameter (cm); a0, a1, a2, a3, b and c: equation parameters.
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analysis, the QQ plots were used to detect outliers;

when identified as measurement, handwriting or

typing errors these were corrected or excluded.

Fig. 1 exemplifies the graphical relationship between

the studentised residuals and the height values

estimated with the different versions of Michailoff

and Harrison equations when fitted with data subset 2.

A systematic pattern of the variation of residuals was

not observed, although tree height estimates greater

than 30 m were associated with a higher variation of

the studentised residuals. The major difficulty of

measuring old stands—some stands presented trees

with more than 40 m of height and the presence of real

anomalous situations—trees with decreasing height

values in successive measurements as a consequence

of decline of the stands—could justify some of the

residual values associated with the greatest estimated

tree heights.

The high level of accuracy associated with the

measurement of tree heights in young stands justified

the small residual values associated with the smallest

estimates of tree height. This fact was particularly

evident with Harrison equation restricted to the initial

point diameter–height (0, 1.30)—versions H3 and H4

(Fig. 1, Table 4). With Michailoff and Harrison

equations, versions M1, M2 and H1, H2, respectively,

a positive bias associated with the smallest estimates

of tree height was observed (Fig. 1, Table 4). A

detailed analysis allowed the identification of two

situations related with tree height estimates smaller

than 1.30 m: very young stands, in which the most part

of the diameters and heights, at the tree level, were

between 0.1–2.1 cm and 1.3–2.1 m, respectively, and

young stands in which anomalous relationships

between tree diameter and height were observed.

The relationship defined between the studentised

residuals and the tree height estimates, analysed for

the six versions of Michailoff and Harrison equations

and for the two data subsets, did not suggest the

presence of heteroscedasticity associated with the

error term.

Table 5 shows the mean values of the measures of

precision and bias associated with the six analysed

versions of Michailoff and Harrison equations as well

as the correspondent model efficiencies (MEs). In

general, the equations were negatively biased; when

both data subsets were considered, the versions H1 and

H2 (y ¼ h) of Harrison equation were simultaneously

more precise and less biased. The mean of the absolute

value of the prediction residuals ranged between 67

and 80 cm. The bias expressed in Table 5 was

confirmed by the histograms of the height prediction

residuals. The graphs of the observed versus predicted

tree height values, independently of the data subset

and for the six versions of the analysed equations,

revealed an approximately linear relation.

Fig. 1. Graphical relationship between the studentised residuals and the tree height values estimated with the different versions of Michailoff

and Harrison equations fitted with the data subset 2 (see Table 4).
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The results of the analysis of the accuracy by age,

site index and planting density classes associated to

the height–diameter equations are exemplified in

Table 6. The decrease of precision with increasing

age was evident for all the equations and in both

datasets. This tendency reflected the influence of the

quality of the database on the fitting of the equations;

the accuracy of the tree height measurements

decreases with stand development. Both versions of

Michailoff equation presented, for stands older than

4 years, the smallest mean of the absolute values of the

prediction residuals. The bad behaviour presented in

young stands reflected the fact that this equation is not

restricted to the point diameter–height (0, 1.30).

However, this fact was not a limitation for a better

behaviour presented by versions H1 and H2 of

Harrison equation. The versions of Michailoff equa-

tions did not present an identical behaviour in both

data subsets. In a general way, both versions of

Michailoff equation and versions H3 and H4 of

Harrison equation were negatively biased, originating

tree height estimates superior to the respective

observed values; versions H1 and H2 were less biased.

A decrease of precision associated with an increase

of site index was observed with all the versions of the

two equations. The class that comprised site index

values between 20 and 24 m was an exception to this

gradient presenting, when compared with the other

three classes, the greatest values for the mean of the

absolute value of the prediction residuals; this class

was associated with the highest mean height values.

All the versions analysed were, generally, negatively

biased.

Analysing model performance by planting density

classes, all the versions of the two equations were less

precise for the class with the widest spacings,

associated to the greatest tree height values. This

class comprises many observations of the old spacing

trials (AV and SX) that were measured until the age of

17 years. Version H1 of Harrison equation was, in

general more precise; versions of the two equations

were in general, negatively biased for densities equal

or less than 1667 trees per hectare and positively

biased for densities greater than that limit. Not one of

the equations assumed a superior behaviour in both

data subsets.

From this analysis it was evident:

� that the strict relationship between the results of the

evaluation stage and the quality of fitting/evaluation

data; the equations are more biased and less precise

when applied to high trees and, in a general way, to

old stands; the measurement errors associated with

the hypsometer and the operator, the anomalous

relations between tree diameter and height that

expressed particular stand development situations

(dry periods, night-frosts, fires, strong winds, dis-

eases and presence of insects) can result in incorrect

Table 5

Measures of precision and bias associated with the six versions of Michailoff and Harrison equationsa

Equation
P

ðy � ŷÞ=n (m)
P

ðy � ŷÞj j=n (m) RSSp ¼
P

ðy � ŷÞ2
(m2) MEs Q99-Q1 (m)

Evaluation with the data subset 1 of the equations fitted with the data subset 2 (n ¼ 25707)

M1 �0.027 0.674 21951.2 0.986 2.331 � (�2.707) ¼ 5.038

M2 �0.047 0.684 22439.6 0.986 2.289 � (�2.784) ¼ 5.279

H1 0.022 0.669 21956.6 0.986 2.402 � (�2.699) ¼ 5.101

H2 0.021 0.672 22103.4 0.986 2.388 � (�2.698) ¼ 5.086

H3 �0.036 0.690 22752.8 0.985 2.289 � (�2.844) ¼ 5.133

H4 �0.042 0.688 22711.0 0.985 2.248 � (�2.896) ¼ 5.144

Evaluation with the data subset 2 of the equations fitted with the data subset 1 (n ¼ 25347)

M1 �0.012 0.791 33021.4 0.982 3.595 � (�3.112) ¼ 6.707

M2 0.038 0.795 33118.1 0.982 3.673 � (�3.092) ¼ 6.765

H1 �0.048 0.767 30812.7 0.984 2.811 � (�3.506) ¼ 6.317

H2 �0.046 0.776 32023.9 0.983 3.038 � (�3.432) ¼ 6.470

H3 �0.059 0.798 32382.4 0.983 3.114 � (�3.337) ¼ 6.451

H4 �0.024 0.793 32686.8 0.983 3.422 � (�3.215) ¼ 6.637

a y: observed height of tree i; ŷ: estimated height of tree i; n: total number of observations; RSS: residual sum of squares; MEs: model

efficiencies; Q99: quantile 99; Q1: quantile 1; M1, M2, H1, H2, H3 and H4 are defined in Table 4.
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evaluations of the measures of fit and the predictive

ability of the equations;

� that the M1 and M2 versions of Michailoff equation

and the H1 and H2 versions of Harrison equation

are not the most appropriate for young stands

because they do not consider the constraint of

diameter–height to the point (0, 1.30);

� that the H4 version of Harrison equation evidence a

better performance for young stands.

The final selection falls on versions H4 and H1 of

Harrison equation for young and old stands, respec-

tively. These equations were recalibrated with the total

dataset (n ¼ 51055) by the non-linear iteratively

reweighted least squares method to reduce the

limitations imposed by the non-normality of the errors

detected during the fitting stage. The final equations

are as follows. For eucalypt plantations with age less

than 4 years

h ¼ 1:30 þ hdð1 þ ð�0:43487 � 0:0108t

þ 0:09772hd � 0:06021dgÞ e�0:04864hdÞ
� ð1 � e�1:58926d=hdÞ

For eucalypt plantations with age greater than 4 years

h ¼ hd

	
1 þ

	
0:10694 þ 0:02916

N

1000

� 0:00176dmax



e0:03540hd



ð1 � e�1:81117d=hdÞ

where h is the tree height (m), d the tree diameter at

breast height (cm), t the stand age (years), N the stand

density (ha�1), dmax the maximum stand diameter

(cm), dg the mean tree diameter (cm), and hd is the

dominant height (m).

Table 6

Mean of the prediction residuals and mean of the absolute prediction residuals by age, site index and density at plantation classes for the

equations fitted with data subset 2 and evaluated with data subset 1

Mean of prediction residuals Mean of absolute prediction residuals

Age classes

Equations t � 4 4 < t � 8 8 < t � 12 t > 12 t � 4 4 < t � 8 8 < t � 12 t > 12

Nobs 13588 6059 2616 3432 13588 6059 2616 3432

M1 �0.0140 �0.0705 �0.0432 0.0109 0.479 0.786 0.872 1.097

M2 �0.0326 �0.0623 �0.0737 �0.0596 0.498 0.786 0.879 1.096

H1 0.0213 0.0146 0.0264 0.0350 0.446 0.812 0.882 1.133

H2 0.0208 0.0231 0.0422 �0.0001 0.447 0.822 0.890 1.129

H3 0.0303 �0.0111 �0.2469 �0.1832 0.483 0.810 0.895 1.139

H4 0.0321 �0.0246 �0.2231 �0.2279 0.483 0.806 0.896 1.135

Site index classes

Equation Sh,t � 16 16 < Sh,t � 20 20 < Sh,t � 24 Sh,t > 24 Sh,t � 16 16 < Sh,t � 20 20 < Sh,t � 24 Sh,t > 24

Nobs 910 5785 11582 7418 910 5785 11582 7418

M1 �0.0110 �0.1410 �0.0199 0.0489 0.600 0.647 0.699 0.663

M2 0.0620 �0.0755 �0.0808 0.0132 0.631 0.660 0.715 0.662

H1 0.0059 �0.0538 0.0244 0.0797 0.573 0.622 0.697 0.675

H2 0.0240 �0.0384 0.0154 0.0748 0.572 0.624 0.698 0.681

H3 �0.2265 �0.2184 �0.0365 0.1298 0.551 0.644 0.720 0.695

H4 �0.1312 �0.1685 �0.0500 0.0802 0.548 0.633 0.722 0.695

Density at plantation classes

Equation Npl < 1111 1111 � Npl

� 1667

Npl > 1667 Npl < 1111 1111 � Npl

� 1667

Npl > 1667

Nobs 8216 9489 7990 8216 9489 7990

M1 �0.0862 �0.1084 0.1306 0.769 0.683 0.565

M2 �0.0876 �0.0729 0.0241 0.780 0.691 0.578

H1 �0.0462 0.0221 0.0922 0.771 0.686 0.546

H2 �0.0551 0.0378 0.0785 0.771 0.689 0.550

H3 �0.2073 �0.0783 0.1898 0.772 0.707 0.585

H4 �0.2152 �0.0940 0.1979 0.773 0.704 0.583
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Huber influence function was defined for a limiting

value of 2, according to the graphical development

present on the normal QQ plots for the studentised

residuals. The non-linear iteratively reweighted least

squares method, reducing the influence of the points

associated to the highest studentised residuals,

normalised its distributions (Fig. 2).

To analyse the behaviour of both equations at age of

4 years, the relationship between tree height estimates

obtained with equations H1 and H4 was analysed for a

data subset restricted from the total data with tree age in

the range 3.5–4.5 years (Fig. 3). The relationship obser-

ved between both estimates was approximately linear.

5. Conclusions

The final selection of a height–diameter equation

for eucalypt plantations in Portugal with age less than

Fig. 2. Normal QQ plots for the studentised residuals, based on the tree height values estimated with the two versions of Harrison equation

(H1 and H4) recalibrated with the total dataset by the non-linear least squares method and the non-linear iteratively reweighted least squares

method.

Fig. 3. Relationship between tree height estimates obtained with

equations H1 and H4 in stands with ages between 3.5 and 4.5 years

(n ¼ 5688).
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4 years strikes on Harrison equation version H4, while

for stands with age greater than 4 years Harrison equa-

tion version H1 is recommended. Harrison equation

version H4 is mean tree dimension and age dependent;

Harrison equation version H1 is density dependent and

age independent.
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