

Departamento de Ciências e Engenharia de Biossistemas

REGA E DRENAGEM 2. 1 NECESSIDADES DE ÁGUA PARA REGA

2.1.3. DOTAÇÃO TOTAL DE REGA

- Balanço hídrico com e sem stress (dotação útil)
- Eficiência de rega
- Fracção de lavagem (ou lixiviação)

2.1.4. CAUDAL DE PROJECTO

- Dados climáticos: séries históricas
- Necessidades de ponta

EFICIÊNCIA DE REGA

A eficiência do sistema pode ser considerada a diferentes níveis:

Ao nível da Parcela - a eficiência considerada é a eficiência de aplicação do sistema de rega NR = quantidade de água de rega necessária ao sistema de rega

Ao nível da exploração agrícola — a eficiência inclui a eficiência de aplicação e a eficiência no transporte e distribuição dentro da exploração

NR = quantidade de água de rega de que a exploração necessita

Ao nível do perímetro de rega – a eficiência tem em consideração todas as perdas desde a captação até ao solo

NR na captação = quantidade de água de rega que é necessário retirar à captação

$$E_{f \ global} = E_{f \ sistema} \times E_{f \ distribuição} \times E_{f \ transporte}$$

DOTAÇÃO DE REGA

Ao nível da parcela

Dotação útil de rega — valor determinado a partir do balanço hídrico Na ausência de outras fontes ou sumidouros de água,

$$D_u = ET_{diaria} \times \Delta t$$

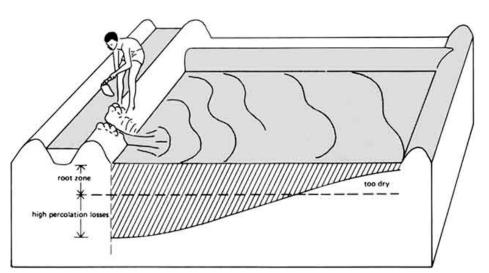
(NRL = ET - (Pe - RO - DP) - AC -
$$\triangle$$
A)

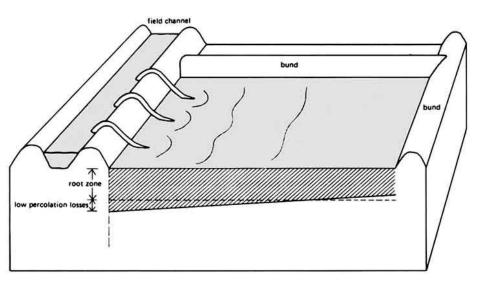
 Δt – intervalo entre regas

Dotação bruta de rega – valor afectado pela eficiência do sistema

$$D = \frac{D_u}{Ef}$$

D dotação de rega (mm),


Ef eficiência de aplicação do sistema de rega


 D_u dotação útil de rega calculada pelo BH (mm)

Eficiência de aplicação

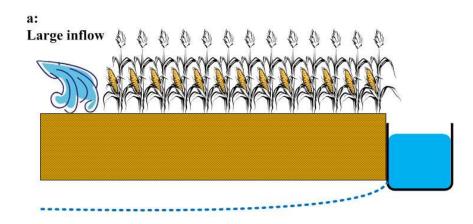
 $Ef = \frac{\text{Água armazenada na zona radicular}}{\text{Água fornecida à parcela}}$

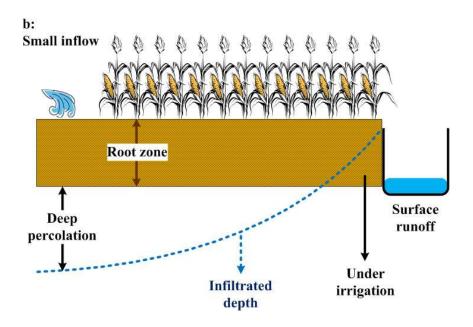
Sistemas de rega	Eficiências (%)		
Métodos de rega			
Rega de gravidade com nivelamento de precisão	6 6 6		
Sulcos	65 – 85		
Faixas	70 – 85		
Bacias	70 – 90		
 Rega de gravidade tradicional 	1		
Sulcos	40 – 70		
Faixas	45 – 70		
Bacias	45 – 70		
 Rega de arroz, canteiros em alagamento permanente 	25 – 70*		
Rega por aspersão	ta v		
Sistemas estacionários de cobertura total	65 – 85		
Sistemas estacionários deslocáveis manualmente	65 - 80		
rampas com rodas	65 – 80		
Aspersores canhão com enrolador ou com cabo	55 – 70		
Rampas móveis, com pivot central	65 – 85		
Mıcrorrega (rega localizada)	· · · · · · · · ·		
Gotejadores, 3 emissores por planta (pomares)	85 – 95		
Gotejadores, < 3 emissores por planta	80 – 90		
Micro-aspersores e "bubblers" (pomares)	85 – 95		
Linha contínua de emissores gota-a-gota	70 – 90		

Rega de superfície

Ef 40% - 70%

Perdas por evaporação nos sulcos e valas de transporte

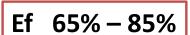

- velocidade do vento
- humidade do ar
- temperatura do ar


Perdas por percolação

- caudal de alimentação
- comprimento da parcela
- textura do solo
- declive da parcela
- rugosidade
- dotação de rega

Perdas por escorrimento superficial (sulcos abertos)

- caudal de alimentação
- declive da parcela
- textura do solo



Secção de Engenharia Rural

Perdas por evaporação, arrastamento pelo vento e intercepção

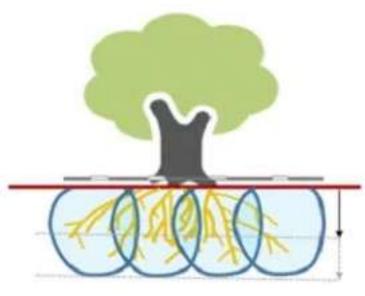
- velocidade do vento
- humidade do ar
- temperatura do ar
- pressão de funcionamento
- desenvolvimento do coberto

Perdas por percolação

• uniformidade do sistema

Rega por aspersão

- dotação de rega
- textura do solo

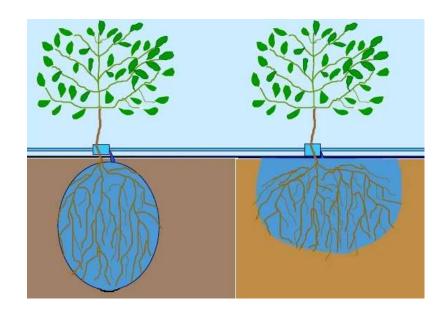

Perdas por escorrimento superficial

- taxa de aplicação vs capacidade de infiltração do solo
- declive da parcela
- densidade do coberto

Perdas por evaporação (durante a rega)

- velocidade do vento
- humidade do ar
- temperatura do ar
- ensombramento

Ef 90% – 95%


Perdas por escorrimento superficial

- taxa de aplicação vs capacidade de infiltração do solo
- declive da parcela

Rega localizada

Perdas por percolação

- uniformidade do sistema
- dotação de rega
- textura do solo

SALINIDADE

Controlo da salinidade:

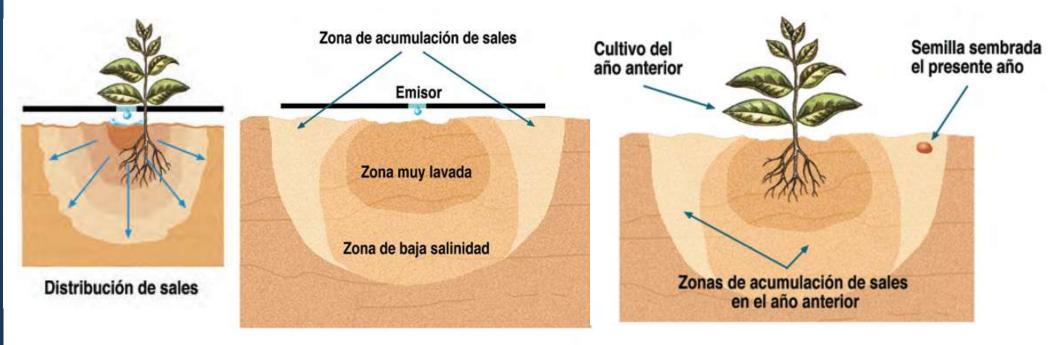
- Lixiviação
- Drenagem
- Rega de alta frequência
- Culturas mais resistentes

Controlo da salinidade através da lixiviação

= aplicação de maior dotação de rega que a necessária para cobrir as necessidades hídricas de forma a arrastar os sais para fora da zona radicular

A quantidade de água necessária para a lavagem – **fracção de lavagem- LR**, depende da tolerância da cultura à salinidade e da qualidade da água de rega.

Fracção de lavagem- LR: % de água de rega que deve passar pelo perfil do solo para manter a salinidade a níveis compatíveis com a tolerância das culturas e com o objectivo da obtenção de um determinado nível de produção.


$$LR = \frac{1.5 \ CE_W}{5 \ CE_{e \ lim} - 1.5 \ CE_w}$$

CE_w salinidade da água de rega determinada em lab (dS m⁻¹)
CE_{e lim} salinidade do solo, determinada no extracto de saturação, tolerada pela cultura para que o nível de produção atinja um determinado valor (dS m⁻¹)
(Quadro FAO)

FIELD CROPS		100%		90%		75%		50%		0% "maximum"	
	EC _e	ECw	EC _e	ECw	EC _e	ECw	ECe	ECw	EC _e	ECw	
Barley (Hordeum vulgare)4	8.0	5.3	10	6.7	13	8.7	18	12	28	19	
Cotton (Gossypium hirsutum)	7.7	5.1	9.6	6.4	13	8.4	17	12	27	18	
Sugarbeet (Beta vulgaris) ⁵	7.0	4.7	8.7	5.8	11	7.5	15	10	24	16	
Sorghum (Sorghum bicolor)	6.8	4.5	7.4	5.0	8.4	5.6	9.9	6.7	13	8.7	
Wheat (Triticum aestivum) ^{4,6}	6.0	4.0	7.4	4.9	9.5	6.3	13	8.7	20	13	
Wheat, durum (Triticum turgidum)	5.7	3.8	7.6	5.0	10	6.9	15	10	24	16	
Soybean (Glycine max)	5.0	3.3	5.5	3.7	6.3	4.2	7.5	5.0	10	6.7	
Cowpea (Vigna unguiculata)	4.9	3.3	5.7	3.8	7.0	4.7	9.1	6.0	13	8.8	
Groundnut (Peanut) (Arachis hypogaea)	3.2	2.1	3.5	2.4	4.1	2.7	4.9	3.3	6.6	4.4	
Rice (paddy) (Oriza sativa)	3.0	2.0	3.8	2.6	5.1	3.4	7.2	4.8	11	7.6	
Sugarcane (Saccharum officinarum)	1.7	1.1	3.4	2.3	5.9	4.0	10	6.8	19	12	
Corn (maize) (Zea mays)	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7	
Flax (Linum usitatissimum)	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7	
Broadbean (Vicia faba)	1.5	1.1	2.6	1.8	4.2	2.0	6.8	4.5	12	8.0	
Bean (Phaseolus vulgaris)	1.0	0.7	1.5	1.0	2.3	1.5	3.6	2.4	6.3	4.2	
VEGETABLE CROPS			10.	Ži.	Ž.			ů.			
Squash, zucchini (courgette) (Cucurbita pepo melopepo)	4.7	3.1	5.8	3.8	7.4	4.9	10	6.7	15	10	
Beet, red (Beta vulgaris) 5	4.0	2.7	5.1	3.4	6.8	4.5	9.6	6.4	15	10	
Squash, scallop (Cucurbita pepo melopepo)	3.2	2.1	3.8	2.6	4.8	3.2	6.3	4.2	9.4	6.3	
Broccoli (Brassica oleracea botrytis)	2.8	1.9	3.9	2.6	5.5	3.7	8.2	5.5	14	9.1	
Tomato (Lycopersicon esculentum)	2.5	1.7	3.5	2.3	5.0	3.4	7.6	5.0	13	8.4	
Cucumber (Cucumis sativus)	2.5	1.7	3.3	2.2	4.4	2.9	6.3	4.2	10	6.8	
Spinach (Spinacia oleracea)	2.0	1.3	3.3	2.2	5.3	3.5	8.6	5.7	15	10	
Celery (Apium graveolens)	1.8	1.2	3.4	2.3	5.8	3.9	9.9	6.6	18	12	
Cabbage (Brassica oleracea capitata)	1.8	1.2	2.8	1.9	4.4	2.9	7.0	4.6	12	8.1	
Potato (Solanum tuberosum)	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7	
Corn, sweet (maize) (Zea mays)	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7	
Sweet potato (Ipomoea batatas)	1.5	1.0	2.4	1.6	3.8	2.5	6.0	4.0	11	7.1	
Pepper (Capsicum annuum)	1.5	1.0	2.2	1.5	3.3	2.2	5.1	3.4	8.6	5.8	
Lettuce (Lactuca sativa)	1.3	0.9	2.1	1.4	3.2	2.1	5.1	3.4	9.0	6.0	
Radish (Raphanus sativus)	1.2	0.8	2.0	1.3	3.1	2.1	5.0	3.4	8.9	5.9	
Onion (Allium cepa)	1.2	0.8	1.8	1.2	2.8	1.8	4.3	2.9	7.4	5.0	
Carrot (Daucus carota)	1.0	0.7	1.7	1.1	2.8	1.9	4.6	3.0	8.1	5.4	
Bean (Phaseolus vulgaris)	1.0	0.7	1.5	1.0	2.3	1.5	3.6	2.4	6.3	4.2	
Turnip (Brassica rapa)	0.9	0.6	2.0	1.3	3.7	2.5	6.5	4.3	12	8.0	

Notas:

- A eficiência de rega pode substituir a necessidade de lavagem, se a eficiência de rega for devido a perdas por drenagem (rega de superfície)
- Enquanto que na rega de superfície e por aspersão os sais são arrastados para fora da zona radicular por drenagem profunda, na rega localizada os sais acumulam-se na periferia do bolbo molhado – no caso de culturas anuais, assegurar a lavagem dos sais (precipitação, rega por aspersão) antes da sementeira da cultura seguinte

Secção de Engenharia Rural

DOTAÇÃO TOTAL DE REGA

$$D_T = \frac{D}{1 - LR}$$

$$D_T = \frac{D_u}{Ef(1 - LR)}$$

- D_T dotação total de rega (mm)
- D dotação bruta de rega (mm)
- LR fracção de lavagem
- Ef eficiência de aplicação do sistema de rega
- D_u dotação útil de rega calculada pelo BH (mm)

DIMENSIONAMENTO DE UM SISTEMA DE REGA

- O dimensionamento é feito com base no maior volume a fornecer durante a campanha de rega
- Este volume varia de ano para ano em função das condições climáticas
- As necessidades hídricas e, consequentemente, as dotações de rega devem ser calculadas com base em dados meteorológicos históricos, recorrendo a um período de dados de pelo menos 30 anos
- É necessário fazer o estudo das frequências de distribuição dos valores das dotações de rega e conhecer os seus valores para diferentes níveis de probabilidade de ocorrência
- Ao valor de dotação do mês de maior consumo e apresenta a probabilidade de não excedência escolhida, chama-se valor de ponta, de projeto ou de dimensionamento.

SÉRIES METEOROLÓGICAS

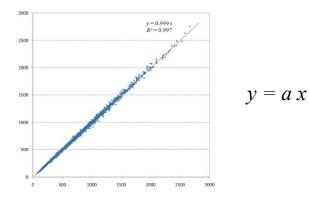
1. Devem ser suficientemente extensas

→ recomenda-se usar séries de pelo menos 30 anos

2. Devem ser homogéneas

A homogeneidade pode ser afectada por:

- Mudança do método de medição
- Mudança do aparelho de medição, alteração da sua calibração ou da sua localização
- Alteração da localização da estação
- Alteração do ambiente envolvente da estação (desflorestação, urbanismo, albufeiras)


3. Devem ser completas

→ Preenchimento de falhas

Preenchimento de falhas das séries temporais

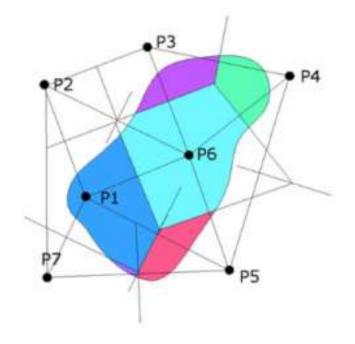
- falha pontual utilizar o valor médio da variável em questão
- várias falhas encontrar outra(s) série(s) (local) suficientemente perto ou em situação similar, em que os dados em falta na primeira série estejam preenchidos e em que haja suficientes dados em comum (mesmas datas)

Regressão linear simples

Critérios:

$$a \approx 1$$
 $R^2 \approx 1$

Outros métodos


- Regressão linear múltipla
- Ponderação regional
- Método da razão normal
- Método do inverso do quadrado da distância

SÉRIES METEOROLÓGICAS

Quando a zona é servida por várias estações meteorológicas, os valores a utilizar das variáveis meteorológicas devem ser obtidos por ponderação espacial

- → método dos polígonos de Thiessen
- Cada polígono define a área de influência em torno da estação meteorológica respectiva
- O valor obtém-se por ponderação, em que o peso de cada medição é a área de influência da estação

$$P = \frac{1}{A} \sum_{i=1}^{n} A_i P_i$$

NECESSIDADES HÍDRICAS E DE REGA

Necessidades hídricas

$$ETc = Kc ETo$$

Necessidades (líquidas) de rega

$$NLR = ET - (Pe - RO - DP) - AC - \Delta A$$

No nosso país e no mês mais desfavorável (Julho) normalmente NR = ETc

Determinação do valor a usar no projecto

- ▶ Determinar o maior valor de ET₀ / ETҫ (valores mensais /valores decendiais) para cada ano da série de dados (valor de ponta)
- O valor escolhido para o projecto deve ser o associado à probabilidade de ocorrência (ou período de retorno) escolhido

Embora se possa usar aproximações estatísticas mais sofisticadas, usando as frequências associadas às respectivas distribuições (Gauss, Pearson, etc), normalmente usa-se a frequência empírica de Horton (percentis):

$$P = \frac{R_j}{N+1} 100$$

- P probabilidade de ocorrência em %
- N nº de valores da série considerada
- R_j posição do valor em análise na série de valores organizados por ordem crescente

Exemplo

Série 1: 18, 19, 20, 22, 24, 26, 29, 31, 35, 45, 61

(n = 11)

Série 2: 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 35

(n = 14)

Determinar o valor correspondente a uma probabilidade de ocorrência de 25%

Série 1

$$P = \frac{R_j}{N+1} 100$$

$$25 = \frac{R_j}{11+1} \, 100 \qquad R_j = 3$$

$$R_j = 3$$

$$\longrightarrow$$

20

Série 2

$$P = \frac{R_j}{N+1} \, 100$$

$$25 = \frac{R_j}{14+1} \, 100 \qquad R_j = 3.75$$

$$R_j = 3.75$$

$$\qquad \Rightarrow \qquad$$

21.75

Período de retorno

(= tempo de retorno, intervalo de recorrência ou tempo de recorrência) é o intervalo estimado entre ocorrências de igual magnitude de um fenómeno natural (chuvas, ventos intensos, granizo, etc)

$$Pr = \frac{100}{100 - P}$$

Este parâmetro estatístico tem grande utilidade para análises de risco e dimensionamento de obras de engenharia

- **Pr** período de retorno, em anos
- P probabilidade de ocorrência, em percentagem

Relação entre probabilidade de ocorrência (p) e período de retorno (Pr)

p (%)	Pr (anos)					
10	1.1					
50	2.0					
60	2.5					
75	4.0					
80	5.0					
90	10.0					
95	20.0					
96	25.0					
97	33.3					
98	50.0					
99	100.0					
99.8	Secção de Engenha					

Ex: Período de retorno de determinado valor = 5 anos

Esse valor será, em média, excedido uma vez em cada cinco anos, embora não haja garantia que isso aconteça

ou

Há 80 % de probabilidade desse valor não ser excedido

Período de retorno

Deverá ser escolhido em função de

- Custo da obra
- Vida útil/amortização
- Consequências em caso de falha (prejuízos materiais e humanos)
- Custos de reparação da obra
- Custos de manutenção

No caso de sistemas de rega, aconselha-se usar os valores seguintes:

- 80 % para as culturas anuais
- 90 % para os pomares.

CAUDAL DE DIMENSIONAMENTO OU DE PROJECTO

■ Caudal de dimensionamento ou de projecto Q_d (L s⁻¹)

$$Q_d = 2.78 \ \frac{D_T . A}{T . N}$$

Q_d caudal de dimensionamento em L s⁻¹;

D_T dotação total de rega em mm (para o período considerado)

A área a regar em ha

T tempo de rega, em horas/dia de rega

N nº de dias de rega no período considerado

■ Caudal específico q (L s⁻¹ ha⁻¹): caudal de dimensionamento expresso por unidade de área

$$q = \frac{Q_d}{A}$$

Caudal fictício contínuo (L s-1): se a rega fosse contínua, ou seja 24 horas por dia, todos os dias