- Os slides de apoio às aulas teóricas baseiam-se na matéria da sebenta Texto de Apoio de Álgebra Linear, e vários dos seus esquemas e/ou figuras provêm da sebenta ou são versões modificadas de esquemas e figuras da sebenta.
- A matéria exposta nestes slides deve ser complementada com a leitura dessa sebenta.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

1

Um pequeno exemplo para motivar :)

Um famoso conjunto de dados foi obtido por Ronald Fisher medindo o comprimento e a largura das sépalas e pétalas (em cm) de 50 lírios de cada uma de 3 espécies distintas, *Setosa, Versicolor* e *Virgínica*.

Base de dados das Flores de Íris

Setosa Versicolor Virginica

Pétala

(https://pt.wikipedia.org/wiki/Conjunto_de_dados_flor_Iris#/media/Ficheiro:Flores_de_Iris.png)

A tabela a seguir apresenta os valores obtidos para alguns dos lírios.

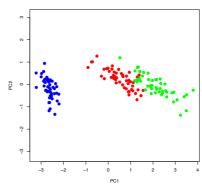
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
				·	
•		-		-	•
•	•	•	•	•	•
150	5.9	3.0	5.1	1.8	virginica

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

O melhor retrato do conjunto de dados dos lírios

O conjunto de dados dos 150 lírios origina uma núvem de 150 pontos num espaço a 4 dimensões que não conseguimos visualizar, em que o vetor de coordenadas de cada ponto contém o comprimento e a largura das sépalas e pétalas de cada lírio (vetor com 4 componentes).

Usando métodos de Álgebra Linear podemos projetar esta núvem de pontos num plano de modo a obter-se o melhor retrato possível, no sentido em que melhor preserva as distâncias originais entre as flores, ou equivalentemente, a **variabilidade** do conjunto:



Pode-se observar no retrato que, por exemplo, os comprimentos e as larguras das sépalas e pétalas diferenciam claramente os lírios da espécie *Setosa* dos lírios das restantes 2 espécies *Versicolor* e *Virgínica* Este tipo de conjuntos de dados são estudados em áreas tais como a Estatística Multivariada, áreas essas que necessitam de forma crucial de diversos conceitos e resultados de Álgebra Linear.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

3

Vetores com n componentes reais (\mathbb{R}^n)

- ▶ Recordemos que R denota o conjunto dos números reais.
- O conjunto dos vetores do plano é o conjunto dos vetores com 2 componentes reais que se denota por R², ou seja,

$$\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$$

Por exemplo, $(1, -\pi) \in \mathbb{R}^2$.

Analogamente, o conjunto dos vetores do espaço é o conjunto dos vetores com 3 componentes reais, denotado ℝ³, isto é,

$$\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}.$$

Por exemplo, $(1, -\pi, 0) \in \mathbb{R}^3$.

Em geral, dado um inteiro $n \ge 2$, denotamos o conjunto dos vetores com n componentes reais por \mathbb{R}^n , ou seja,

$$\mathbb{R}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) : x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R}\},\$$

onde x_i é a componente do vetor x que se encontra na posição i. Por exemplo, se $x=(1,-\pi,0,2,3,-4)\in\mathbb{R}^6$, tendo-se $x_4=2$.

Os números reais serão também designados por escalares por oposição a vetores

Operações sobre vetores do plano (\mathbb{R}^2)

Recordemos as operações algébricas bem conhecidas sobre vetores do plano (\mathbb{R}^2) . Se $x=(x_1,x_2)$ e $y=(y_1,y_2)$ são vetores de \mathbb{R}^2 e $\lambda \in \mathbb{R}$:

► Adição de vetores:

$$x + y = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2).$$

Produto de um vetor por um escalar:

$$\lambda x = \lambda(x_1, x_2) = (\lambda x_1, \lambda x_2).$$

Produto escalar (ou interno) de vetores:

$$x \cdot y = (x_1, x_2) \cdot (y_1, y_2) = x_1y_1 + x_2y_2.$$

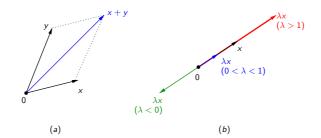
Por exemplo, se x=(3,1), y=(2,5) e $\lambda=2$, obtém-se

$$x + y = (5,6), \quad 2(3,2) = (6,4), \quad (3,1) \cdot (2,5) = 11.$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

.

Interpretação geométrica das operações sobre vetores



Para todos os vetores não nulos do plano, x e y, tem-se a relação bem conhecida,

$$\cos(\theta) = \frac{x \cdot y}{\|x\| \|y\|},$$

onde θ é o ângulo formado por x e y. Resulta, em particular, da relação anterior a chamada desigualdade de Cauchy-Schwarz (C.-S.),

$$|x \cdot y| \le ||x|| \, ||y||,$$

onde||x|| e ||y|| são os comprimentos do vetores x e y, respetivamente.

A extensão das operações algébricas para vetores com um número arbitrário de componentes faz-se de modo óbvio.

Definição

Adição de vetores:

$$x + y = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

isto é, somam-se as componentes homólogas dos vetores

Produto de um vetor por um escalar:

$$\lambda x = \lambda(x_1, \ldots, \lambda x_n) = (\lambda x_1, \ldots, \lambda x_n),$$

isto é, multiplicam-se todas as componentes do vetor pelo escalar

Produto escalar (ou interno) de vetores:

$$x \cdot y = (x_1, x_2, \dots, x_n) \cdot (y_1, y_2, \dots, y_n) = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

sendo ainda válida a desigualdade de C.-S. neste caso.

TPC: dar exemplos em \mathbb{R}^4 para as 3 operações anteriores.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

7

Propriedades das operações sobre vetores

Adição de vetores e o produto de vetores por escalares verificam várias propriedades que decorrem imediatamente das propriedades dos números reais (falaremos mais adiante nas propriedades do produto escalar).

Propriedades das operações algébricas

Sejam x, y, z vetores de \mathbb{R}^n , $\vec{0} = (0, \cdots, 0) \in \mathbb{R}^n$ e $\lambda, \mu \in \mathbb{R}$. Tem-se,

- 1. x + y = y + x (comutativa)
- 2. (x+y)+z=x+(y+z) (associativa)
- 3. $x + \vec{0} = x$ (existência de el. neutro)
- 4. $x + (-x) = \vec{0}$ (existência de el. simétrico)
- 5. $\lambda(x+y) = \lambda x + \lambda y$ (distributiva...)
- 6. $(\lambda + \mu)x = \lambda x + \mu x$ (distributiva...)
- 7. $(\lambda \mu)x = \lambda(\mu x)$ (compatibilidade dos produtos...)
- 8. 1x = x (el. identidade da multiplicação por escalar)

Definição de matriz

Sejam m, n inteiros positivos. Chama-se matriz do tipo $m \times n$ a uma coleção $A = [a_{ij}]$ de mn números reais dispostos em m linhas e n colunas,

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}.$$

a_{ij}: elemento da matriz que se encontra na linha i e coluna j da matriz O índice i percorre as linhas da matriz e designa-se por índice de linha O índice j percorre as colunas da matriz e designa-se por índice de coluna

As matrizes constituem uma extensão dos vetores adequada ao estudo dos sistemas lineares

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

9

Exemplos

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}_{4 \times 3} = \begin{bmatrix} 10 & 2 & 3 \\ 5 & 0 & 0 \\ 1 & 3 & -1 \\ 5 & 1 & -2 \end{bmatrix}_{4 \times 3}$$

O elemento de A que se encontra na linha 4 e coluna 1 é $a_{41} = 5$

lacksquare $A=[a_{ij}]_{2 imes 3}$ definida por $a_{1j}=10$ e $a_{2j}=\pi$, para todo o j, é

$$A = \begin{bmatrix} 10 & 10 & 10 \\ \pi & \pi & \pi \end{bmatrix}_{2 \times 3}$$

 $ightharpoonup A = [a_{ij}]_{3 \times 3}$ definida por $a_{ij} = i + j$, para i, j = 1, 2, 3, é

$$A = \begin{bmatrix} 1+1 & 1+2 & 1+3 \\ 2+1 & 2+2 & 2+3 \\ 3+1 & 3+2 & 3+3 \end{bmatrix}_{3\times 3} = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}_{3\times 3}$$

Matriz-linha e matriz-coluna ou vetor

- Se m=1, $A_{1\times n}=\begin{bmatrix} a_{11} & \dots & a_{1n} \end{bmatrix}$ designa-se por matriz-linha. Por exemplo, $A=\begin{bmatrix} 1 & 3 & -2 \end{bmatrix}$ matriz-linha do tipo 1×3 .
- Se n = 1, $A_{m \times 1} = \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}$ designa-se por *matriz-coluna* ou *vetor*.

Por exemplo,
$$(2,3,-1)=\left[\begin{array}{c}2\\3\\-1\end{array}\right]\in\mathbb{R}^3$$

► Em geral, $x \in \mathbb{R}^m$ pode ser representado como m-uplo de números reais ou como matriz-coluna do tipo $m \times 1$:

$$x = (x_1, \cdots, x_m) = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}.$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

11

Matriz definida por vetores e matriz quadrada

Se $v_1, v_2, \ldots, v_n \in \mathbb{R}^m$, $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ denota a matriz do tipo $m \times n$ cujas colunas são os n vetores v_1, v_2, \ldots, v_n . Por exemplo, se $v_1 = (1, 0, 2)$, $v_2 = (-1, 1, 1)$ e $v_2 = (1, 10, 0)$,

$$A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 10 \\ 2 & 1 & 0 \end{bmatrix}_{3 \times 3}.$$

- Se uma matriz A é do tipo $n \times n$, A diz-se quadrada de ordem n. Por exemplo, a matriz $\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ anterior é quadrada de ordem 3.
 - ► Chama-se *diagonal principal* de uma matriz quadrada $A = [a_{ij}]$ ao conjunto dos elementos a_{ii} , i = 1, ... n:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}.$$

Matriz triangular e matriz diagonal

 $A = [a_{ij}]$ matriz quadrada de ordem n

A diz-se *triangular superior* se $a_{ij} = 0$ para i > j, ou seja, se todos os elementos abaixo da diagonal principal são nulos.

Por exemplo, $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ é triangular superior de ordem 3.

- A definição de triangular inferior é análoga e fica como exercício.
- ▶ A diz-se diagonal se $a_{ij} = 0$ para todo $i \neq j$, isto é, se todos os elementos fora da diagonal principal de A forem nulos, e pode ser representada por $A = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$.

Por exemplo, diag $(2,-1,3)=\left[egin{array}{ccc}2&0&0\\0&-1&0\\0&0&3\end{array}\right]$ é uma matriz diagonal de ordem 3.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

13

Matriz escalar e matriz identidade

▶ Uma matriz diagonal A de ordem n diz-se *escalar* se todas as entradas da diagonal principal forem iguais entre si, isto é, se para algum $\lambda \in \mathbb{R}$,

$$A = \operatorname{diag}(\lambda, \lambda, \dots, \lambda) = egin{bmatrix} \lambda & 0 & \cdots & 0 \ 0 & \lambda & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda \end{bmatrix}_{n imes n}$$

Se $\lambda = 1$, A designa-se por matriz identidade de ordem n e denota-se por I_n (ou simplesmente por I). A matriz identidade representa o elemento neutro da multiplicação de matrizes como veremos mais adiante

Por exemplo, a matriz identidade de ordem 3 é a matriz

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Igualdade entre matrizes e matriz transposta

▶ $A = [a_{ij}]$ e $B = [b_{ij}]$ do mesmo tipo dizem-se *iguais* se os elementos homólogos forem iguais, isto é, se $a_{ij} = b_{ij}$, $\forall i, j$

Por exemplo,
$$\begin{bmatrix} 5 & x \\ y & 6 \end{bmatrix} = \begin{bmatrix} z & 3 \\ 2 & w \end{bmatrix} \Leftrightarrow \begin{cases} x = 3 \\ y = 2 \\ z = 5 \\ w = 6 \end{cases}$$

A transposta de $A = [a_{ij}]$ do tipo $m \times n$ é a matriz $A^T = [a_{ji}]_{n \times m}$ do tipo $n \times m$, cujas colunas são as linhas de A pela mesma ordem.

Por exemplo, se
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \\ 5 & 6 \end{bmatrix}$$
, então $A^T = \begin{bmatrix} 2 & 4 & 5 \\ 3 & 1 & 6 \end{bmatrix}$.

Tem-se, obviamente, $(A^T)^T = A$.

 $ightharpoonup A = [a_{ij}]$ quadrada diz-se *simétrica*, se $A^T = A$, isto é, $a_{ij} = a_{ji}$, $\forall i, j$.

Por exemplo,
$$A = \begin{bmatrix} 2 & -2 & 1 \\ -2 & 1 & 5 \\ 1 & 5 & 10 \end{bmatrix}$$
 é simétrica.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

15

Operações algébricas sobre matrizes: adição de matrizes

As operações algébricas sobre matrizes estendem as operações da adição de vetores, do produto de um vetor por um escalar e do produto escalar de vetores definidas anteriormente.

Se $A = [a_{ij}]_{m \times n}$ e $B = [b_{ij}]_{m \times n}$ são matrizes do mesmo tipo define-se a soma de A com B, por

$$A+B=\left[a_{ij}+b_{ij}\right]_{m\times n}.$$

Por outras palavras, os elementos de A + B obtêm-se somando os elementos homólogos de A e de B.

Por exemplo, se
$$A=\begin{bmatrix}2&-1&0\\4&5&3\end{bmatrix}$$
 e $B=\begin{bmatrix}0&2&1\\-3&1&4\end{bmatrix}$, tem-se

$$A + B = \begin{bmatrix} 2+0 & -1+2 & 0+1 \\ 4-3 & 5+1 & 3+4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 6 & 7 \end{bmatrix}.$$

Produto de uma matriz por um escalar

Se $\lambda \in \mathbb{R}$ e $A = [a_{ij}]_{m \times n}$ define-se o *produto de A pelo escalar* λ , por

$$\lambda A = [\lambda a_{ij}]_{m \times n}$$

Por outras palavras, λA obtém-se multiplicando cada elemento de A por λ

Se $\lambda = -1$, λA denota-se simplesmente por -A

Por exemplo, se
$$\lambda=3$$
 e $A=egin{bmatrix} 20 & -1 & 13 \\ 18 & -2 & 81 \end{bmatrix}$, então

$$\lambda A = 3 \begin{bmatrix} 20 & -1 & 13 \\ 18 & -2 & 81 \end{bmatrix} = \begin{bmatrix} 3 \cdot 20 & 3 \cdot (-1) & 3 \cdot 13 \\ 3 \cdot 18 & 3 \cdot (-2) & 3 \cdot 81 \end{bmatrix} = \begin{bmatrix} 60 & -3 & 39 \\ 54 & -6 & 243 \end{bmatrix}$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

17

18

Propriedades da adição de matrizes e do produto de escalares por matrizes

Sejam A, B e C matrizes do tipo $m \times n$ e $\lambda, \mu \in \mathbb{R}$. Tem-se,

- 1. A + B = B + A
- 2. (A+B)+C=A+(B+C)
- 3. $A + [0]_{m \times n} = A$ ($[0]_{m \times n}$ matriz cujos elementos são todos nulos)
- 4. $A + (-A) = [0]_{m \times n}$
- 5. $\lambda(A+B) = \lambda A + \lambda B$
- $6. \ (\lambda + \mu)A = \lambda A + \mu A$
- 7. $\lambda(\mu A) = (\lambda \mu)A$
- 8. 1.A = A
- 9. $(A+B)^T = A^T + B^T$
- 10. $(\lambda A)^T = \lambda A^T$
- 11. $(A^T)^T = A$

Propriedades das operações algébricas sobre matrizes

A matriz nula $[0]_{m \times n}$ é portanto o elemento neutro da adição de matrizes.

As propriedades (1)-(8) decorrem das propriedades da adição e do produto de números reais e são análogas às propriedades da adição e do produto por escalar para vetores.

As restantes três propriedades são evidentes.

Exercício na aula

Sejam $A = \begin{bmatrix} 2 & 1 \\ 4 & -4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}$ e I_2 a matriz identidade de ordem 2. Simplifique expressão $((A^T + B)^T + 4I_2)^T$ indicando as propriedades do slide anterior que utilizar e calcule o seu valor.

TPC

Mostre que se A é uma matriz quadrada então $A + A^T$ é simétrica.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

19

20

Produto de matrizes

Duas matrizes A e B dizem-se encadeadas, se

número de colunas de A = número de linhas de B.

Por exemplo,
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \\ 0 & 5 \end{bmatrix}_{3\times 2}$$
 e $B = \begin{bmatrix} 1 & -1 & 0 & 5 \\ 2 & 1 & -1 & 3 \end{bmatrix}_{2\times 4}$ são

encadeadas pois o número de colunas de A é igual ao número de linhas de B. Mas B e A não são encadeadas !

Definição do produto de matrizes

Se $A = [a_{ij}]_{m \times n}$ e $B = [b_{jk}]_{n \times p}$ são encadeadas, define-se o *produto* de A por B, denotado AB, como sendo a matriz $C = [c_{ik}]_{m \times p}$ tal que

$$c_{ik} = (\text{linha } i \text{ de } A) \cdot (\text{coluna } k \text{ de } B)$$

= $(a_{i1}, a_{i2}, \dots, a_{in}) \cdot (b_{1k}, b_{2k}, \dots, b_{nk})$
= $a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$.

Por exemplo,
$$A = \begin{bmatrix} 2 & 4 & -1 \\ 4 & 5 & 0 \\ 1 & 8 & 5 \end{bmatrix}_{3\times 3}$$
 e $B = \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 0 & 5 \end{bmatrix}_{3\times 2}$ são encadeadas, tendo-se

$$AB = \begin{bmatrix} \frac{2}{4} & \frac{4}{5} & \frac{-1}{0} \\ \frac{1}{8} & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2+8+0 & -2+16-5 \\ 4+10+0 & -4+20+0 \\ 1+16+0 & -1+32+25 \end{bmatrix}$$

$$= \begin{bmatrix} 10 & 9 \\ 14 & 16 \\ 17 & 56 \end{bmatrix}_{3\times 2}$$

Por exemplo, o elemento de AB que se encontra na linha 3 e coluna 1 é o produto escalar da terceira linha de A pela primeira coluna de B, isto é, $(1,8,5) \cdot (1,2,0) = 17$.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

21

Produto escalar via produto de matrizes...

▶ O produto de matrizes estende o conceito de produto escalar de vetores: se $x, y \in \mathbb{R}^n$ então

$$x^T y = x \cdot y$$

Por exemplo, se
$$x = (-1, 1, 3) = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$$
 e $y = (1, 0, 1) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$,

$$x^{T}y = \begin{bmatrix} -1 & 1 & 3 \end{bmatrix}_{1 \times 3} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}_{3 \times 1} = \begin{bmatrix} (-1, 1, 3) \cdot (1, 0, 1) \end{bmatrix}_{1 \times 1} = \begin{bmatrix} 2 \end{bmatrix}_{1 \times 1} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = x \cdot y$$

Note-se que
$$xy^T = \begin{bmatrix} -1\\1\\3 \end{bmatrix}_{3\times 1} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}_{1\times 3} \begin{bmatrix} -1 & 0 & -1\\1 & 0 & 1\\3 & 0 & 3 \end{bmatrix}_{3\times 1}$$

 $^{^{1}}$ As matrizes 1×1 identificam-se com a seu único elemento.

Potência de uma matriz quadrada

Potência inteira não negativa

Dada uma matriz quadrada A de ordem n definem-se as potências inteiras não negativas de A por,

$$A^0=I_n$$
 e $A^k=\underbrace{A\cdots A}_{\text{k vezes}}$ $(k\in\mathbb{N}).$

TPC

Calcular
$$A^3$$
 com $A = \begin{bmatrix} -1 & 1 \\ 3 & 2 \end{bmatrix}_{2 \times 2}$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

Propriedades

Propriedades do produto de matrizes

Sejam A, B, C matrizes, I a matriz identidade de ordem conveniente, [0] a matriz nula de tipo conveniente e $\lambda \in \mathbb{R}$ e k um inteiro não negativo. Sempre que as operações estejam definidas, tem-se:

- 1. (AB)C = A(BC) (associativa)
- 2. A(B+C) = AB + AC (distributiva)
- 3. (A+B)C = AC + BC (distributiva)
- 4. AI = IA = A (el. neutro da mult.)
- 5. A[0] = [0]A = 0 (el. absorvente da mult.)
- 6. $\lambda(AB) = (\lambda A)B = A(\lambda B)$ (compatibilidade dos produtos)
- 7. $(AB)^T = B^T A^T$ (!)
- 8. $(A^k)^T = (A^T)^k$

23

"Não propriedades" do produto de matrizes

Ao contrário do que sucede com a adição, algumas propriedades do produto de números reais **não se generalizam** para o produto de matrizes.

Exercício na aula

Calcular os produtos AB e BA com

$$A = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}_{2 \times 2}, \qquad B = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}_{2 \times 2}$$

O que observa?

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

25

"Não propriedades" do produto de matrizes

O produto de matrizes não é comutativo, ou seja, em geral,

$$AB \neq BA$$
.

A lei do anulamento do produto também não é válida, ou seja, em geral,

$$AB = [0] \implies (A = [0] \text{ ou } B = [0]).$$

A lei do corte também não é válida ou seja, em geral, dadas matrizes A, B e C, com $A \neq [0](^2)$,

$$AB = AC \implies B = C.$$

([0] denota uma matriz nula de ordem conveniente)

TPC

Dar exemplos de 3 matrizes quadradas de ordem 2, A, B e C, para as quais a lei do corte falhe

²Para a lei do corte ser válida para matrizes devemos substituir a condição $A \neq [0]$ por A invertível, conceito que daremos mais adiante.

Uma consequência inesperada...

Se A e B são matrizes quadradas da mesma ordem não permutáveis, isto é, $AB \neq BA$, obtém-se aplicando as propriedades distributivas do produto de matrizes.

$$(A + B)(A - B) = A^2 - AB + BA - B^2 \neq A^2 - B^2$$
.

$$(A+B)^2 = (A+B)(A+B) = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2.$$

$$(A-B)^2 = (A-B)(A-B) = A^2 - AB - BA + B^2 \neq A^2 - 2AB + B^2.$$

A não comutatividade do produto de matrizes teve como consequência que não são válidos para o produto de matrizes quadradas os análogos dos casos notáveis da multiplicação de números reais!

Observação

Deve-se ter uma particular atenção ao simplificar expressões que envolvam produtos de matrizes!

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

27

Simplificação de expressões...

Exercício na aula

Considere

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}_{2 \times 2}, \qquad B = \begin{bmatrix} 0 \\ -1 \end{bmatrix}_{2 \times 1}, \qquad C = \begin{bmatrix} 2 & 1 \end{bmatrix}_{1 \times 2}.$$

Desenvolva e calcule $((BC)^T + A)^2$.

Ainda o produto de matrizes...

Observação

(i) Se $A_{m \times n}$ e $B_{n \times p} = \begin{bmatrix} v_1 & v_2 & \cdots & v_p \end{bmatrix}$ então

$$AB = A \begin{bmatrix} v_1 & v_2 & \cdots & v_p \end{bmatrix} = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_p \end{bmatrix},$$

ou seja, a k-ésima coluna do produto AB é o produto de A pela k-ésima coluna de B (do tipo $n \times 1$) - produtos à direita "atuam nas colunas"...

(ii) Transpondo o resultado do ponto anterior pode-se provar que a i-ésima linha do produto AB é o produto da linha i de A (do tipo $1 \times n$) pela matriz B - produtos à esquerda "atuam nas linhas"...

Por exemplo, se
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} u_1^T \\ u_2^T \end{bmatrix}$$
 e $B = \begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$,

com $u_1 = (1,0,2)$, $u_2 = (3,1,-1)$, $v_1 = (-1,0,3)$ e $v_2 = (1,1,2)$, tem-se que

$$AB = A \begin{bmatrix} v_1 & v_2 \end{bmatrix} \stackrel{\text{(i)}}{=} \begin{bmatrix} Av_1 & Av_2 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} u_1^T \\ u_2^T \end{bmatrix} v_1 & \begin{bmatrix} u_1^T \\ u_2^T \end{bmatrix} v_2 \end{bmatrix} \stackrel{\text{(ii)}}{=} \begin{bmatrix} u_1^T v_1 & u_1^T v_2 \\ u_2^T v_1 & u_2^T v_2 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ -6 & 2 \end{bmatrix}.$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

29

Sistema de equações lineares

Sistema linear

Um sistema linear a m equações e n variáveis x_1, \ldots, x_n é um sistema de equações da forma,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases},$$

- ▶ $a_{ij} \in \mathbb{R}$: coeficiente da variável x_j na i-ésima equação.
- $b_i \in \mathbb{R}$: termo constante ou membro direito da i-ésima equação.
- Solução de um sistema linear é uma solução comum a todas as equações desse sistema.

Exemplo de um sistema linear a 3 equações e 3 variáveis

$$\begin{cases} 2x_1 + x_2 + 2x_3 = 3 \\ 4x_1 + 6x_2 + 6x_3 = 4 \\ -2x_1 - x_3 = -3 \end{cases}$$

Com a notação do slide anterior tem-se, por exemplo,

- $a_{11} = 2$: coeficiente da variável x_1 na primeira equação
- $ightharpoonup a_{23} = 6$: coeficiente da variável x_3 na segunda equação
- $b_2 = 4$: termo constante ou membro direito da segunda equação
- $ho b_3 = -3$: termo constante ou membro direito da terceira equação

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

31

Conjunto de soluções e classificação de um sistema linear

Resolver um sistema linear é determinar o seu conjunto de soluções (CS). Um sistema linear é classificado como:

- impossível (IMP) se não possuir soluções
- **possível** se possuir pelo menos uma solução, sendo:
 - determinado (PD), se possuir uma única solução
 - ▶ indeterminado (PI), se possuir uma infinidade de soluções

Por exemplo, o sistema linear a 2 equações e 2 variáveis,

$$\begin{cases} 2x_1 - x_2 &= 3 \\ x_1 + 2x_2 &= 4 \end{cases}$$

TPC

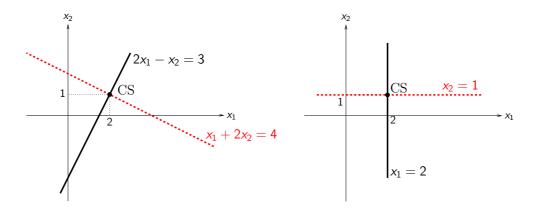
Adaptando o sistema linear anterior dê exemplos de sistemas lineares a 2 equações e 2 variáveis que sejam PI e IMP, indicando em cada caso o respectivo CS.

Sistemas equivalentes

Dois sistemas lineares a m equações e n variáveis dizem-se equivalentes se possuem o mesmo conjunto de soluções (CS).

São equivalentes os seguintes sistemas a 2 equações e 2 variáveis:

$$\begin{cases} 2x_1 - x_2 &= 3 \\ x_1 + 2x_2 &= 4 \end{cases} \Leftrightarrow \begin{cases} x_1 &= 2 \\ x_2 &= 1 \end{cases}$$
 (sistema reduzido)



► As equações de quaisquer duas retas concorrentes no ponto (2,1) definem um sistema linear equivalente aos sistemas anteriores.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

33

Matriz ampliada de um sistema a m equações e n variáveis

Consideremos o sistema linear a m equações e n variáveis,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

- $ightharpoonup A_{m imes n} = [a_{ij}]$ chama-se *matriz dos coeficientes* do sistema linear,
- $b = (b_1, ..., b_m)$ chama-se o *vetor dos termos constantes* ou *membros direitos* do sistema,
- $x = (x_1, ..., x_n)$ chama-se *vetor das incógnitas* ou *variáveis* do sistema e finalmente,

do sistema e contém toda a sua informação relevante

Matriz em escada e matriz reduzida

- Uma matriz diz-se em escada se o primeiro elemento não nulo de cada linha, que se designa por *pivot*, estiver à direita do primeiro elemento não nulo da linha anterior e todas as linhas nulas, caso existam, aparecerem no fim
- Uma matriz diz-se reduzida se
 - estiver em escada.
 - todos os pivots forem iguais a 1,
 - em cada coluna com pivot apenas o pivot é não nulo.

Exemplos de matrizes em escada e reduzida com os pivots a vermelho,

$$\begin{bmatrix}
0 & 1 & 2 & 1 & 4 \\
0 & 0 & 3 & -6 & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2 & 1 & 4 \\
0 & 0 & 3 & -6 & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -6 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Um sistema linear diz-se em escada/reduzido se a respectiva matriz dos coeficientes estiver em escada/reduzida.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

35

Operações elementares sobre as linhas de uma matriz

- (I) "Apagador" Adicionar a uma linha i uma linha $j \neq i$ multiplicada por um escalar $\lambda \left(L_i + \lambda L_i \right)$.
- (II) Multiplicar uma linha *i* por um escalar $\lambda \neq 0$ (λL_i).
- (III) Permutar uma linha i com uma linha j ($L_i \leftrightarrow L_i$).

A notação entre parênteses é uma simplificação da notação usada no Texto de Apoio!

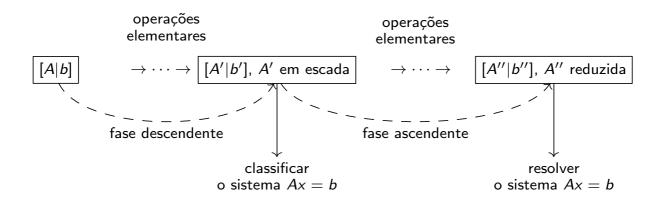
Teorema

As operações elementares (I), (II) e (III) transformam a matriz ampliada de um sistema linear na matriz ampliada de um sistema linear equivalente, ou seja, com o mesmo CS.

Definem-se de modo análogo operações elementares sobre as equações de um sistema linear.

Método de eliminação de Gauss para redução de sistemas

O método de eliminação de Gauss desenvolve-se em duas fases (descendente e ascendente), aplicando operações elementares sobre as linhas da matriz ampliada [A|b] de um sistema linear, de acordo com o seguinte esquema:



Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

37

38

Exemplificação do método de Gauss

Exemplo na aula

Vejamos como se processa o método de eliminação de Gauss no sistema

$$\begin{cases} x_1 - x_2 + 2x_3 &= -1 \\ 3x_1 + x_2 + x_3 &= 6 \\ 2x_1 + 6x_2 &= 10 \end{cases}$$

que representa a intersecção de 3 planos em \mathbb{R}^3 .

TPC

Resolver os seguintes sistemas lineares:

(a)
$$\begin{cases} 2x_1 + x_2 + 2x_3 &= 3\\ 4x_1 + 6x_2 + 6x_3 &= 4\\ -2x_1 &- x_3 &= -3 \end{cases}$$
 (b)
$$\begin{bmatrix} 1 & 3 & 3 & 0\\ 3 & 4 & 1 & -2\\ 1 & -2 & -5 & 0 \end{bmatrix}$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

Redução do sistema: fase descendente

Aplicando a fase descendente do método de eliminação de Gauss à matriz ampliada [A|b] do sistema do exemplo do slide anterior obtém-se:

$$[A|b] = \begin{bmatrix} 1 & -1 & 2 & | & -1 \\ 3 & 1 & 1 & | & 6 \\ 2 & 6 & 0 & | & 10 \end{bmatrix} \xrightarrow{L_2 - 3L_1} \begin{bmatrix} 1 & -1 & 2 & | & -1 \\ 0 & 4 & -5 & | & 9 \\ 0 & 8 & -4 & | & 12 \end{bmatrix}$$

$$\stackrel{L_3 - 2L_2}{\longrightarrow} \begin{bmatrix} \frac{1}{0} & -1 & 2 & | & -1 \\ 0 & \frac{1}{4} & -5 & | & 9 \\ 0 & 0 & | & \underline{6} & | & -6 \end{bmatrix} = [A'|b'].$$

Matriz dos coeficientes A' em **escada** \Rightarrow podemos classificar o sistema:

- ► Todas as linhas de [A'|b'] correspondem a equações possíveis, isto é, não são do tipo $0\ 0\ | * com * \neq 0(^3)$. Logo o sistema é possível.
- Todas as colunas de A' têm *pivot* e portanto não há variáveis livres(4). Logo o sistema é determinado e o CS é um ponto em \mathbb{R}^3 .

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

39

40

Conclusão da redução do sistema: fase ascendente

$$[A'|b'] = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 0 & 4 & -5 & 9 \\ 0 & 0 & 6 & -6 \end{bmatrix} \xrightarrow{\frac{1}{6}L_3} \begin{bmatrix} 1 & -1 & 2 & -1 \\ 0 & 4 & -5 & 9 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{array}{c} L_1 - 2L_3 \\ L_2 + 5L_3 \\ \longrightarrow \end{array} = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\frac{1}{4}L_2} \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{array}{c} L_1 + L_2 \\ \longrightarrow \end{array} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} = [A''|b''].$$

Matriz dos coeficientes A'' está **reduzida** e [A''|b''] corresponde à matriz ampliada do sistema reduzido,

$$\begin{cases} x_1 & = 2 \\ x_2 & = 1 \\ x_3 & = -1 \end{cases}$$

Logo,
$$CS = \{(2, 1, -1)\}.$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

 $[\]overline{^{3}}$ Que correspondem à equação impossível $0x_1 + 0x_2 + 0x_3 = *$.

⁴Cada variável fica determinada por uma equação.

Algoritmo de eliminação de Gauss: fase descendente

- ▶ Input: Matriz ampliada [A|b] de um sistema linear
- Objectivo: Redução do sistema linear
- ► Fase descendente:
 - ▶ Aplicando operações elementares do tipo III trocar, se necessário, linhas em [A|b] de modo a que o pivot da primeira linha se encontre na coluna não nula mais à esquerda da matriz dos coeficientes
 - Usando operações elementares do tipo I ("Apagador") e o pivot da primeira linha, eliminar os restantes elementos da coluna abaixo desse pivot
 - Repetir os procedimentos anteriores relativamente à submatriz que se obtém ignorando a primeira linha e assim sucessivamente enquanto existirem linhas não nulas na matriz dos coeficientes dessa submatriz

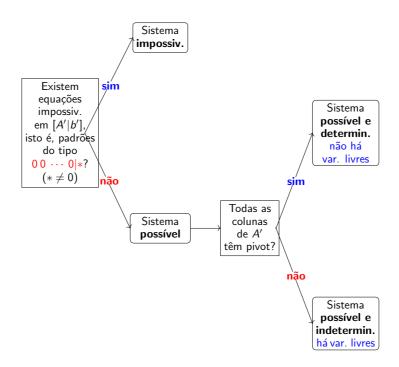
No final da fase descendente obtém-se uma matriz [A'|b'] com A' em escada e podemos classificar o sistema.

A matriz [A'|b'] não é única, i.e, depende das operações efetuadas.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

41

Classificação do sistema em escada



Variáveis *pivot* e variáveis livres

Observação

- As variáveis associadas às colunas sem *pivot* na matriz em escada designam-se por variáveis livres e podem tomar qualquer valor em \mathbb{R} .
- As variáveis associadas às colunas com *pivot* na matriz em escada designam-se por variáveis *pivot* ou variáveis determinadas e são escritas em função das variáveis livres.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

43

Algoritmo de eliminação de Gauss: fase ascendente

- Fase ascendente: (apenas se aplica aos sistemas possíveis)
 - Usando operações elementares do tipo II e I tornar o pivot que se encontra mais à direita na matriz A' igual a 1 e usar esse pivot para eliminar os elementos da coluna acima desse pivot
 - Repetir os procedimentos do passo anterior relativamente à coluna com pivot imediatamente anterior e assim sucessivamente enquanto existirem colunas com pivot (percorrendo a matriz da direita para a esquerda)

No final da fase ascendente obtém-se uma matriz [A''|b''] com A'' reduzida, donde resulta imediatamente o CS do sistema, escrevendo as variáveis pivot em função das variáveis livres. Observemos que:

- ► A matriz [A"|b"] é **única**, isto é, não depende da sequência de operações elementares efectuada
- Dois sistemas com m equações lineares e n variáveis são equivalentes se e só se aplicando o método de Gauss às respetivas matrizes ampliadas obtemos a mesma matriz reduzida.

Método de eliminação de Gauss

Exercícios na aula

Aplicando o método de Gauss reduza os seguintes sistemas lineares:

(a)
$$\begin{cases} 2x_1 + x_2 + 2x_3 + x_4 = 3 \\ 4x_1 + 6x_2 + 6x_3 = 4 \\ -2x_1 - x_3 - x_4 = -3 \end{cases}$$
(b)
$$\begin{bmatrix} 1 & 3 & 3 & 0 \\ 3 & 4 & 1 & -2 \\ 1 & -2 & -5 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 3 & 3 & 0 \\ 3 & 4 & 1 & -2 \\ 1 & -2 & -5 & 0 \end{bmatrix}$$

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

Redução do sistema do exemplo (a): fase descendente

Aplicando a fase descendente do método de eliminação de Gauss à matriz ampliada [A|b] do 1° sistema do slide anterior obtém-se:

$$[A|b] = \begin{bmatrix} 2 & 1 & 2 & 1 & 3 \\ 4 & 6 & 6 & 0 & 4 \\ -2 & 0 & -1 & -1 & -3 \end{bmatrix} \xrightarrow{L_2 - 2L_1} \begin{bmatrix} 2 & 1 & 2 & 1 & 3 \\ 0 & 4 & 2 & -2 & -2 \\ 0 & 1 & 1 & -0 & 0 \end{bmatrix}$$

$$\stackrel{L_2 \leftrightarrow L_3}{\longrightarrow} \begin{bmatrix} 2 & 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 4 & 2 & -2 & -2 \end{bmatrix} \xrightarrow{L_3 - 4L_2} \begin{bmatrix} |\underline{2} & 1 & 2 & 1 & 3 \\ 0 & |\underline{1} & 1 & 0 & 0 \\ 0 & 0 & |\underline{-2} & -2 & -2 \end{bmatrix} = [A'|b'].$$

A matriz dos coeficientes A' está em **escada**, tendo-se:

- Não há linhas do tipo $0\ 0\ 0\ 0\ | * com * \neq 0$, isto é, não há equações impossíveis.
- A $4^{\underline{a}}$ coluna de A' não tem pivot logo x_4 é variável livre, isto é, pode tomar qualquer valor.

Logo o sistema é **possível indeterminado** (PI).

45

Redução do sistema do exemplo (a): fase ascendente

Aplicando a fase ascendente do método de eliminação de Gauss à matriz em escada [A'|b'] do slide anterior obtém-se:

$$[A'|b'] = \begin{bmatrix} 2 & 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{-\frac{1}{2}L_3} \begin{bmatrix} 2 & 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{L_1 - 2L_3} \begin{bmatrix} 2 & 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{L_1 - L_2} \begin{bmatrix} 2 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}L_1} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} = [A''|b''] \xrightarrow{-+} \begin{cases} x_1 & = 1 \\ x_2 & -x_4 & = -1 \\ x_3 & +x_4 & = 1 \end{cases}$$

A matriz dos coeficientes A'' está em **reduzida**. Passando nas duas últimas equações a variável livre x_4 para o membro direito, podemos escrever as variáveis *pivot* (a azul) à custa da variável livre x_4 , obtendo-se

$$CS = \{(x_1, x_2, x_3, x_4) : x_1 = 1, x_2 = -1 + x_4, x_3 = 1 - x_4, x_4 \in \mathbb{R}\},\$$

que possui uma infinidade de soluções.

TPC: dar exemplos de soluções do sistema linear anterior

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

47

Redução do exemplo (b): fase descendente

Aplicando a fase descendente do método de eliminação de Gauss à matriz ampliada [A|b] do 2^{o} sistema do slide 45 obtém-se:

$$[A|b] = \begin{bmatrix} 1 & 3 & 3 & 0 \\ 3 & 4 & 1 & -2 \\ 1 & -2 & -5 & 0 \end{bmatrix} \xrightarrow{L_2 - 3L_1} \begin{bmatrix} 1 & 3 & 3 & 0 \\ 0 & -5 & -8 & -2 \\ 0 & -5 & -8 & 0 \end{bmatrix}$$

$$\xrightarrow{L_3 - L_2} \begin{bmatrix} 1 & 3 & 3 & 0 \\ 0 & -5 & -8 & -2 \\ 0 & 0 & 0 & 2 \end{bmatrix} = [A'|b'].$$

A última linha da matriz [A'|b'] é do tipo $0\ 0\ 0\ * com * \neq 0$ e corresponde portanto a uma equação impossível.

Logo o sistema é **impossível** (IMP) e $CS = \emptyset$.

A equação matricial Ax = b

ightharpoonup Consideremos a equação matricial Ax = b com

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 1 \\ 2 & 6 & 0 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \text{e} \quad b = \begin{bmatrix} -1 \\ 6 \\ 10 \end{bmatrix}.$$

► Tem-se,

$$Ax = b \Leftrightarrow \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 1 \\ 2 & 6 & 0 \end{bmatrix}_{3\times3} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{3\times1} = \begin{bmatrix} -1 \\ 6 \\ 10 \end{bmatrix}_{3\times1}$$

$$\Leftrightarrow \begin{bmatrix} x_1 - x_2 + 2x_3 \\ 3x_1 + x_2 + x_3 \\ 2x_1 + 6x_2 \end{bmatrix}_{3\times1} = \begin{bmatrix} -1 \\ 6 \\ 10 \end{bmatrix}_{3\times1}$$

$$\Leftrightarrow \begin{cases} x_1 - x_2 + 2x_3 \\ 2x_1 + 6x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \\ 10 \end{bmatrix}_{3\times1}$$

$$\Leftrightarrow \begin{cases} x_1 - x_2 + 2x_3 \\ 2x_1 + 6x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \\ 10 \end{bmatrix}_{3\times1}$$

Obteve-se uma relação importante - a equação matricial Ax = b é equivalente ao sistema linear cuja matriz ampliada é [A|b]

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

49

Sistemas lineares na forma matricial Ax=b

Efetuando o mesmo tipo de cálculos pode-se mostrar facilmente que se tem, em geral, a equivalência

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \Leftrightarrow Ax = b,$$

com $A = [a_{ij}]$, $x = (x_1, ..., x_n)$ e $b = (b_1, ..., b_m)$, isto é, entre o sistema linear com matriz ampliada [A|b] e a equação matricial Ax = b, o que permite traduzir os sistemas lineares para a linguagem das matrizes.

Observações

- Por abuso de linguagem, iremos ainda designar por sistema linear tanto a equação matricial Ax = b como a respetiva a matriz ampliada [A|b].
- Uma solução do sistema linear com matriz ampliada [A|b] é uma solução de Ax = b, isto é, um vetor $u \in \mathbb{R}^n$ tal que Au = b.

TPC: traduzindo o sistema do slide 49 para a equação matricial equivalente, mostre que (2,1-1) é solução desse sistema.

Interpretação geométrica de sistemas lineares - exercício

Exercício na aula

Considere o sistema a 2 equações e 3 variáveis, com parâmetros $c, d \in \mathbb{R}$,

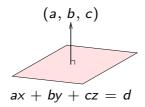
$$\begin{cases} x + 2y + 3z = 6 \\ 2x + 4y + cz = d \end{cases}$$

Discuta e interprete geometricamente o sistema anterior para todos os valores dos parâmetros $c, d \in \mathbb{R}$.

Resolução: comecemos por recordar que cada equação linear do tipo

$$ax + by + cz = d$$
,

onde $a, b, c, d \in \mathbb{R}$ com a, b, c não todos nulos define um plano no espaço (\mathbb{R}^3) com vetor normal (a, b, c).



Logo o sistema anterior representa a intersecção de 2 planos no espaço.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

51

Resolução do exercício (cont.)

Aplicando a fase descendente do método de eliminação de Gauss à matriz ampliada [A|b] do sistema linear do slide 51 obtém-se:

$$[A \mid b] = \begin{bmatrix} 1 & 2 & 3 & 6 \\ 2 & 4 & c & d \end{bmatrix} \xrightarrow{L_2 - 2L_1} \begin{bmatrix} 1 & 2 & 3 & 6 \\ 0 & 0 & c - 6 & d - 12 \end{bmatrix} = [A' \mid b'].$$

Discussão e interpretação geométrica do sistema linear:

Para $c \neq 6$ e *d* arbitrário o sistema é PI com 1 variável livre (y). Neste caso os **vetores normais aos planos não são múltiplos entre si** e o sistema representa 2 planos concorrentes numa reta. Logo CS = reta.

- Para c = 6 os vetores normais são múltiplos entre si e temos 2 casos:
 - Se d = 12 o sistema é PI com 2 variáveis livres $(y \in z)$. Neste caso as duas equações são equivalentes e o sistema representa 2 planos coincidentes. Logo CS = plano.

▶ Se $d \neq 12$ o sistema é IMP. Neste caso o sistema representa 2 planos paralelos, não coincidentes. Logo $CS = \emptyset$.

Interpretação geométrica de sistemas de equações lineares

Em geral, tem-se o seguinte:

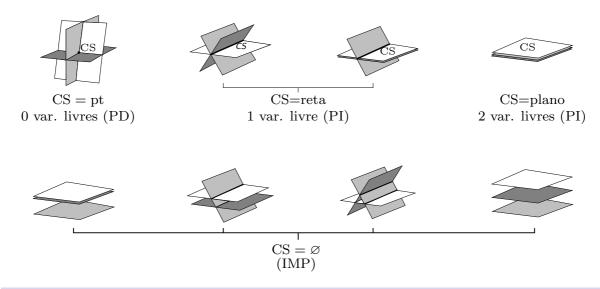
- Um sistema linear a m equações e n variáveis representa a intersecção de:
 - ightharpoonup m retas em \mathbb{R}^2 (plano), se n=2 (por exemplo, slide 33),
 - ▶ m planos em \mathbb{R}^3 (espaço), se n=3 (por exemplo, slide 51),
 - **m** hiperplanos em \mathbb{R}^n , se $n \geq 4$ (por exemplo, (a) do slide 45).
- ▶ O número de variáveis livres(⁵) de um sistema linear (possível) determina o tipo de CS que esse sistema possui. Por exemplo:
 - ► Se o número de variáveis livres for zero, o CS é um ponto
 - ► Se o número de variáveis livres for um, o CS é uma reta
 - Se o número de variáveis livres for dois, o CS é um plano
- ► Iremos principalmente interpretar sistemas lineares com 2 e 3 variáveis, ou seja, cujos CS estão contidos no plano e no espaço.

Álgebra Linear 2025/26 - Pedro C Silva - Instituto Superior de Agronomia / ULisboa

53

Geometria dos sistemas lineares a 3 equações e 3 variáveis

Um sistema a 3 equações e 3 variáveis representa a interseção de 3 planos no espaço (\mathbb{R}^3) e geometricamente temos 8 casos:



TPC (Desafio)

Dar exemplos de sistemas com 3 equações e 3 variáveis para cada um dos 8 casos anteriores

⁵Também designado por *grau de indeterminação do sistema*.