
A good approximation for the outer turbulent layer of pipe flow can be
obtained by evaluating the constant B in Eq. 8–46 from the requirement that
maximum velocity in a pipe occurs at the centerline where r ! 0. Solving
for B from Eq. 8–46 by setting y ! R & r ! R and u ! umax, and substitut-
ing it back into Eq. 8–46 together with k ! 0.4 gives

Outer turbulent layer: (8–48)

The deviation of velocity from the centerline value umax & u is called the
velocity defect, and Eq. 8–48 is called the velocity defect law. This relation
shows that the normalized velocity profile in the core region of turbulent
flow in a pipe depends on the distance from the centerline and is independent
of the viscosity of the fluid. This is not surprising since the eddy motion is
dominant in this region, and the effect of fluid viscosity is negligible.

Numerous other empirical velocity profiles exist for turbulent pipe flow.
Among those, the simplest and the best known is the power-law velocity
profile expressed as

Power-law velocity profile: (8–49)

where the exponent n is a constant whose value depends on the Reynolds
number. The value of n increases with increasing Reynolds number. The
value n ! 7 generally approximates many flows in practice, giving rise to
the term one-seventh power-law velocity profile.

Various power-law velocity profiles are shown in Fig. 8–26 for n ! 6, 8,
and 10 together with the velocity profile for fully developed laminar flow
for comparison. Note that the turbulent velocity profile is fuller than the
laminar one, and it becomes more flat as n (and thus the Reynolds number)
increases. Also note that the power-law profile cannot be used to calculate
wall shear stress since it gives a velocity gradient of infinity there, and it
fails to give zero slope at the centerline. But these regions of discrepancy
constitute a small portion of flow, and the power-law profile gives highly
accurate results for turbulent flow through a pipe.

Despite the small thickness of the viscous sublayer (usually much less
than 1 percent of the pipe diameter), the characteristics of the flow in this
layer are very important since they set the stage for flow in the rest of the
pipe. Any irregularity or roughness on the surface disturbs this layer and
affects the flow. Therefore, unlike laminar flow, the friction factor in turbu-
lent flow is a strong function of surface roughness.

It should be kept in mind that roughness is a relative concept, and it has
significance when its height e is comparable to the thickness of the laminar
sublayer (which is a function of the Reynolds number). All materials appear
“rough” under a microscope with sufficient magnification. In fluid mechan-
ics, a surface is characterized as being rough when the hills of roughness
protrude out of the laminar sublayer. A surface is said to be smooth when
the sublayer submerges the roughness elements. Glass and plastic surfaces
are generally considered to be hydrodynamically smooth.

The Moody Chart
The friction factor in fully developed turbulent pipe flow depends on the
Reynolds number and the relative roughness e/D, which is the ratio of the

u
umax

! ay

R
b 1/n  or  u

umax
! a1 &

r
R
b 1/n

umax & u
u*

! 2.5 ln 
R

R & r
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FIGURE 8–26
Power-law velocity profiles for 
fully developed turbulent flow in 
a pipe for different exponents, and 
its comparison with the laminar
velocity profile.
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mean height of roughness of the pipe to the pipe diameter. The functional
form of this dependence cannot be obtained from a theoretical analysis, and all
available results are obtained from painstaking experiments using artificially
roughened surfaces (usually by gluing sand grains of a known size on the inner
surfaces of the pipes). Most such experiments were conducted by Prandtl’s stu-
dent J. Nikuradse in 1933, followed by the works of others. The friction factor
was calculated from the measurements of the flow rate and the pressure drop.

The experimental results obtained are presented in tabular, graphical, and
functional forms obtained by curve-fitting experimental data. In 1939, Cyril
F. Colebrook (1910–1997) combined the available data for transition and
turbulent flow in smooth as well as rough pipes into the following implicit
relation known as the Colebrook equation:

(8–50)

We note that the logarithm in Eq. 8–50 is a base 10 rather than a natural
logarithm. In 1942, the American engineer Hunter Rouse (1906–1996) veri-
fied Colebrook’s equation and produced a graphical plot of f as a function
of Re and the product . He also presented the laminar flow relation
and a table of commercial pipe roughness. Two years later, Lewis F. Moody
(1880–1953) redrew Rouse’s diagram into the form commonly used today.
The now famous Moody chart is given in the appendix as Fig. A–12. It
presents the Darcy friction factor for pipe flow as a function of the
Reynolds number and e/D over a wide range. It is probably one of the most
widely accepted and used charts in engineering. Although it is developed for
circular pipes, it can also be used for noncircular pipes by replacing the
diameter by the hydraulic diameter.

Commercially available pipes differ from those used in the experiments in
that the roughness of pipes in the market is not uniform and it is difficult to
give a precise description of it. Equivalent roughness values for some com-
mercial pipes are given in Table 8–2 as well as on the Moody chart. But it
should be kept in mind that these values are for new pipes, and the relative
roughness of pipes may increase with use as a result of corrosion, scale
buildup, and precipitation. As a result, the friction factor may increase by a
factor of 5 to 10. Actual operating conditions must be considered in the
design of piping systems. Also, the Moody chart and its equivalent Cole-
brook equation involve several uncertainties (the roughness size, experimen-
tal error, curve fitting of data, etc.), and thus the results obtained should not
be treated as “exact.” It is usually considered to be accurate to 115 percent
over the entire range in the figure.

The Colebrook equation is implicit in f, and thus the determination of the
friction factor requires some iteration unless an equation solver such as EES
is used. An approximate explicit relation for f was given by S. E. Haaland in
1983 as

(8–51)

The results obtained from this relation are within 2 percent of those
obtained from the Colebrook equation. If more accurate results are desired,
Eq. 8–51 can be used as a good first guess in a Newton iteration when using
a programmable calculator or a spreadsheet to solve for f with Eq. 8–50.

12f
" &1.8 log c6.9

Re
' ae/D

3.7
b 1.11d

Re1f

12f
! &2.0 logae/D

3.7
'

2.51

Re2f
b  (turbulent flow)
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TABLE 8–2
Equivalent roughness values for new
commercial pipes*

Roughness, e

Material ft mm

Glass, plastic 0 (smooth)
Concrete 0.003–0.03 0.9–9
Wood stave 0.0016 0.5
Rubber,
smoothed 0.000033 0.01

Copper or
brass tubing 0.000005 0.0015

Cast iron 0.00085 0.26
Galvanized
iron 0.0005 0.15

Wrought iron 0.00015 0.046
Stainless steel 0.000007 0.002
Commercial
steel 0.00015 0.045

* The uncertainty in these values can be as much
as 160 percent.

cen72367_ch08.qxd  12/1/04  7:37 PM  Page 341



We make the following observations from the Moody chart:

• For laminar flow, the friction factor decreases with increasing Reynolds
number, and it is independent of surface roughness.

• The friction factor is a minimum for a smooth pipe (but still not zero
because of the no-slip condition) and increases with roughness (Fig.
8–27). The Colebrook equation in this case (e! 0) reduces to the
Prandtl equation expressed as .

• The transition region from the laminar to turbulent regime (2300 * Re
* 4000) is indicated by the shaded area in the Moody chart (Figs. 8–28
and A–12). The flow in this region may be laminar or turbulent,
depending on flow disturbances, or it may alternate between laminar and
turbulent, and thus the friction factor may also alternate between the
values for laminar and turbulent flow. The data in this range are the least
reliable. At small relative roughnesses, the friction factor increases in the
transition region and approaches the value for smooth pipes.

• At very large Reynolds numbers (to the right of the dashed line on the
chart) the friction factor curves corresponding to specified relative
roughness curves are nearly horizontal, and thus the friction factors are
independent of the Reynolds number (Fig. 8–28). The flow in that region
is called fully rough turbulent flow or just fully rough flow because the
thickness of the viscous sublayer decreases with increasing Reynolds
number, and it becomes so thin that it is negligibly small compared to the
surface roughness height. The viscous effects in this case are produced 
in the main flow primarily by the protruding roughness elements, and 
the contribution of the laminar sublayer is negligible. The Colebrook
equation in the fully rough zone (Re → +) reduces to the von Kármán
equation expressed as which is explicit in
f. Some authors call this zone completely (or fully) turbulent flow, but this
is misleading since the flow to the left of the dashed blue line in Fig. 8–28
is also fully turbulent.

In calculations, we should make sure that we use the actual internal diame-
ter of the pipe, which may be different than the nominal diameter. For
example, the internal diameter of a steel pipe whose nominal diameter is
1 in is 1.049 in (Table 8–3).

1/1f !  &2.0 log[(e/D)/3.7],

1/1f !  2.0 log(Re1f ) &  0.8
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Relative Friction
Roughness, Factor,

2/D f

0.0* 0.0119
0.00001 0.0119
0.0001 0.0134
0.0005 0.0172
0.001 0.0199
0.005 0.0305
0.01 0.0380
0.05 0.0716

* Smooth surface. All values are for Re ! 106

and are calculated from the Colebrook equation.

FIGURE 8–27
The friction factor is minimum for a
smooth pipe and increases with
roughness.

e /D = 0.001
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Laminar Fully rough turbulent flow (ƒ levels off)
e /D = 0.01

e /D = 0.0001

e /D = 0

Smooth turbulentFIGURE 8–28
At very large Reynolds numbers, the
friction factor curves on the Moody
chart are nearly horizontal, and thus
the friction factors are independent 
of the Reynolds number.
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Types of Fluid Flow Problems
In the design and analysis of piping systems that involve the use of the
Moody chart (or the Colebrook equation), we usually encounter three types
of problems (the fluid and the roughness of the pipe are assumed to be spec-
ified in all cases) (Fig. 8–29):

1. Determining the pressure drop (or head loss) when the pipe length and
diameter are given for a specified flow rate (or velocity)

2. Determining the flow rate when the pipe length and diameter are given
for a specified pressure drop (or head loss)

3. Determining the pipe diameter when the pipe length and flow rate are
given for a specified pressure drop (or head loss)

Problems of the first type are straightforward and can be solved directly
by using the Moody chart. Problems of the second type and third type are
commonly encountered in engineering design (in the selection of pipe diam-
eter, for example, that minimizes the sum of the construction and pumping
costs), but the use of the Moody chart with such problems requires an itera-
tive approach unless an equation solver is used.

In problems of the second type, the diameter is given but the flow rate is
unknown. A good guess for the friction factor in that case is obtained from
the completely turbulent flow region for the given roughness. This is true
for large Reynolds numbers, which is often the case in practice. Once the
flow rate is obtained, the friction factor can be corrected using the Moody
chart or the Colebrook equation, and the process is repeated until the solu-
tion converges. (Typically only a few iterations are required for convergence
to three or four digits of precision.)

In problems of the third type, the diameter is not known and thus 
the Reynolds number and the relative roughness cannot be calculated.
Therefore, we start calculations by assuming a pipe diameter. The pressure
drop calculated for the assumed diameter is then compared to the specified
pressure drop, and calculations are repeated with another pipe diameter in
an iterative fashion until convergence.

To avoid tedious iterations in head loss, flow rate, and diameter calcula-
tions, Swamee and Jain proposed the following explicit relations in 1976
that are accurate to within 2 percent of the Moody chart:

(8–52)

(8–53)

(8–54)

Note that all quantities are dimensional and the units simplify to the
desired unit (for example, to m or ft in the last relation) when consistent
units are used. Noting that the Moody chart is accurate to within 15 percent
of experimental data, we should have no reservation in using these approx-
imate relations in the design of piping systems.

10&6 * e/D * 10&2

5000 * Re * 3 . 108D ! 0.66 ce1.25aLV
#

2

ghL
b 4.75

' nV
#

9.4a L
ghL
b 5.2d 0.04

Re )  2000V
#

! &0.965agD5hL

L
b 0.5

 ln c e
3.7D

' a3.17v 2L
gD3hL

b 0.5d
10&6 * e/D * 10&2

3000 * Re * 3 . 108hL !  1.07 
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TABLE 8–3
Standard sizes for Schedule 40
steel pipes

Nominal Actual Inside
Size, in Diameter, in

0.269
0.364
0.493
0.622
0.824

1 1.049
1.610

2 2.067
2.469

3 3.068
5 5.047

10 10.02

21
2

11
2

3
4

1
2

3
8

1
4

1
8

L, , D, , V

ProblemProblem
typetype

1

L, , ∆P, , V
L, , D, , ∆P

∆P (or (or hL)

D
V2

3

GivenGiven FindFind
⋅

⋅
⋅

FIGURE 8–29
The three types of problems

encountered in pipe flow.
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EXAMPLE 8–3 Determining the Head Loss in a Water Pipe

Water at 60°F (r ! 62.36 lbm/ft3 and m ! 7.536 . 10&4 lbm/ft · s) is flow-
ing steadily in a 2-in-diameter horizontal pipe made of stainless steel at a rate
of 0.2 ft3/s (Fig. 8–30). Determine the pressure drop, the head loss, and the
required pumping power input for flow over a 200-ft-long section of the pipe.

SOLUTION The flow rate through a specified water pipe is given. The pres-
sure drop, the head loss, and the pumping power requirements are to be
determined.
Assumptions 1 The flow is steady and incompressible. 2 The entrance
effects are negligible, and thus the flow is fully developed. 3 The pipe
involves no components such as bends, valves, and connectors. 4 The piping
section involves no work devices such as a pump or a turbine.
Properties The density and dynamic viscosity of water are given to be r
! 62.36 lbm/ft3 and m ! 7.536 . 10&4 lbm/ft · s, respectively.
Analysis We recognize this as a problem of the first type, since flow rate,
pipe length, and pipe diameter are known. First we calculate the average
velocity and the Reynolds number to determine the flow regime:

which is greater than 4000. Therefore, the flow is turbulent. The relative
roughness of the pipe is calculated using Table 8–2

The friction factor corresponding to this relative roughness and the Reynolds
number can simply be determined from the Moody chart. To avoid any read-
ing error, we determine f from the Colebrook equation:

Using an equation solver or an iterative scheme, the friction factor is deter-
mined to be f ! 0.0174. Then the pressure drop (which is equivalent to
pressure loss in this case), head loss, and the required power input become

Therefore, power input in the amount of 461 W is needed to overcome the
frictional losses in the pipe.
Discussion It is common practice to write our final answers to three signifi-
cant digits, even though we know that the results are accurate to at most two
significant digits because of inherent inaccuracies in the Colebrook equation,

 W
#

pump !  V
#
 (P !  (0.2 ft3/s)(1700 lbf/ft2)a 1 W

0.737 lbf , ft/s
b  !  461 W

 hL !  
(PL

rg
 !  f 

L
D

  
V 2

2g
 !  0.0174 

200 ft
2/12 ft

  
(9.17 ft/s)2

2(32.2 ft/s2)
 !  27.3 ft

  !  1700 lbf/ft2 !  11.8 psi

 (P ! (PL ! f 
L
D

 
rV 2

2
! 0.0174 

200 ft
2/12 ft

 
(62.36 lbm/ft3)(9.17 ft/s)2

2
 a 1 lbf

32.2 lbm , ft/s2b

12f
! &2.0 logae/D
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'

2.51
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3.7
'
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126,4002f
b

e/D !  
0.000007 ft

2/12 ft
 !  0.000042
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rV D
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V
#

Ac
 !  

V
#

pD2/4
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! 9.17 ft/s
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water

FIGURE 8–30
Schematic for Example 8–3.
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as discussed previously. The friction factor could also be determined easily
from the explicit Haaland relation (Eq. 8–51). It would give f ! 0.0172,
which is sufficiently close to 0.0174. Also, the friction factor corresponding
to e ! 0 in this case is 0.0171, which indicates that stainless-steel pipes
can be assumed to be smooth with negligible error.

EXAMPLE 8–4 Determining the Diameter of an Air Duct

Heated air at 1 atm and 35°C is to be transported in a 150-m-long circular
plastic duct at a rate of 0.35 m3/s (Fig. 8–31). If the head loss in the pipe
is not to exceed 20 m, determine the minimum diameter of the duct.

SOLUTION The flow rate and the head loss in an air duct are given. The
diameter of the duct is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 The entrance
effects are negligible, and thus the flow is fully developed. 3 The duct
involves no components such as bends, valves, and connectors. 4 Air is an
ideal gas. 5 The duct is smooth since it is made of plastic. 6 The flow is tur-
bulent (to be verified).
Properties The density, dynamic viscosity, and kinematic viscosity of air at
35°C are r ! 1.145 kg/m3, m ! 1.895 . 10&5 kg/m · s, and n ! 1.655 .
10&5 m2/s.
Analysis This is a problem of the third type since it involves the determina-
tion of diameter for specified flow rate and head loss. We can solve this
problem by three different approaches: (1) an iterative approach by assum-
ing a pipe diameter, calculating the head loss, comparing the result to the
specified head loss, and repeating calculations until the calculated head loss
matches the specified value; (2) writing all the relevant equations (leaving
the diameter as an unknown) and solving them simultaneously using an
equation solver; and (3) using the third Swamee–Jain formula. We will
demonstrate the use of the last two approaches.

The average velocity, the Reynolds number, the friction factor, and the
head loss relations can be expressed as (D is in m, V is in m/s, and Re and f
are dimensionless)

The roughness is approximately zero for a plastic pipe (Table 8–2). There-
fore, this is a set of four equations in four unknowns, and solving them with
an equation solver such as EES gives

Therefore, the diameter of the duct should be more than 26.7 cm if the
head loss is not to exceed 20 m. Note that Re ) 4000, and thus the turbu-
lent flow assumption is verified.

D !  0.267 m,  f !  0.0180,  V !  6.24 m/s,  and  Re !  100,800

 hL !  f 
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FIGURE 8–31
Schematic for Example 8–4
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The diameter can also be determined directly from the third Swamee–Jain
formula to be

Discussion Note that the difference between the two results is less than 2
percent. Therefore, the simple Swamee–Jain relation can be used with confi-
dence. Finally, the first (iterative) approach requires an initial guess for D. If
we use the Swamee–Jain result as our initial guess, the diameter converges
to D ! 0.267 m in short order.

EXAMPLE 8–5 Determining the Flow Rate of Air in a Duct

Reconsider Example 8–4. Now the duct length is doubled while its diameter
is maintained constant. If the total head loss is to remain constant, deter-
mine the drop in the flow rate through the duct.

SOLUTION The diameter and the head loss in an air duct are given. The
drop in the flow rate is to be determined.
Analysis This is a problem of the second type since it involves the determi-
nation of the flow rate for a specified pipe diameter and head loss. The solu-
tion involves an iterative approach since the flow rate (and thus the flow
velocity) is not known.

The average velocity, Reynolds number, friction factor, and the head loss
relations can be expressed as (D is in m, V is in m/s, and Re and f are
dimensionless)

This is a set of four equations in four unknowns and solving them with an
equation solver such as EES gives

Then the drop in the flow rate becomes

Therefore, for a specified head loss (or available head or fan pumping
power), the flow rate drops by about 31 percent from 0.35 to 0.24 m3/s
when the duct length doubles.
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Alternative Solution If a computer is not available (as in an exam situation),
another option is to set up a manual iteration loop. We have found that the
best convergence is usually realized by first guessing the friction factor f,
and then solving for the velocity V. The equation for V as a function of f is

Average velocity through the pipe:

Now that V is calculated, the Reynolds number can be calculated, from
which a corrected friction factor is obtained from the Moody chart or the
Colebrook equation. We repeat the calculations with the corrected value of f
until convergence. We guess f ! 0.04 for illustration:

Iteration f (guess) V, m/s Re Corrected f

1 0.04 2.955 4.724 . 104 0.0212
2 0.0212 4.059 6.489 . 104 0.01973
3 0.01973 4.207 6.727 . 104 0.01957
4 0.01957 4.224 6.754 . 104 0.01956
5 0.01956 4.225 6.756 . 104 0.01956

Notice that the iteration has converged to three digits in only three iterations
and to four digits in only four iterations. The final results are identical to
those obtained with EES, yet do not require a computer.
Discussion The new flow rate can also be determined directly from the sec-
ond Swamee–Jain formula to be

Note that the result from the Swamee–Jain relation is the same (to two sig-
nificant digits) as that obtained with the Colebrook equation using EES or
using our manual iteration technique. Therefore, the simple Swamee–Jain
relation can be used with confidence.

8–6 ! MINOR LOSSES
The fluid in a typical piping system passes through various fittings, valves,
bends, elbows, tees, inlets, exits, enlargements, and contractions in addition
to the pipes. These components interrupt the smooth flow of the fluid and
cause additional losses because of the flow separation and mixing they
induce. In a typical system with long pipes, these losses are minor com-
pared to the total head loss in the pipes (the major losses) and are called
minor losses. Although this is generally true, in some cases the minor
losses may be greater than the major losses. This is the case, for example, in
systems with several turns and valves in a short distance. The head loss
introduced by a completely open valve, for example, may be negligible. But
a partially closed valve may cause the largest head loss in the system, as

 ! 0.24 m3/s 
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evidenced by the drop in the flow rate. Flow through valves and fittings is
very complex, and a theoretical analysis is generally not plausible. There-
fore, minor losses are determined experimentally, usually by the manufac-
turers of the components.

Minor losses are usually expressed in terms of the loss coefficient KL
(also called the resistance coefficient), defined as (Fig. 8–32)

Loss coefficient: (8–55)

where hL is the additional irreversible head loss in the piping system caused
by insertion of the component, and is defined as hL ! (PL /rg. For example,
imagine replacing the valve in Fig. 8–32 with a section of constant diameter
pipe from location 1 to location 2. (PL is defined as the pressure drop from
1 to 2 for the case with the valve, (P1 & P2 )valve, minus the pressure drop
that would occur in the imaginary straight pipe section from 1 to 2 without
the valve, (P1 & P2 )pipe at the same flow rate. While the majority of the
irreversible head loss occurs locally near the valve, some of it occurs down-
stream of the valve due to induced swirling turbulent eddies that are pro-
duced in the valve and continue downstream. These eddies “waste” mechan-
ical energy because they are ultimately dissipated into heat while the flow in
the downstream section of pipe eventually returns to fully developed condi-
tions. When measuring minor losses in some minor loss components, such
as elbows, for example, location 2 must be considerably far downstream
(tens of pipe diameters) in order to fully account for the additional irre-
versible losses due to these decaying eddies.

When the pipe diameter downstream of the component changes, determi-
nation of the minor loss is even more complicated. In all cases, however, it
is based on the additional irreversible loss of mechanical energy that would
otherwise not exist if the minor loss component were not there. For simplic-
ity, you may think of the minor loss as occurring locally across the minor
loss component, but keep in mind that the component influences the flow
for several pipe diameters downstream. By the way, this is the reason why
most flow meter manufacturers recommend installing their flow meter at
least 10 to 20 pipe diameters downstream of any elbows or valves—this
allows the swirling turbulent eddies generated by the elbow or valve to
largely disappear and the velocity profile to become fully developed before
entering the flow meter. (Most flow meters are calibrated with a fully devel-
oped velocity profile at the flow meter inlet, and yield the best accuracy
when such conditions also exist in the actual application.)

When the inlet diameter equals outlet diameter, the loss coefficient of a
component can also be determined by measuring the pressure loss across the
component and dividing it by the dynamic pressure, KL ! (PL/( rV2). When
the loss coefficient for a component is available, the head loss for that com-
ponent is determined from

Minor loss: (8–56)

The loss coefficient, in general, depends on the geometry of the component
and the Reynolds number, just like the friction factor. However, it is usually
assumed to be independent of the Reynolds number. This is a reasonable
approximation since most flows in practice have large Reynolds numbers

hL !  KL 
V 2

2g

1
2

KL !  
hL

V 2/(2g)
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(P1 – P2)valve

1 2

∆PL = (P1 – P2)valve – (P1 – P2)pipe

V

1 2
V

(P1 – P2)pipe

Pipe section without valve:

Pipe section with valve:

FIGURE 8–32
For a constant-diameter section of a
pipe with a minor loss component,
the loss coefficient of the component
(such as the gate valve shown) is
determined by measuring the
additional pressure loss it causes 
and dividing it by the dynamic
pressure in the pipe.
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and the loss coefficients (including the friction factor) tend to be indepen-
dent of the Reynolds number at large Reynolds numbers.

Minor losses are also expressed in terms of the equivalent length Lequiv,
defined as (Fig. 8–33)

Equivalent length: (8–57)

where f is the friction factor and D is the diameter of the pipe that contains
the component. The head loss caused by the component is equivalent to the
head loss caused by a section of the pipe whose length is Lequiv. Therefore,
the contribution of a component to the head loss can be accounted for by
simply adding Lequiv to the total pipe length.

Both approaches are used in practice, but the use of loss coefficients is
more common. Therefore, we will also use that approach in this book. Once
all the loss coefficients are available, the total head loss in a piping system
is determined from

Total head loss (general):

(8–58)

where i represents each pipe section with constant diameter and j represents
each component that causes a minor loss. If the entire piping system being
analyzed has a constant diameter, Eq. 8–58 reduces to

Total head loss (D ! constant): (8–59)

where V is the average flow velocity through the entire system (note that
V ! constant since D ! constant).

Representative loss coefficients KL are given in Table 8–4 for inlets, exits,
bends, sudden and gradual area changes, and valves. There is considerable
uncertainty in these values since the loss coefficients, in general, vary with
the pipe diameter, the surface roughness, the Reynolds number, and the
details of the design. The loss coefficients of two seemingly identical valves
by two different manufacturers, for example, can differ by a factor of 2 or
more. Therefore, the particular manufacturer’s data should be consulted in
the final design of piping systems rather than relying on the representative
values in handbooks.

The head loss at the inlet of a pipe is a strong function of geometry. It is
almost negligible for well-rounded inlets (KL ! 0.03 for r/D ) 0.2), but
increases to about 0.50 for sharp-edged inlets (Fig. 8–34). That is, a sharp-
edged inlet causes half of the velocity head to be lost as the fluid enters the
pipe. This is because the fluid cannot make sharp 90° turns easily, espe-
cially at high velocities. As a result, the flow separates at the corners, and
the flow is constricted into the vena contracta region formed in the midsec-
tion of the pipe (Fig. 8–35). Therefore, a sharp-edged inlet acts like a flow
constriction. The velocity increases in the vena contracta region (and the
pressure decreases) because of the reduced effective flow area and then
decreases as the flow fills the entire cross section of the pipe. There would
be negligible loss if the pressure were increased in accordance with
Bernoulli’s equation (the velocity head would simply be converted into
pressure head). However, this deceleration process is far from ideal and the

hL, total ! af L
D

 ' a KLbV 2

2g

 !  a
i

 fi 
Li

Di
 
V 2

i

2g
 '  a

j
KL, j 

V 2
j

2g

 hL, total !  hL, major '  hL, minor 

hL !  KL 
V 2

2g
 !  f 

Lequiv
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2g
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D
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FIGURE 8–33
The head loss caused by a component

(such as the angle valve shown) is
equivalent to the head loss caused by a
section of the pipe whose length is the

equivalent length.

Well-rounded inlet
KL = 0.03

Sharp-edged inlet
KL = 0.50

Recirculating flow

DDD

r

FIGURE 8–34
The head loss at the inlet of a pipe is

almost negligible for well-rounded
inlets (KL ! 0.03 for r/D ) 0.2) 

but increases to about 0.50 for 
sharp-edged inlets.
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TABLE 8–4
Loss coefficients KL of various pipe components for turbulent flow (for use in the relation hL ! KLV 2/(2g), where V is the
average velocity in the pipe that contains the component)*

Pipe Inlet
Reentrant: KL ! 0.80 Sharp-edged: KL ! 0.50 Well-rounded (r/D ) 0.2): KL ! 0.03
(t ** D and I $ 0.1D) Slightly rounded (r/D ! 0.1): KL ! 0.12

(see Fig. 8–36)

Pipe Exit
Reentrant: KL ! a Sharp-edged: KL ! a Rounded: KL ! a

Note: The kinetic energy correction factor is a ! 2 for fully developed laminar flow, and a # 1 for fully developed turbulent flow.

Sudden Expansion and Contraction (based on the velocity in the smaller-diameter pipe)

Sudden expansion:

Sudden contraction: See chart.

Gradual Expansion and Contraction (based on the velocity in the smaller-diameter pipe)
Expansion: Contraction (for u ! 20°):
KL ! 0.02 for u ! 20° KL ! 0.30 for d/D ! 0.2
KL ! 0.04 for u ! 45° KL ! 0.25 for d/D ! 0.4
KL ! 0.07 for u ! 60° KL ! 0.15 for d/D ! 0.6

KL ! 0.10 for d/D ! 0.8

KL ! a1 &
d2

D2b2

DV

l t

DV DV

r

V V V

V d D

VdD

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

KL

d2/D2

KL for sudden
contraction

V d Du VD du
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TABLE 8–4 (CONCLUDED)

Bends and Branches
90° smooth bend: 90° miter bend 90° miter bend 45° threaded elbow:
Flanged: KL ! 0.3 (without vanes): KL ! 1.1 (with vanes): KL ! 0.2 KL ! 0.4
Threaded: KL ! 0.9

180° return bend: Tee (branch flow): Tee (line flow): Threaded union:
Flanged: KL ! 0.2 Flanged: KL ! 1.0 Flanged: KL ! 0.2 KL ! 0.08
Threaded: KL ! 1.5 Threaded: KL ! 2.0 Threaded: KL ! 0.9

Valves
Globe valve, fully open: KL ! 10 Gate valve, fully open: KL ! 0.2
Angle valve, fully open: KL ! 5 KL ! 0.3
Ball valve, fully open: KL ! 0.05 KL ! 2.1
Swing check valve: KL ! 2 KL ! 17

* These are representative values for loss coefficients. Actual values strongly depend on the design and manufacture of the components and may differ from the
given values considerably (especially for valves). Actual manufacturer’s data should be used in the final design.

3
4 closed:

1
2 closed:

1
4 closed:

V V V V
45°

V

V V
V

21

Head
Pressure head
converted to
velocity head

Remaining
pressure head

Remaining
velocity head

Lost velocity head

Total
head

Pressure
head

P0
rg

P1
rg

P2
rg

V1
2

2g V2
2 /2g

KLV2/2g

0

Vena contracta

Separated
flow

11 221 2

FIGURE 8–35
Graphical representation of flow

contraction and the associated head
loss at a sharp-edged pipe inlet.
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viscous dissipation caused by intense mixing and the turbulent eddies con-
vert part of the kinetic energy into frictional heating, as evidenced by a
slight rise in fluid temperature. The end result is a drop in velocity without
much pressure recovery, and the inlet loss is a measure of this irreversible
pressure drop.

Even slight rounding of the edges can result in significant reduction of KL,
as shown in Fig. 8–36. The loss coefficient rises sharply (to about KL ! 0.8)
when the pipe protrudes into the reservoir since some fluid near the edge
in this case is forced to make a 180° turn.

The loss coefficient for a submerged pipe exit is often listed in hand-
books as KL ! 1. More precisely, however, KL is equal to the kinetic
energy correction factor a at the exit of the pipe. Although a is indeed
close to 1 for fully developed turbulent pipe flow, it is equal to 2 for fully
developed laminar pipe flow. To avoid possible errors when analyzing
laminar pipe flow, then, it is best to always set KL ! a at a submerged
pipe exit. At any such exit, whether laminar or turbulent, the fluid leaving
the pipe loses all of its kinetic energy as it mixes with the reservoir fluid
and eventually comes to rest through the irreversible action of viscosity.
This is true, regardless of the shape of the exit (Table 8–4 and Fig. 8–37).
Therefore, there is no need to round the pipe exits.

Piping systems often involve sudden or gradual expansion or contraction
sections to accommodate changes in flow rates or properties such as density
and velocity. The losses are usually much greater in the case of sudden expan-
sion and contraction (or wide-angle expansion) because of flow separation.
By combining the conservation of mass, momentum, and energy equations,
the loss coefficient for the case of sudden expansion is approximated as

(8–60)

where Asmall and Alarge are the cross-sectional areas of the small and large
pipes, respectively. Note that KL ! 0 when there is no area change (Asmall
! Alarge) and KL ! 1 when a pipe discharges into a reservoir (Alarge
)) Asmall). No such relation exists for a sudden contraction, and the KL val-
ues in that case can be read from the chart in Table 8–4. The losses due to
expansion and contraction can be reduced significantly by installing conical
gradual area changers (nozzles and diffusers) between the small and large

KL ! a1 &
Asmall

Alarge
b 2  (sudden expansion)
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FIGURE 8–36
The effect of rounding of a pipe inlet
on the loss coefficient.
From ASHRAE Handbook of Fundamentals.

Mixing

Entrained
ambient fluid

Submerged
outlet

FIGURE 8–37
All the kinetic energy of the flow is
“lost” (turned into thermal energy)
through friction as the jet decelerates
and mixes with ambient fluid
downstream of a submerged outlet.
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pipes. The KL values for representative cases of gradual expansion and con-
traction are given in Table 8–4. Note that in head loss calculations, the
velocity in the small pipe is to be used as the reference velocity in Eq. 8–56.
Losses during expansion are usually much higher than the losses during
contraction because of flow separation.

Piping systems also involve changes in direction without a change in
diameter, and such flow sections are called bends or elbows. The losses in
these devices are due to flow separation (just like a car being thrown off the
road when it enters a turn too fast) on the inner side and the swirling 
secondary flows caused by different path lengths. The losses during changes
of direction can be minimized by making the turn “easy” on the fluid by
using circular arcs (like the 90° elbow) instead of sharp turns (like miter
bends) (Fig. 8–38). But the use of sharp turns (and thus suffering a penalty
in loss coefficient) may be necessary when the turning space is limited. In
such cases, the losses can be minimized by utilizing properly placed guide
vanes to help the flow turn in an orderly manner without being thrown off
the course. The loss coefficients for some elbows and miter bends as well as
tees are given in Table 8–4. These coefficients do not include the frictional
losses along the pipe bend. Such losses should be calculated as in straight
pipes (using the length of the centerline as the pipe length) and added to
other losses.

Valves are commonly used in piping systems to control the flow rates by
simply altering the head loss until the desired flow rate is achieved. For
valves it is desirable to have a very low loss coefficient when they are fully
open so that they cause minimal head loss during full-load operation. Sev-
eral different valve designs, each with its own advantages and disadvan-
tages, are in common use today. The gate valve slides up and down like a
gate, the globe valve closes a hole placed in the valve, the angle valve is a
globe valve with a 90° turn, and the check valve allows the fluid to flow
only in one direction like a diode in an electric circuit. Table 8–4 lists the
representative loss coefficients of the popular designs. Note that the loss
coefficient increases drastically as a valve is closed (Fig. 8–39). Also, the
deviation in the loss coefficients for different manufacturers is greatest for
valves because of their complex geometries.

EXAMPLE 8–6 Head Loss and Pressure Rise 
during Gradual Expansion

A 6-cm-diameter horizontal water pipe expands gradually to a 9-cm-diameter
pipe (Fig. 8–40). The walls of the expansion section are angled 30° from the
horizontal. The average velocity and pressure of water before the expansion
section are 7 m/s and 150 kPa, respectively. Determine the head loss in the
expansion section and the pressure in the larger-diameter pipe.

SOLUTION A horizontal water pipe expands gradually into a larger-diameter
pipe. The head loss and pressure after the expansion are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 The flow at sec-
tions 1 and 2 is fully developed and turbulent with a1 ! a2 % 1.06.
Properties We take the density of water to be r ! 1000 kg/m3. The loss coef-
ficient for gradual expansion of u ! 60° total included angle is KL ! 0.07.
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Flanged elbow
KL = 0.3

Sharp turn
KL = 1.1

FIGURE 8–38
The losses during changes of direction
can be minimized by making the turn
“easy” on the fluid by using circular

arcs instead of sharp turns.

                   V2 = V1
       Vconstriction > V1

V1 V2

Constriction

A globe
valve

FIGURE 8–39
The large head loss in a partially

closed valve is due to irreversible
deceleration, flow separation, and

mixing of high-velocity fluid coming
from the narrow valve passage.
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Water 
7 m/s

150 kPa

1 2

FIGURE 8–40
Schematic for Example 8–6.
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Analysis Noting that the density of water remains constant, the downstream
velocity of water is determined from conservation of mass to be

Then the irreversible head loss in the expansion section becomes

Noting that z1 ! z2 and there are no pumps or turbines involved, the energy
equation for the expansion section can be expressed in terms of heads as

Solving for P2 and substituting,

Therefore, despite the head (and pressure) loss, the pressure increases from
150 to 169 kPa after the expansion. This is due to the conversion of
dynamic pressure to static pressure when the average flow velocity is
decreased in the larger pipe.
Discussion It is common knowledge that higher pressure upstream is neces-
sary to cause flow, and it may come as a surprise to you that the downstream
pressure has increased after the expansion, despite the loss. This is because
the flow is driven by the sum of the three heads that comprise the total head
(namely, the pressure head, velocity head, and elevation head). During flow
expansion, the higher velocity head upstream is converted to pressure head
downstream, and this increase outweighs the nonrecoverable head loss. Also,
you may be tempted to solve this problem using the Bernoulli equation.
Such a solution would ignore the head (and the associated pressure) loss
and result in an incorrect higher pressure for the fluid downstream.

8–7 ! PIPING NETWORKS AND PUMP SELECTION
Most piping systems encountered in practice such as the water distribution
systems in cities or commercial or residential establishments involve numer-
ous parallel and series connections as well as several sources (supply of
fluid into the system) and loads (discharges of fluid from the system) (Fig.
8–41). A piping project may involve the design of a new system or the
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FIGURE 8–41
A piping network in an industrial
facility.
Courtesy UMDE Engineering, Contracting,
and Trading. Used by permission.
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