

AGRICULTURA DIGITAL/MÓDULO DE REGA – MESTRADO ENG AGRONÓMICA

AULA DE LABORATÓRIO

Automatização de um sistema de rega gota-a-gota com sensor de humidade do solo

Local: Laboratório de Rega Digital, Engenharia Rural

Docente: Maria do Rosário Cameira

Duração: 2 horas

1. OBJETIVOS DA AULA DE LABORATÓRIO

No final da atividade, os alunos deverão ser capazes de:

- 1. Conectar um sensor de humidade e um leitor LCD a um microcontrolador Arduíno;
- 2. Programar o Arduíno para ler o sensor de humidade do solo e para apresentar a leitura no computador e no ecrã;
- 3. Conectar um relé a uma electroválvula e programar o Arduíno para acioná-la com base num limiar de humidade definido;

2. MATERIAIS E EQUIPAMENTO

Material	Quantidade por grupo
Arduíno Uno ou compatível	1
Sensor de humidade do solo (resistivo)	1
Eletroválvula 12V DC	1
Relé 5V	1
Resistor	2
Fonte de alimentação 9 V	1
Protoboard e cabos jumper	1 conjunto
Tubagem PE com gotejadores	2 metros
Vasos com dois tipos de solo seco	1

AGRICULTURA DIGITAL/MÓDULO DE REGA – MESTRADO ENG AGRONÓMICA

3. METODOLOGIA

3.1 Preparação

Identificar os componentes e as suas funções

Sensor de humidade

Sensor Relé

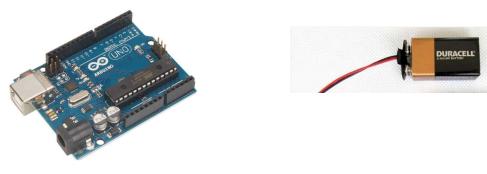

Válvula solenoide


Tabela de circuitos (protoboard)

Écrã LCD

Cabos jumper

Placa de microcontrolador Arduino e bateria de 9 volts

Cabos de fonte externa

Figura 1. Componentes principais a utilizar na atividade de laboratório

AGRICULTURA DIGITAL/MÓDULO DE REGA – MESTRADO ENG AGRONÓMICA

3. 2 Ligações

1. Ligar o componente sensor de humidade à entrada analógica do Arduíno, através da protoboard

Componente	→ Protoboard →	Arduíno	Função
VCC	Ligar ao + (vermelho)	5V	Alimentação
GND	Ligar ao – (azul)	GND	Terra
Α0	Qualquer linha central	A0	Leitura analógica

Nota: A0 do sensor pode ligar diretamente ao A0 do Arduíno

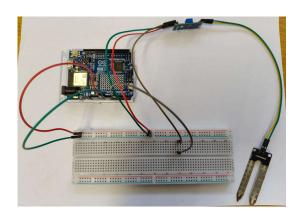
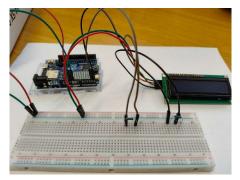



Figura 2. Ligação do sensor de humidade ao microprocessador Arduíno, através da *protoboard*

2. Ligar a componente LCD à entrada analógica do Arduíno, através da protoboard

Componente	→ Protoboard →	Ligar ao Arduíno	Função
VCC	Ligar ao + (vermelho)	5V	Alimentação
GND	Ligar ao – (azul)	GND	Terra
SDA	Qualquer linha central	A4	Comunicação I2C
	com resistor (Fig 3)		
SCL	Qualquer linha central	A5	Comunicação I2C
	com resistor (Fig 3)		

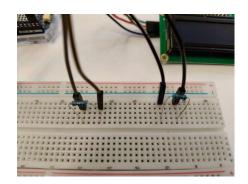
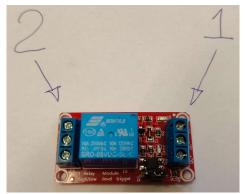


Figura 3. Ligação do ecrã LCD ao Arduíno



AGRICULTURA DIGITAL/MÓDULO DE REGA — MESTRADO ENG AGRONÓMICA

3. Ligar o relé diretamente ao Arduíno

Componente	Terminal	→ Arduíno →	V álvula	\rightarrow	Fonte energia	Observações
Relé (lado 1, Fig 4, 6)*	DC+	VIN (9 V)				energia
	DC-	GND				terra
	IN	pino digital 8				controlo do relé
Relé (lado 2, Fig 4,6)* só o	СОМ				12 V	conduz eletr. se o relé é ativado
negativo	NO NC	não usado po	polo nega		12 V vula normalmente	liga a válvula fechada
педанио	NC	não usado po	orque é uma	a válv	/ula normalmente	fechada

^{*}Usar chave de fendas

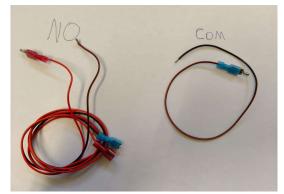


Figura 4. Relé (direita) e cabos de ligação do relé à válvula solenoide (NO) e à bateria (COM).

AGRICULTURA DIGITAL/MÓDULO DE REGA – MESTRADO ENG AGRONÓMICA

5. Testar o Arduíno ligando-o à fonte de energia (9 V) (Fig.5)

Figura 5. Ligação do Arduíno à fonte de energia (bateria de 9 V)

Depois de feitas as ligações e de testado o sistema, desligar o Arduíno da bateria, colocar tudo na caixa (Figura 7) e seguir para o laboratório.

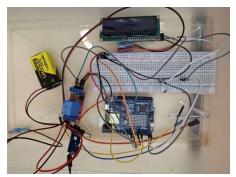


Figura 7

3.3 Programação

Dado o tempo de aula limitado, a programação do Arduíno já está feita e encontra-se em anexo, mostrando-se aos alunos como é feito o download do código para o Arduíno.

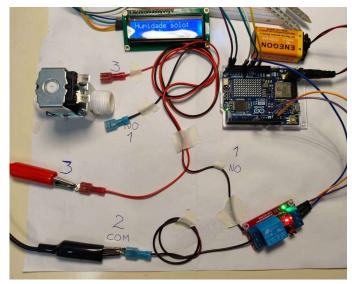
4. TESTE NO LABORATÓRIO

4.1. Medição da humidade do solo

Na bancada A, encontram-se vasos com dois tipos de solo e com diferentes humidades.

- 1. Introduzir o sensor de humidade nos diferentes solos e registar os valores;
- 2. Antes de transportar o circuito para a bancada B, desligar o Arduíno da fonte de energia de 9V.

4.2 Observar o inicio e fecho automáticos da rega gota a gota


Na bancada B:

- 1. Ligar o relé à válvula solenoide (Figura 6, cabo 1_NO) instalada no ramal de rega gota-agota;
- 2. Ligar o relé (cabo 2 COM) e a válvula (cabo 3) a uma fonte de energia de 12V;

AGRICULTURA DIGITAL/MÓDULO DE REGA – MESTRADO ENG AGRONÓMICA

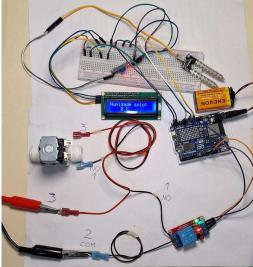


Figura 6. Ligação do relé à electroválvula, ao Arduíno e à fonte de energia. Ligação da electroválvula à fonte de energia de 12 V (direita). Todas as ligações (esquerda)

- 3. Verificar se os tubos estão corretamente ligados e se existe pressão suficiente de água para ativar a rega (cuidado com pressão excessiva);
- 4. Garantir que os recipientes estão posicionados por baixo dos gota-a-gota, de forma a evitar derrames excessivos.
- 5. Colocar o sensor de humidade do solo num dos recipientes colocado por baixo do gotejador e ligar o sistema: ligar o Arduíno à bateria de 9 V. Observar a válvula solenoidal.
- 6. Durante o funcionamento do sistema de rega, cada grupo deve registar o valor da humidade lido no LCD para o qual a rega cessa automaticamente.
- 7. Fazer uma nova experiência: esvaziar os recipientes e colocar o sensor num recipiente vazio;

ANEXO

Programação do Arduíno para:

- ✓ Ler o valor analógico do sensor de humidade;
- ✓ Comparar com um limiar pré-definido;
- ✓ Ativar o relé se o solo estiver seco;
- ✓ Desativar se estiver húmido;
- ✓ Ver code na seguinte pagina.

AGRICULTURA DIGITAL/MÓDULO DE REGA – MESTRADO ENG AGRONÓMICA

Code para Arduíno:

```
1. #include <Wire.h>
                                        // Biblioteca para comunicação I2C
 2. #include <LiquidCrystal_I2C.h>
                                        // Biblioteca para controlar o ecrã LCD via I2C
 3.
 4. // Inicializa o LCD no endereço I2C 0x27 com 16 colunas e 2 linhas
 5. LiquidCrystal_I2C lcd(0x27, 16, 2);
6.
                                       // Pino analógico onde o sensor de humidade está ligado
 7. int moisturePin = A0:
                                       // Pino digital que controla o relé
 8. int relavPin = 8:
 9. int moistureValue = 0;
                                      // Variável que guarda o valor lido do sensor (0-1023)
10. int moisturePercent = 0;
                                      // Variável que guarda a humidade em percentagem (0-100%)
11.
12. void setup() {
13.
     Serial.begin(9600);
                                       // Inicializa a comunicação com o Monitor Serial
15.
      pinMode(relayPin, OUTPUT);
                                      // Define o pino do relé como saída
      digitalWrite(relayPin, HIGH); // Começa com o relé desligado (modo inativo → válvula fechada)
16.
17.
18.
      lcd.init():
                                       // Inicializa o LCD
                                       // Liga a retroiluminação do LCD
19.
     lcd.backlight();
20. }
21.
22. void loop() {
23.  // Lê o valor do sensor (entre 0 e 1023)
     moistureValue = analogRead(moisturePin);
24.
25.
      // Converte o valor lido para percentagem (calibração: 1023 = seco, 300 = húmido)
26.
27.
      moisturePercent = map(moistureValue, 1023, 300, 0, 100);
28.
      moisturePercent = constrain(moisturePercent, 0, 100); // Garante que fica entre 0% e 100%
29.
30.
      // Mostra o valor no Monitor Serial
      Serial.print("Humidade do solo: ");
31.
32.
      Serial.print(moisturePercent);
      Serial.println("%");
33.
34.
      // Atualiza o LCD com o valor da humidade
35.
                                      // Limpa o ecrã
      lcd.clear():
36.
37.
      lcd.setCursor(0, 0);
                                       // Primeira linha
      lcd.print("Humidade solo:");
38.
39.
      lcd.setCursor(4, 1);
                                      // Segunda linha, posição 4
40.
      lcd.print(moisturePercent);
41.
      lcd.print(" %");
42.
43.
      // Controla o relé e, consequentemente, a válvula
      if (moisturePercent < 50) {</pre>
44.
        digitalWrite(relayPin, LOW); // Ativa o relé → válvula abre → começa a rega
45.
        Serial.println(">>> Irrigação: ATIVA");
46.
47.
      } else {
48.
        digitalWrite(relayPin, HIGH); // Desativa o relé → válvula fecha → rega parada
        Serial.println(">> Irrigação: OFF");
49.
50.
51.
      delay(2000);
                                      // Aguarda 2 segundos antes de nova leitura
53. }
54.
```