Base para o espaço nulo de uma matriz - algoritmo

Algoritmo

Input: Matriz A do tipo $m \times n$.

Objectivo: Base para $\mathcal{N}(A)$.

- Resolver o sistema $Ax = \vec{0}$ aplicando o método de Gauss a $[A \mid \vec{0}]$. Seja k o número de variáveis livres do sistema.
- Se k = 0, isto é, se não há variáveis livres então $\mathcal{N}(A) = \{\vec{0}\}$ e $\{\}$ é a base de $\mathcal{N}(A)$, tendo-se dim $\mathcal{N}(A) = 0$.
- Se k > 0, associamos a cada variável livre a solução de $Ax = \vec{0}$ em que essa variável livre toma o valor 1 (ou qualquer valor não nulo) e as restantes variáveis livres o valor zero.

O conjunto das k soluções de $Ax = \vec{0}$ obtidas deste modo constitui uma base para $\mathcal{N}(A)$.

Em particular,

 $\dim \mathcal{N}(A) = n^{\underline{o}}$ de variáveis livres $= n - \operatorname{car}(A)$

Base para espaço nulo de uma matriz - exercício 2

Exercício na aula

Indicar uma base e a dimensão do espaço nulo da matriz

$$A = \left| \begin{array}{cccc} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & -1 & -1 \end{array} \right|.$$

Resolução: aplicando a fase descendente à matriz $[A|\vec{0}]$ obtém-se,

$$[A|\vec{0}] = \left[egin{array}{ccc|c} 1 & 0 & 0 & 0 \ 1 & 2 & 0 & 0 \ -1 & -1 & -1 & 0 \end{array}
ight]
ightarrow \cdots
ightarrow \left[egin{array}{ccc|c} 1 & 0 & 0 & 0 \ 0 & -1 & -1 & 0 \ 0 & 0 & -2 & 0 \end{array}
ight] = [A'|\vec{0}].$$

Neste caso não há variáveis livres. Logo $Ax = \vec{0}$ é determinado e portanto $\mathcal{N}(A) = \{\vec{0}\}$. Logo $\{\}$ é a base de $\mathcal{N}(A)$ e dim $\mathcal{N}(A) = 0$.

Um resultado auxiliar :)

Observação

Se w é CL de vetores u e v e $V = \langle u, v, w \rangle$ então $V = \langle u, v \rangle$, isto é, w é redundante no sentido em que pode ser retirado do conjunto de geradores de V mantendo V!

Vejamos esta propriedade no caso em que w = u + v para simplificar a notação.

Se $b \in \langle u, v \rangle$, existem $\alpha, \beta \in \mathbb{R}$ tais que $b = \alpha u + \beta v = \alpha u + \beta v + 0 w$ o que mostra que $b \in \langle u, v, w \rangle$. Logo $\langle u, v \rangle \subset \langle u, v, w \rangle$.

Reciprocamente, se $b \in \langle u, v, w \rangle$ existem $\alpha, \beta, \gamma \in \mathbb{R}$ tais que $b = \alpha u + \beta v + \gamma w$. Como w = u + v tem-se,

$$b = \alpha u + \beta v + \gamma w = \alpha u + \beta v + \gamma (u + v) = (\alpha + \gamma)u + (\beta + \gamma)v.$$

Logo $b \in \langle u, v \rangle$ e portanto $\langle u, v, w \rangle \subset \langle u, v \rangle$. Como já vimos que $\langle u, v \rangle \subset \langle u, v, w \rangle$ conclui-se que $V = \langle u, v, w \rangle = \langle u, v \rangle$.

Usando argumentos semelhantes pode-se provar um resultado mais geral.

Lema

Sejam $v_1,\ldots,v_n\in\mathbb{R}^m$ tais que v_j é CL dos restantes vetores para algum j. Tem-se

$$\langle v_1,\ldots,v_{j-1},v_j,v_{j+1},\ldots,v_n\rangle=\langle v_1,\ldots,v_{j-1},v_j,v_{j+1},\ldots,v_n\rangle,$$

isto é, v_i pode ser removido do conjunto de geradores mantendo o espaço gerado.

Base para espaço gerado / espaço das colunas - exemplo

Vejamos como é que o resultado anterior nos permite obter bases para o espaço gerado/espaço das colunas, no caso da matriz do exercício do slide 127.

Consideremos $v_1 = (1, 1, -1)$, $v_2 = (0, 2, -1)$, $v_3 = (2, 0, -1)$ e $v_4 = (4, 2, -3)$. Aplicando a fase descendente do método de Gauss obtém-se,

$$A = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 1 & 2 & 0 & 2 \\ -1 & -1 & -1 & -3 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 2 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = A'.$$

Daqui resulta que v_4 é CL de v_1 , v_2 e v_3 (uma vez que $\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \end{bmatrix}$ é possível) e que v_3 é CL de v_1 e v_2 (porque $\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ é também possível). Logo, pelo lema do slide anterior tem-se:

$$\mathcal{C}(A) = \langle v_1, v_2, v_3, v_4 \rangle = \langle v_1, v_2, v_3, v_4 \rangle = \langle v_1, v_2, v_3 \rangle = \langle v_1, v_2, v_3 \rangle.$$

Além disso, como o conjunto de geradores $\{v_1, v_2\}$ está associado às colunas com *pivot* na matriz em escada A', é linearmente independente. Logo

▶ o conjunto dos vetores $\{v_1, v_2\}$ associados às colunas com *pivot* em A' define uma base de $C(A) = \langle v_1, v_2, v_3, v_4 \rangle$.

E em particular, dim $C(A) = n^{o}$ de vetores da base $= n^{o}$ de pivots em A' = 2.

Caso geral

Consideremos $v_1, \ldots, v_n \in \mathbb{R}^m$ e $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \to A'$ com A' em escada. Pode-se mostrar usando o Lema do slide 132 que as colunas de A que estão associadas às colunas sem pivot em A' são redundantes, no sentido em que se tem,

$$C(A) = \langle v_1, v_2, \dots, v_n \rangle = \langle v_{i_1}, v_{i_2}, \dots, v_{i_k} \rangle,$$

onde $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ denotam as colunas de A associadas às colunas com pivot em A'.

- Por outro lado, $\{v_{i_1}, v_{i_2}, \dots, v_{i_k}\}$ é linearmente independente porque é constituído por vetores associados a colunas com pivot na matriz em escada A'.
- Das considerações anteriores resulta que o conjunto das colunas de A que correspondem a colunas com *pivot* na matriz em escada A', $\{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\}$, define uma base de $C(A) = \langle v_1, v_2, \ldots, v_n \rangle$.
- Tem-se portanto algoritmo do próximo slide.

Base para o espaço das colunas/espaço gerado - algoritmo

Algoritmo

```
Input: A = [v_1 \cdots v_n] \text{ com } v_1 \dots, v_n \in \mathbb{R}^m.

Objectivo: Base para C(A) = \langle v_1, \dots, v_n \rangle.
```

- Aplicar a fase descendente do método de Gauss à matriz A: $A \rightarrow \cdots \rightarrow A'$ com A' escada.
- ▶ O subconjunto das colunas de A que correspondem às colunas com pivot em A' constitui uma base de $C(A) = \langle v_1, \ldots, v_n \rangle$, contida no conjunto inicial de geradores v_1, \ldots, v_n .

Em particular, tem-se

```
\dim \langle v_1, \ldots, v_n \rangle = \dim \mathcal{C}(A) = \text{número de pivots em } A' = \text{car}(A).
```

Obs: a característica de uma matriz A é muitas vezes definida como dim C(A).

Relação entre as dimensões de $\mathcal{N}(A)$ e de $\mathcal{C}(A)$

- Seja A matriz do tipo $m \times n$ e A' matriz em escada obtida a partir de A. Pelos algoritmos dos slides 130 e 135 tem-se:
 - $ightharpoonup \dim \mathcal{N}(A) = n \operatorname{car}(A)$ (no de colunas sem pivot em A').
 - $ightharpoonup \dim \mathcal{C}(A) = \operatorname{car}(A) \ (\operatorname{n}^{\mathsf{Q}} \operatorname{de} \operatorname{colunas} \operatorname{com} \operatorname{pivot} \operatorname{em} A').$
- ▶ Daqui resulta imediatamente a seguinte resultado que estabelece uma relação importante entre as dimensões dos dois subespaços fundamentais associados à matriz A.

Teorema

Se A é uma matriz do tipo $m \times n$ tem-se

 $\dim \mathcal{N}(A) + \dim \mathcal{C}(A) = \text{número de colunas de } A = n$.

Voltando-se ao exemplo do slide 127 tem-se pelos cálculos dos slides 128 e 133,

$$\dim \mathcal{N}(\mathcal{A}) + \dim \mathcal{C}(\mathcal{A}) = 2 + 2 = 4 = n^{\mathbf{Q}}$$
 de colunas de A .

Vetor pertence ao espaço nulo / espaço das colunas de uma matriz

Recordatória

Dada uma matriz $A_{m \times n}$ tem-se por definição:

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n : Ax = \vec{0} \} \subset \mathbb{R}^n$$

$$C(A) = \{ b \in \mathbb{R}^m : Ax = b \text{ \'e poss\'el } \} \subset \mathbb{R}^m.$$

Logo se $u \in \mathbb{R}^n$ e $b \in \mathbb{R}^m$, tem-se:

- $\blacktriangleright u \in \mathcal{N}(A) \Leftrightarrow Au = \vec{0}.$
- ▶ $b \in C(A)$ \Leftrightarrow Ax = b é possível. \Leftrightarrow [A | b] é possível.

Vetor pertence ao espaço nulo / das colunas de uma matriz - exemplo

Exemplo

Consideremos a matriz
$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -1 & -1 \\ 2 & 1 & 1 & 3 \end{bmatrix}_{3 \times 4}$$

▶ Vejamos que $u = (-2, 1, 0, 1) \in \mathcal{N}(A)$. De facto,

$$Au = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -1 & -1 \\ 2 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}.$$

▶ Vejamos que $b = (1, -1, 5) \in C(A)$. Aplicando o método de Gauss,

$$[A|b] = \begin{bmatrix} 1 & 2 & -1 & 0 & 1 \\ 0 & 1 & -1 & -1 & -1 \\ 2 & 1 & 1 & 3 & 5 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 & 1 \\ 0 & 1 & -1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = [A'|b'],$$

conclui-se que Ax = b é um sistema possível. Logo $b \in C(A)$.

Critério para definir base de um subespaço vetorial

- Vimos anteriormente que as bases de \mathbb{R}^m (cuja dimensão é m) são os conjuntos linearmente independententes formados por m vetores de \mathbb{R}^m (conjuntos l.i. de vetores de \mathbb{R}^m de cardinalidade **máxima**)
- ► Temos uma caracterização análoga para qualquer subespaço vetorial *V* cuja dimensão se conhece!

Teorema

As bases de um subespaço vetorial V de dimensão k > 0 são os conjuntos linearmente independentes formados por k vetores de $V(^{15})$.

Nos exercícios podemos aplicar o teorema anterior com a seguinte formulação.

Teorema (Critério para definir base de V)

Sejam V subespaço vetorial de \mathbb{R}^m e v_1, \ldots, v_k , k vetores de \mathbb{R}^m . Tem-se que $\{v_1, \ldots, v_k\}$ é uma **base de** V se e só se verificar as seguintes 3 condições:

- $ightharpoonup k = \dim V$.
- \triangleright $v_1,\ldots,v_k\in V$.
- $ightharpoonup \{v_1, \ldots, v_k\}$ é linearmente independente.

 $^{^{15}}$ Conjuntos I.i. de vetores de V de cardinalidade **máxima**.

Critério para definir base de um subespaço vetorial - exercício

Exercício na aula

Considere $v_1 = (-2, 1, 0, 1)$, $v_2 = (-1, 0, -1, 1)$ e a matriz do exemplo do slide 137,

$$A = \left[\begin{array}{cccc} 1 & 2 & -1 & 0 \\ 0 & 1 & -1 & -1 \\ 2 & 1 & 1 & 3 \end{array} \right]_{3 \times 4}.$$

Mostre que $\{v_1, v_2\}$ é base de $\mathcal{N}(A)$.

Pelo critério do slide 139 basta verificar as seguintes condições:

- ▶ $\dim \mathcal{N}(A) = 2$ (nº de vetores do conjunto). De facto, a matriz em escada A' obtida a partir de A tem 2 colunas sem pivot confirme.
- $ightharpoonup v_1, v_2 \in \mathcal{N}(A)$. De facto, tem-se $Av_1 = \vec{0}$ e $Av_2 = \vec{0}$ confirme.
- v_1, v_2 é linearmente independente. De facto, v_1 e v_2 são não colineares.

Logo $\{v_1, v_2\}$ é base de $\mathcal{N}(A)$.

Subespaço vetorial e dimensão

- O conhecimento da dimensão de um subespaço vetorial permite conhecer o tipo de conjunto que esse subespaço vetorial define.
- Para os subespaços vetoriais do plano (\mathbb{R}^2) e do espaço (\mathbb{R}^3), tem-se o seguinte.

	dimensão do subespaço	tipo de subespaço vetorial
	0	$\{\vec{0}\}$
\mathbb{R}^2	1	reta que passa na origem
	2	\mathbb{R}^2
	0	$\{\vec{0}\}$
\mathbb{R}^3	1	reta que passa na origem
	2	plano que passa na origem
	3	\mathbb{R}^3

Têm-se ainda as seguintes caracterizações dos subespaços minimal e maximal de \mathbb{R}^n com n arbitrário, em função das suas dimensões:

- $V = {\vec{0}} \Leftrightarrow \dim V = 0.$
- $V = \mathbb{R}^n \Leftrightarrow \dim V = n.$

Casos especiais do espaço nulo e do espaço das colunas

Consideremos uma matriz $A_{m \times n} \to \overset{\mathsf{Gauss}}{\cdots} \to A'$ com A' em escada. Pelos resultados dos slides 141, 128 e 133 tem-se o seguinte:

$$\mathcal{N}(A) = \{\vec{0}\}\ \Leftrightarrow \ \operatorname{dim} \mathcal{N}(A) = 0$$
 $\Leftrightarrow \ \operatorname{N} \widetilde{\operatorname{ao}} \ \operatorname{h} \widetilde{\operatorname{a}} \ \operatorname{vari} \widetilde{\operatorname{aveis}} \ \operatorname{livres} \ \operatorname{no} \ \operatorname{sistema} \ Ax = \vec{0}$
 $\Leftrightarrow \ \operatorname{Todas} \ \operatorname{as} \ \operatorname{columas} \ \operatorname{de} \ A' \ \operatorname{t} \widehat{\operatorname{em}} \ \operatorname{pivot}$
 $\Leftrightarrow \ \operatorname{car} \ (A) = n \ (\operatorname{n}^{\circ} \ \operatorname{de} \ \operatorname{columas} \ \operatorname{de} \ A)$

$$\mathcal{C}(A) = \mathbb{R}^m \Leftrightarrow \dim \mathcal{C}(A) = m$$
 $\Leftrightarrow \operatorname{Todas} \operatorname{as \ linhas \ de} A' \operatorname{têm \ pivot}$
 $\Leftrightarrow \operatorname{Não \ h\'{a} \ linhas \ nulas \ em} A'$
 $\Leftrightarrow \operatorname{car}(A) = m \quad (n^{\circ} \operatorname{de \ linhas \ de} A).$

Têm-se ainda os casos "menos interessantes" $\mathcal{N}(A) = \mathbb{R}^n$ e $\mathcal{C}(A) = \{\vec{0}\}$, que apenas ocorrem quando A é a matriz nula (justifique).